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Reductions

Main concept
Comparing problem difficulty through A ≤ B. When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent input R(x) of B

such that x ∈ A ⇔ R(x) ∈ B.

Note
To be useful, R should have limitations. (Hamilton Path to Reachability).

Definition
A language L1 is reducible to a language L2 if there is a function R from strings of L1 to strings

computable by a DTM in space O(log n), such that for all inputs x ∈ Σ∗, |x| = n,

x ∈ L1 ↔ R(x) ∈ L2.
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Note
Good old days, we used poly-time reductions.

Proposition
If R is a reduction computed by a DTM M, then for all x, M halts after a polynomial number of steps.

Subramani Complexity Classes



Reductions
Completeness

Reductions (contd.)

Note
Good old days, we used poly-time reductions.

Proposition
If R is a reduction computed by a DTM M, then for all x, M halts after a polynomial number of steps.

Subramani Complexity Classes



Reductions
Completeness

Reductions (contd.)

Note
Good old days, we used poly-time reductions.

Proposition
If R is a reduction computed by a DTM M, then for all x, M halts after a polynomial number of steps.

Subramani Complexity Classes



Reductions
Completeness

Sample Reductions

Hamilton Path to SAT
Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is satisfiable.
Step 1: Suppose G has n nodes; φ has n2 variables of the form xij , where xij represents the fact
that node j is the i th node in the Hamilton Path (may or may not be true).
Step 2: (x1j ∨ x2j . . . xnj ), j = 1, 2, . . . , n. [C1].
Step 3: (¬xij ∨ ¬xkj ), j = 1, 2 . . . n, i = 1, 2, . . . , n, k = 1, 2, . . . n, k 6= i . [C2].
Step 4: (xi1 ∨ xi2 . . . ∨ xin), i = 1, 2 . . . n. [C3].
Step 5: (¬xij ∨ ¬xik ), i = 1, 2, . . . , n, j, k = 1, 2, . . . , n, j 6= k . [C4].
Step 6: (¬xki ∨ ¬x(k+1),j , k = 1, 2, . . . , n − 1, (i, j) 6∈ G. [C5].
Step 7: φ = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5.

Argument: Let x̃ denote a satisfying assignment to φ. We show that there must exist a Hamilton
Path in G.

Let π = (π(1), π(2) . . . π(n)) denote a Hamilton path, where π is a permutation. We show that φ

is satisfiable.
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Sample Reductions (contd.)

CIRCUIT SAT to SAT
Input instance: A circuit C.
Output instance: A CNF formula φ such that φ is satisfiable if and only if C is.
Step 1: The variables of φ will contain all the variables of C. Additionally, for each gate g in C, we
create a new variable in φ, also denoted by g.
Step 2: If g is a variable gate, corresponding to variable x , add the clauses (g ∨ ¬) and (¬g ∨ x) to
φ.
Step 3: If g is a true gate, add (g) to φ; likewise, if it is a false gate, add (¬g).
Step 4: If g is a NOT gate with predecessor h, add the clauses (g ∨ h) and (¬g ∨ ¬h) to φ.
Step 5: If g is an OR gate with predecessors h and h′, add the clauses (¬h ∨ g), (¬h′ ∨ g) and
(h ∨ h′ ∨ ¬g) to φ.
Step 6: If g is an AND gate with predecessors h and h′, add the clauses (¬g ∨ h), (¬g ∨ h′) and
(¬h ∨ ¬h′ ∨ g) to φ.
Step 7: If g is an output gate, add the clause (g).
Argument: If C is satisfiable, then φ is satisfiable.

If φ is satisfiable, then C is satisfiable.
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Step 7: If g is an output gate, add the clause (g).
Argument: If C is satisfiable, then φ is satisfiable.

If φ is satisfiable, then C is satisfiable.
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Reduction by generalization
CIRCUIT VALUE to CIRCUIT SAT. R is the identity function!
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Reduction by generalization
CIRCUIT VALUE to CIRCUIT SAT. R is the identity function!
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Composition of Reductions

Theorem
If R is a reduction from L1 to L2 and R′ is a reduction from L2 to L3 , then R′ ◦ R is a reduction from

L1 to L3.

Proof.
Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of R(x) could
be larger than log |x|.

Main idea: Dovetail simulations.
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Completeness

Definition
A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C can be

reduced to L.

Definition
A complexity class C is closed under reductions, if

((L ∈ C) ∧ (L′ ≤ L)) → (L′ ∈ C).

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L that is

complete for both C and C′ then C = C′.

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

Completeness

Definition
A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C can be

reduced to L.

Definition
A complexity class C is closed under reductions, if

((L ∈ C) ∧ (L′ ≤ L)) → (L′ ∈ C).

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L that is

complete for both C and C′ then C = C′.

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

Completeness

Definition
A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C can be

reduced to L.

Definition
A complexity class C is closed under reductions, if

((L ∈ C) ∧ (L′ ≤ L)) → (L′ ∈ C).

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L that is

complete for both C and C′ then C = C′.

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

Completeness

Definition
A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C can be

reduced to L.

Definition
A complexity class C is closed under reductions, if

((L ∈ C) ∧ (L′ ≤ L)) → (L′ ∈ C).

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L that is

complete for both C and C′ then C = C′.

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

Completeness

Definition
A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C can be

reduced to L.

Definition
A complexity class C is closed under reductions, if

((L ∈ C) ∧ (L′ ≤ L)) → (L′ ∈ C).

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L that is

complete for both C and C′ then C = C′.

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

Completeness

Definition
A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C can be

reduced to L.

Definition
A complexity class C is closed under reductions, if

((L ∈ C) ∧ (L′ ≤ L)) → (L′ ∈ C).

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L that is

complete for both C and C′ then C = C′.

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

Completeness

Definition
A language L in a complexity class C is said to be C-complete, if any language L′ ∈ C can be

reduced to L.

Definition
A complexity class C is closed under reductions, if

((L ∈ C) ∧ (L′ ≤ L)) → (L′ ∈ C).

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C′ are both closed under reductions and there exists a language L that is

complete for both C and C′ then C = C′.

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

Outline

1 Reductions

2 Completeness
P-completeness
NP-completeness

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

P-completeness of CIRCUIT VALUE

Theorem
CIRCUIT VALUE is P-complete.

Proof.
Let L be some language in P.
⇒ There exists a Turing machine M = (K , Σ, δ, s), which halts on any string in x ∈ Σ∗ in time at
most |x|k , for a fixed constant k .
⇒ There exists a computation table T for M(x) of dimensions |x|k × |x|k , where Tij represents the
contents of position j at time i (after i steps have been completed).
We assume that the machine is standardized as follows:

(i) It has only one string.

(ii) It halts within |x|k − 2 steps.

(iii) The computation pads the string with a sufficient number of ⊔s, so that the length of the string
is exactly |x|k .

(iv) The tape alphabet (Γ) is standardized to include symbols for (state, symbol) pairs. For
instance 0s represents the fact that we are currently in state s scanning symbol 0.

(v) States “yes” and “no” are recorded as is.

(vi) Computation is accepting if T
|x|k−1,j = “yes” for j = 2.
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P-completeness of CIRCUIT VALUE (contd.)

Proof.

When i = 0 or j = 0 or j = |x|k , the contents of Tij are known apriori.
Crucial observation: Ti j depends only on the entries Ti−1,j−1, Ti−1,j and Ti−1,j+1. Why?
Encode each tape symbol as a binary vector s = (s1, s2, . . . , sm), where m = ⌈log |Γ|⌉. The
encoding of “yes” begins with 1 and the encoding of “no” begins with 0.
The computation table is now a table of binary entries Sijl , 0 ≤ i ≤ |x|k−, 0 ≤ j ≤ |x|k − 1 and
1 ≤ l ≤ m.
Each binary entry Sij depends only on the 3m entries Si−1,j−1,l′ , Si−1,j,l′ ,Si−1,j+1,l′ , where l′

ranges over 1, 2, . . . m.
But these are boolean functions and hence can be captured through gates.
Create (|x|k − 1) × (|x|k − 2) gates, one for each entry Ti j .

The reduction can be accomplished in log |x| space.
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Crucial observation: Ti j depends only on the entries Ti−1,j−1, Ti−1,j and Ti−1,j+1. Why?
Encode each tape symbol as a binary vector s = (s1, s2, . . . , sm), where m = ⌈log |Γ|⌉. The
encoding of “yes” begins with 1 and the encoding of “no” begins with 0.
The computation table is now a table of binary entries Sijl , 0 ≤ i ≤ |x|k−, 0 ≤ j ≤ |x|k − 1 and
1 ≤ l ≤ m.
Each binary entry Sij depends only on the 3m entries Si−1,j−1,l′ , Si−1,j,l′ ,Si−1,j+1,l′ , where l′

ranges over 1, 2, . . . m.
But these are boolean functions and hence can be captured through gates.
Create (|x|k − 1) × (|x|k − 2) gates, one for each entry Ti j .

The reduction can be accomplished in log |x| space.

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

P-completeness of CIRCUIT VALUE (contd.)

Proof.

When i = 0 or j = 0 or j = |x|k , the contents of Tij are known apriori.
Crucial observation: Ti j depends only on the entries Ti−1,j−1, Ti−1,j and Ti−1,j+1. Why?
Encode each tape symbol as a binary vector s = (s1, s2, . . . , sm), where m = ⌈log |Γ|⌉. The
encoding of “yes” begins with 1 and the encoding of “no” begins with 0.
The computation table is now a table of binary entries Sijl , 0 ≤ i ≤ |x|k−, 0 ≤ j ≤ |x|k − 1 and
1 ≤ l ≤ m.
Each binary entry Sij depends only on the 3m entries Si−1,j−1,l′ , Si−1,j,l′ ,Si−1,j+1,l′ , where l′

ranges over 1, 2, . . . m.
But these are boolean functions and hence can be captured through gates.
Create (|x|k − 1) × (|x|k − 2) gates, one for each entry Ti j .

The reduction can be accomplished in log |x| space.

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

P-completeness of CIRCUIT VALUE (contd.)

Proof.

When i = 0 or j = 0 or j = |x|k , the contents of Tij are known apriori.
Crucial observation: Ti j depends only on the entries Ti−1,j−1, Ti−1,j and Ti−1,j+1. Why?
Encode each tape symbol as a binary vector s = (s1, s2, . . . , sm), where m = ⌈log |Γ|⌉. The
encoding of “yes” begins with 1 and the encoding of “no” begins with 0.
The computation table is now a table of binary entries Sijl , 0 ≤ i ≤ |x|k−, 0 ≤ j ≤ |x|k − 1 and
1 ≤ l ≤ m.
Each binary entry Sij depends only on the 3m entries Si−1,j−1,l′ , Si−1,j,l′ ,Si−1,j+1,l′ , where l′

ranges over 1, 2, . . . m.
But these are boolean functions and hence can be captured through gates.
Create (|x|k − 1) × (|x|k − 2) gates, one for each entry Ti j .

The reduction can be accomplished in log |x| space.

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

P-completeness of CIRCUIT VALUE (contd.)

Proof.

When i = 0 or j = 0 or j = |x|k , the contents of Tij are known apriori.
Crucial observation: Ti j depends only on the entries Ti−1,j−1, Ti−1,j and Ti−1,j+1. Why?
Encode each tape symbol as a binary vector s = (s1, s2, . . . , sm), where m = ⌈log |Γ|⌉. The
encoding of “yes” begins with 1 and the encoding of “no” begins with 0.
The computation table is now a table of binary entries Sijl , 0 ≤ i ≤ |x|k−, 0 ≤ j ≤ |x|k − 1 and
1 ≤ l ≤ m.
Each binary entry Sij depends only on the 3m entries Si−1,j−1,l′ , Si−1,j,l′ ,Si−1,j+1,l′ , where l′

ranges over 1, 2, . . . m.
But these are boolean functions and hence can be captured through gates.
Create (|x|k − 1) × (|x|k − 2) gates, one for each entry Ti j .

The reduction can be accomplished in log |x| space.

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

Outline

1 Reductions

2 Completeness
P-completeness
NP-completeness

Subramani Complexity Classes



Reductions
Completeness

P-completeness
NP-completeness

Theorem (Cook)
SAT is NP-complete.

Proof.
We will show that CIRCUIT SAT is NP-complete. Cook’s theorem follows.
Let L ∈ NP; this means that L is decided by a NDTM M = (K , Σ, δ, s), which halts with a “yes” or
“no” on all strings x ∈ Σ∗ in at most |x|k time.
Standardize the Turing Machine so that degree of non-determinism is exactly 2. It follows that a
sequence of non-deterministic choices is a bit-string (c0, c1, . . . , c

|x|k−1).

Use same reduction as CIRCUIT VALUE; the only difference is that ci is now a variable at row i of

the table!
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