Reductions and Completeness

K. Subramanit

Lane Department of Computer Science and Electrical Engineering
West Virginia University

February 24, 2009

Subramani Complexity Classes

Outline

Outline

o Reductions

Subramani Complexity Classes

Outline

Outline

o Reductions

9 Completeness
@ P-completeness
@ NP-completeness

Subramani Complexity Classes

Reductions

Reductions

Comparing problem difficulty through A < B.

Subramani Complexity Classes

Reductions

Reductions

Comparing problem difficulty through A < B. When is problem B at least as hard as problem A?

Subramani Complexity Classes

Reductions

Reductions

Main concept
Comparing problem difficulty through A < B. When is problem B at least as hard as problem A?
When there is a transformation R, which for every input of A produces an equivalent input R(x) of B

such thatx € A & R(x) € B.

Subramani Complexity Classes

Reductions

Reductions

Main concept
Comparing problem difficulty through A < B. When is problem B at least as hard as problem A?
When there is a transformation R, which for every input of A produces an equivalent input R(x) of B

such thatx € A & R(x) € B.

To be useful, R should have limitations. (Hamilton Path to Reachability).

Subramani Complexity Classes

Reductions

Reductions

Main concept
Comparing problem difficulty through A < B. When is problem B at least as hard as problem A?
When there is a transformation R, which for every input of A produces an equivalent input R(x) of B

such thatx € A & R(x) € B.

To be useful, R should have limitations. (Hamilton Path to Reachability).

Definition
A language L, is reducible to a language L if there is a function R from strings of L, to strings

computable by a DTM in space O(log n), such that for all inputs x € £*, |x| = n,
X €L < R(X) € L.

Subramani Complexity Classes

Reductions

Reductions (contd.)

Subramani Complexity Classes

Reductions

Reductions (contd.)

Good old days, we used poly-time reductions.

Subramani Complexity Classes

Reductions

Reductions (contd.)

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by a DTM M, then for all x, M halts after a polynomial number of steps.

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT »

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT »

Input instance: An unweighted, directed graph G.

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT »

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is satisfiable.

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is satisfiable.

Step 1: Suppose G has n nodes; ¢ has n? variables of the form Xjj, where x;; represents the fact
that node j is the i node in the Hamilton Path (may or may not be true).

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.

Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is satisfiable.
Step 1: Suppose G has n nodes; ¢ has n? variables of the form Xjj, where x;; represents the fact
that node j is the i node in the Hamilton Path (may or may not be true).

Step 2: (Xgj V Xgj ... X)), j =1,2,...,n. [Cq].

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.

Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is satisfiable.
Step 1: Suppose G has n nodes; ¢ has n? variables of the form Xjj, where x;; represents the fact
that node j is the i node in the Hamilton Path (may or may not be true).

Step 2: (Xgj V Xgj ... X)), j =1,2,...,n. [Cq].

Step 3: (“Xij \/‘Vij),]. =1,2...n,i=12,...,n,k=1,2,...n,k #1i. [Cz]

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is satisfiable.

Step 1: Suppose G has n nodes; ¢ has n? variables of the form Xjj, where x;; represents the fact
that node j is the i node in the Hamilton Path (may or may not be true).

Step 2: (Xgj V Xgj ... X)), j =1,2,...,n. [Cq].

Step 3: (“Xij \/‘Vij),]. =1,2...n,i=12,...,n,k=1,2,...n,k #1i. [Cz]

Step 4: (Xil VX2...V Xin)r i=1,2...n. [Cg]

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.

Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is satisfiable.
Step 1: Suppose G has n nodes; ¢ has n? variables of the form Xjj, where x;; represents the fact
that node j is the i node in the Hamilton Path (may or may not be true).

Step 2: (Xgj V Xgj ... X)), j =1,2,...,n. [Cq].

Step 3: (“Xij \/‘Vij),]. =1,2...n,i=12,...,n,k=1,2,...n,k #1i. [Cz]

Step 4: (Xil VX2...V Xin)r i=1,2...n. [Cg]

Step 5: (—xj V =X), i =1,2,...,n,j,k=1,2,...,n,j #K. [C4].

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is satisfiable.

Step 1: Suppose G has n nodes; ¢ has n? variables of the form Xjj, where x;; represents the fact

that node j is the i node in the Hamilton Path (may or may not be true).

Step 2: (Xgj V Xgj ... X)), j =1,2,...,n. [Cq].

Step 3: (“Xij \/‘Vij),]. =1,2...n,i=12,...,n,k=1,2,...n,k #1i. [Cz]
Step 4: (Xil VX2...V Xin)r i=1,2...n. [Cg]

Step 5: (—xj V =xi), i =1,2,...,n,j,k=1,2,...,n,j #K. [C4].

Step 6: (=Xki V ~Xk41),j, kK =1,2,...,n—=1,(i,j) € G. [Cs].

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is satisfiable.

Step 1: Suppose G has n nodes; ¢ has n? variables of the form Xjj, where x;; represents the fact

that node j is the i node in the Hamilton Path (may or may not be true).

Step 2: (Xgj V Xgj ... X)), j =1,2,...,n. [Cq].

Step 3: (= V =),] =1,2...n,i=1,2,...,n,k=1,2,...n,k #i. [Cy].
Step 4: (Xil VX2...V Xin)r i=1,2...n. [Cg]

Step 5: (—xj V =xi), i =1,2,...,n,j,k=1,2,...,n,j #K. [C4].

Step 6: (=X V Xk+1),j, K =1,2,...,n =1, (i,j) € G. [Cs].
Step7: ¢ = C1 ACa AC3 A Cyq ACs.

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is satisfiable.

Step 1: Suppose G has n nodes; ¢ has n? variables of the form Xjj, where x;; represents the fact

that node j is the i node in the Hamilton Path (may or may not be true).

Step 2: (Xgj V Xgj ... X)), j =1,2,...,n. [Cq].

Step 3: (= V =),] =1,2...n,i=1,2,...,n,k=1,2,...n,k #i. [Cy].
Step 4: (Xil VX2...V Xin)r i=1,2...n. [Cg]

Step 5: (—xj V =xi), i =1,2,...,n,j,k=1,2,...,n,j #K. [C4].

Step 6: (=X V Xk+1),j, K =1,2,...,n =1, (i,j) € G. [Cs].
Step7: ¢ = C1 ACa AC3 A Cyq ACs.

Argument: Let X denote a satisfying assignment to ¢. We show that there must exist a Hamilton
Path in G.

Subramani Complexity Classes

Reductions

Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ¢, such that G has a Hamilton path if and only if ¢ is satisfiable.
Step 1: Suppose G has n nodes; ¢ has n? variables of the form Xjj, where x;; represents the fact

that node j is the i node in the Hamilton Path (may or may not be true).

Step 2: (Xgj V Xgj ... X)), j =1,2,...,n. [Cq].

Step 3: (= V =),] =1,2...n,i=1,2,...,n,k=1,2,...n,k #i. [Cy].
Step 4: (Xil VX2...V Xin)r i=1,2...n. [Cg]

Step 5: (—xj V =xi), i =1,2,...,n,j,k=1,2,...,n,j #K. [C4].

Step 6: (=X V Xk+1),j, K =1,2,...,n =1, (i,j) € G. [Cs].
Step7: ¢ = C1 ACa AC3 A Cyq ACs.

Argument: Let X denote a satisfying assignment to ¢. We show that there must exist a Hamilton
Path in G.

Let # = (7(1), w(2) . . . 7(n)) denote a Hamilton path, where = is a permutation. We show that ¢

is satisfiable.

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to SAT

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to SAT

Input instance: A circuit C.

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to S

Input instance: A circuit C.
Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.
Step 1: The variables of ¢ will contain all the variables of C. Additionally, for each gate g in C, we

create a new variable in ¢, also denoted by g.

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to S

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

Step 1: The variables of ¢ will contain all the variables of C. Additionally, for each gate g in C, we
create a new variable in ¢, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses (g V =) and (=g V x) to

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to S

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

Step 1: The variables of ¢ will contain all the variables of C. Additionally, for each gate g in C, we
create a new variable in ¢, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses (g V =) and (=g V x) to

b.
Step 3: If g is a true gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

Step 1: The variables of ¢ will contain all the variables of C. Additionally, for each gate g in C, we
create a new variable in ¢, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses (g V =) and (=g V x) to

b.
Step 3: If g is atrue gate, add (g) to ¢; likewise, if it is a false gate, add (—g).
Step 4: If g is a NOT gate with predecessor h, add the clauses (g Vv h) and (—g Vv —h) to ¢.

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

Step 1: The variables of ¢ will contain all the variables of C. Additionally, for each gate g in C, we
create a new variable in ¢, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses (g V =) and (=g V x) to

b.

Step 3: If g is atrue gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Step 4: If g is a NOT gate with predecessor h, add the clauses (g Vv h) and (—g Vv —h) to ¢.
Step 5: If g is an OR gate with predecessors h and h’, add the clauses (=h Vv g), (=h’ v g) and
(h v h' Vv —g) to ¢.

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

Step 1: The variables of ¢ will contain all the variables of C. Additionally, for each gate g in C, we
create a new variable in ¢, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses (g V =) and (=g V x) to

é.
Step 3: If g is atrue gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Step 4: If g is a NOT gate with predecessor h, add the clauses (g Vv h) and (—g Vv —h) to ¢.

Step 5: If g is an OR gate with predecessors h and h’, add the clauses (=h Vv g), (=h’ v g) and
(h v h' Vv —g) to ¢.

Step 6: If g is an AND gate with predecessors h and h’, add the clauses (—g V h), (-g v h’) and
(=h Vv =h’ v g) to ¢.

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

Step 1: The variables of ¢ will contain all the variables of C. Additionally, for each gate g in C, we
create a new variable in ¢, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses (g V =) and (=g V x) to

é.
Step 3: If g is atrue gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Step 4: If g is a NOT gate with predecessor h, add the clauses (g Vv h) and (—g Vv —h) to ¢.

Step 5: If g is an OR gate with predecessors h and h’, add the clauses (=h Vv g), (=h’ v g) and
(h v h' Vv —g) to ¢.

Step 6: If g is an AND gate with predecessors h and h’, add the clauses (—g V h), (-g v h’) and
(=h Vv =h’ v g) to ¢.

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

Step 1: The variables of ¢ will contain all the variables of C. Additionally, for each gate g in C, we
create a new variable in ¢, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses (g V =) and (=g V x) to

é.
Step 3: If g is atrue gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Step 4: If g is a NOT gate with predecessor h, add the clauses (g Vv h) and (—g Vv —h) to ¢.

Step 5: If g is an OR gate with predecessors h and h’, add the clauses (=h Vv g), (=h’ v g) and
(h v h' Vv —g) to ¢.

Step 6: If g is an AND gate with predecessors h and h’, add the clauses (—g V h), (-g v h’) and
(=h Vv =h’ v g) to ¢.

Step 7: If g is an output gate, add the clause (g).

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to S

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

Step 1: The variables of ¢ will contain all the variables of C. Additionally, for each gate g in C, we
create a new variable in ¢, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses (g V =) and (=g V x) to

é.
Step 3: If g is atrue gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Step 4: If g is a NOT gate with predecessor h, add the clauses (g Vv h) and (—g Vv —h) to ¢.

Step 5: If g is an OR gate with predecessors h and h’, add the clauses (=h Vv g), (=h’ v g) and
(h v h' Vv —g) to ¢.

Step 6: If g is an AND gate with predecessors h and h’, add the clauses (—g V h), (-g v h’) and
(=h Vv =h’ v g) to ¢.

Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ¢ is satisfiable.

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

CIRCUIT SAT to S

Input instance: A circuit C.

Output instance: A CNF formula ¢ such that ¢ is satisfiable if and only if C is.

Step 1: The variables of ¢ will contain all the variables of C. Additionally, for each gate g in C, we
create a new variable in ¢, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses (g V =) and (=g V x) to

é.
Step 3: If g is atrue gate, add (g) to ¢; likewise, if it is a false gate, add (—g).

Step 4: If g is a NOT gate with predecessor h, add the clauses (g Vv h) and (—g Vv —h) to ¢.

Step 5: If g is an OR gate with predecessors h and h’, add the clauses (=h Vv g), (=h’ v g) and
(h v h' Vv —g) to ¢.

Step 6: If g is an AND gate with predecessors h and h’, add the clauses (—g V h), (-g v h’) and
(=h Vv =h’ v g) to ¢.

Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ¢ is satisfiable.

If ¢ is satisfiable, then C is satisfiable.

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

Reduction by generalization J

CIRCUIT VALUE to CIRCUIT SAT.

Subramani Complexity Classes

Reductions

Sample Reductions (contd.)

Reduction by generalization

CIRCUIT VALUE to CIRCUIT SAT. R is the identity function!

Subramani Complexity Classes

Reductions

Composition of Reductions

If R is a reduction from L; to L, and R’ is a reduction from L, to Lz, then R’ o R is a reduction from
L; to Ls.

Subramani Complexity Classes

Reductions

Composition of Reductions

If R is a reduction from L; to L, and R’ is a reduction from L, to Lz, then R’ o R is a reduction from
L; to Ls.

Trivial for poly-time reductions.

Subramani Complexity Classes

Reductions

Composition of Reductions

If R is a reduction from L; to L, and R’ is a reduction from L, to Lz, then R’ o R is a reduction from
L; to Ls.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of R(x) could
be larger than log |x|.

Subramani Complexity Classes

Reductions

Composition of Reductions

If R is a reduction from L; to L, and R’ is a reduction from L, to Lz, then R’ o R is a reduction from
L; to Ls.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of R(x) could
be larger than log |x|.

Main idea:

Subramani Complexity Classes

Reductions

Composition of Reductions

If R is a reduction from L; to L, and R’ is a reduction from L, to Lz, then R’ o R is a reduction from
L; to Ls.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of R(x) could
be larger than log |x|.

Main idea: Dovetail simulations. D/

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Completeness

ubramani Complexity Classes

P-completeness
Completeness NP-completeness

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L” € C can be

reduced to L.

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L” € C can be
reduced to L.

Definition

A complexity class C is closed under reductions, if

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L” € C can be
reduced to L.

Definition
A complexity class C is closed under reductions, if
((Leoyn(’ <L)

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L” € C can be
reduced to L.

Definition

A complexity class C is closed under reductions, if
(LeC)A(L <L) — (L' €0).

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L” € C can be
reduced to L.

Definition

A complexity class C is closed under reductions, if
(LeC)A(L <L) — (L' €0).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language L” € C can be
reduced to L.

Definition

A complexity class C is closed under reductions, if
(LeC)A(L <L) — (L' €0).

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

If two classes C and C’ are both closed under reductions and there exists a language L that is
complete for both C and C’ then C = C’.

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Outline

9 Completeness
@ P-completeness

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE

CIRCUIT VALUE is P-complete.

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE

CIRCUIT VALUE is P-complete.

Let L be some language in P.

v

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE

CIRCUIT VALUE is P-complete.

Proof.

Let L be some language in P.
= There exists a Turing machine M = (K, X, 4, s), which halts on any string in x € £* in time at
most |x |, for a fixed constant k.

v

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE

CIRCUIT VALUE is P-complete.

Proof.

Let L be some language in P.

= There exists a Turing machine M = (K, X, 4, s), which halts on any string in x € £* in time at
most |x |, for a fixed constant k.

= There exists a computation table T for M(x) of dimensions |x|* x |x|¥, where Tj; represents the
contents of position j at time i (after i steps have been completed).

v

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE

CIRCUIT VALUE is P-complete.

Proof.
Let L be some language in P.

= There exists a Turing machine M = (K, X, 4, s), which halts on any string in x € £* in time at
most |x |, for a fixed constant k.

= There exists a computation table T for M(x) of dimensions |x|* x |x|¥, where Tj; represents the
contents of position j at time i (after i steps have been completed).

We assume that the machine is standardized as follows:

(i) It has only one string.

(i) It halts within x| — 2 steps.

(iii) The computation pads the string with a sufficient number of Lis, so that the length of the string
is exactly |x|.

(iv) The tape alphabet (I') is standardized to include symbols for (state, symbol) pairs. For
instance Os represents the fact that we are currently in state s scanning symbol 0.

=

(v) States “yes” and “no” are recorded as is.
(vi) Computation is accepting if T

k=1 = “yes” forj = 2.

>
Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE (contd.)

Wheni=0o0rj=0o0rj= |x|k, the contents of T; are known apriori.

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE (contd.)

Wheni=0o0rj=0o0rj= |x|k, the contents of T; are known apriori.
Crucial observation: T;j depends only on the entries T;_1 j_1, Tj_1j and T;_y j 1. Why?

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE (contd.)

Proof.

Wheni=0o0rj=0o0rj= |x|k, the contents of T; are known apriori.

Crucial observation: T;j depends only on the entries T;_1 j_1, Tj_1j and T;_y j 1. Why?
Encode each tape symbol as a binary vector s = (sg, Sp, . . . , Sm), where m = [log |T'|]. The
encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE (contd.)

Proof.

Wheni=0o0rj=0o0rj= |x|k, the contents of T; are known apriori.

Crucial observation: T;j depends only on the entries T;_1 j_1, Tj_1j and T;_y j 1. Why?
Encode each tape symbol as a binary vector s = (sg, Sp, . . . , Sm), where m = [log |T'|]. The
encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

The computation table is now a table of binary entries Sj, 0 < i < Ix|*—, 0<j<|x|*—-1and
1<1<m.

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE (contd.)

Proof.

Wheni=0o0rj=0o0rj= |x|k, the contents of T; are known apriori.

Crucial observation: T;j depends only on the entries T;_1 j_1, Tj_1j and T;_y j 1. Why?
Encode each tape symbol as a binary vector s = (sg, Sp, . . . , Sm), where m = [log |T'|]. The
encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

The computation table is now a table of binary entries Sj, 0 < i < Ix|*—, 0<j<|x|*—-1and
1<1<m.

Each binary entry S,J depends only on the 3m entries S;_ j_4 17, Si_1j,17,Si_1,j41,17, Where I
ranges over 1, 2, .

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE (contd.)

Proof.

Wheni=0o0rj=0o0rj= |x|k, the contents of T; are known apriori.

Crucial observation: T;j depends only on the entries T;_1 j_1, Tj_1j and T;_y j 1. Why?
Encode each tape symbol as a binary vector s = (sg, Sp, . . . , Sm), where m = [log |T'|]. The
encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

The computation table is now a table of binary entries Sj, 0 < i < Ix|*—, 0<j<|x|*—-1and
1<I<m.

Each binary entry S; depends only on the 3m entries S;_ j_4 17, Si_1j,17,Si_1,j41,17, Where I
ranges over 1, 2, .

But these are boolean functlons and hence can be captured through gates.

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

P-completeness of CIRCUIT VALUE (contd.)

Proof.

Wheni=0o0rj=0o0rj= |x|k, the contents of T; are known apriori.

Crucial observation: T;j depends only on the entries T;_1 j_1, Tj_1j and T;_y j 1. Why?
Encode each tape symbol as a binary vector s = (sg, Sp, . . . , Sm), where m = [log |T'|]. The
encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

The computation table is now a table of binary entries Sj, 0 < i < Ix|*—, 0<j<|x|*—-1and
1<l <m.

Each binary entry S; depends only on the 3m entries S;_ j_4 17, Si_1j,17,Si_1,j41,17, Where I
ranges over 1, 2, .

But these are boolean functlons and hence can be captured through gates.

Create (|x|* — 1) x (|x| — 2) gates, one for each entry T;j.

The reduction can be accomplished in log |x| space. O

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Outline

9 Completeness

@ NP-completeness

Subramani Complexity Classes

P-complete
Completeness NP-completeness

Theorem (Cook)

SAT is NP-complete.

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Theorem (Cook)

SAT is NP-complete.

Proof.

We will show that CIRcuIT SAT is NP-complete. Cook’s theorem follows.

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Theorem (Cook)

SAT is NP-complete.

Proof.

We will show that CIRcuIT SAT is NP-complete. Cook’s theorem follows.
Let L € NP; this means that L is decided by a NDTM M = (K, ¥, §, s), which halts with a “yes” or

“no” on all strings x € ¥* in at most |x|¥ time.

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Theorem (Cook)

SAT is NP-complete.

Proof.

We will show that CIRcuIT SAT is NP-complete. Cook’s theorem follows.

Let L € NP; this means that L is decided by a NDTM M = (K, ¥, §, s), which halts with a “yes” or
“no” on all strings x € ¥* in at most |x|¥ time.

Standardize the Turing Machine so that degree of non-determinism is exactly 2. It follows that a
sequence of non-deterministic choices is a bit-string (co, ¢y, . . ., C\x\k—l)'

Subramani Complexity Classes

P-completeness
Completeness NP-completeness

Theorem (Cook)

SAT is NP-complete.

We will show that CIRcuIT SAT is NP-complete. Cook’s theorem follows.

Let L € NP; this means that L is decided by a NDTM M = (K, ¥, §, s), which halts with a “yes” or
“no” on all strings x € ¥* in at most |x|¥ time.

Standardize the Turing Machine so that degree of non-determinism is exactly 2. It follows that a

sequence of non-deterministic choices is a bit-string (co, ¢y, . . ., C\x\k—l)'
Use same reduction as CIRCUIT VALUE; the only difference is that c; is now a variable at row i of
the table! O

Subramani Complexity Classes

	Outline
	Main Talk
	Reductions
	Completeness
	P-completeness
	NP-completeness

