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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

n-logical Axi

NT1 (Vx)(o(x) % 0).
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axi

NT1 (Vx)(o(x) % 0).
NT2 (¥x)(VY)[(o(x) = a(y)) — (x =Y)I.
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NT1 (Vx)(o(x) % 0).
NT2 (¥x)(VY)[(o(x) = a(y)) — (x =Y)I.
NT3 (vx)((x =0) v (3y)(x = a(y)))-
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NTL (vx)(a(x) # 0).

NT2 (vx)(vY)[(a(x) = o(y)) = (x =Y)].
NT3 (vx)((x = 0) v (Jy)(x = a(y)))-
NT4 (Vx)(x + 0 = x).
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NT1 (Vx)(o(x) # 0).

NT2 (vx)(vY)[(a(x) = o(y)) = (x =Y)].
NT3 (vx)((x = 0) v (Jy)(x = a(y)))-
NT4 (Vx)(x + 0 = x).

NTS (vx)(vY)((x + a(y)) = o(x +¥))-
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NT1 (Vx)(o(x) # 0).

NT2 (vx)(vY)[(a(x) = o(y)) = (x =Y)].
NT3 (vx)((x = 0) v (Jy)(x = a(y)))-
NT4 (Vx)(x + 0 = x).

NTS (vx)(vY)((x + a(y)) = o(x +¥))-
NT6 (V¥x)(x x 0 =0).
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NT1 (Vx)(o(x) % 0).

NT2 (vx)(vY)[(a(x) = o(y)) = (x =Y)].
NT3 (vx)((x = 0) v (Jy)(x = a(y)))-
NT4 (Vx)(x + 0 = x).

NTS (vx)(vY)((x + a(y)) = o(x +¥))-
NT6 (V¥x)(x x 0 =0).

NT7 (vx)(VY)((x x a(y)) = (X Xy +X)).
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NT1 (Vx)(o(x) % 0).

NT2 (vx)(vY)[(a(x) = o(y)) = (x =Y)].
NT3 (vx)((x = 0) v (Jy)(x = a(y)))-
NT4 (Vx)(x + 0 = x).

NTS (vx)(vY)((x + a(y)) = o(x +¥))-
NT6 (V¥x)(x x 0 =0).

NT7 (vx)(VY)((x x a(y)) = (X Xy +X)).
NT8 (Vx)(x T 0) = o(0).

Subramani Undecidability in Logic



Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NT1 (Vx)(o(x) % 0).

NT2 (vx)(vY)[(a(x) = o(y)) = (x =Y)].
NT3 (vx)((x = 0) v (Jy)(x = a(y)))-
NT4 (Vx)(x + 0 = x).

NTS (vx)(vY)((x + a(y)) = o(x +¥))-
NT6 (V¥x)(x x 0 =0).

NT7 (vx)(VY)((x x a(y)) = (X Xy +X)).
NT8 (Vx)(x T 0) = o(0).

NT9 (vx)((x T o(y)) = (x Ty) X X).
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NTL (vx)(a(x) # 0).

NT2 (vx)(vY)[(a(x) = o(y)) = (x =Y)].

NT3 (vx)((x = 0) v (Jy)(x = a(y)))-

NT4 (Vx)(x + 0 = x).

NTS (vx)(vY)((x + a(y)) = o(x +¥))-

NT6 (V¥x)(x x 0 =0).

NT7 (vx)(VY)((x x a(y)) = (X Xy +X)).

NT8 (Vx)(x T 0) = o(0).

NT9 (vx)((x T o(y)) = (x Ty) X X).
NT10 (Vx)(x < o(x)).
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NT1 (Vx)(o(x) % 0).

NT2 (vx)(vY)[(a(x) = o(y)) = (x =Y)].
NT3 (vx)((x = 0) v (Jy)(x = a(y)))-
NT4 (Vx)(x + 0 = x).
NTS (vx)(vY)((x + a(y)) = o(x +¥))-
NT6 (V¥x)(x x 0 =0).
NT7 (vx)(VY)((x x a(y)) = (X Xy +X)).
NT8 (Vx)(x T 0) = o(0).
NT9 (vx)((x T o(y)) = (x Ty) X X).
NT10 (Vx)(x < o(x)).
NT11 (Wx)(VY)((x <y) — (o(x) <Y)). (@ < bis an abbreviation for (a < b) Vv (a = b).
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NT1 (Vx)(o(x) % 0).

NT2 (vx)(vY)[(a(x) = o(y)) = (x =Y)].
NT3 (vx)((x = 0) v (Jy)(x = a(y)))-
NT4 (Vx)(x + 0 = x).
NTS (vx)(vY)((x + a(y)) = o(x +¥))-
NT6 (V¥x)(x x 0 =0).
NT7 (vx)(VY)((x x a(y)) = (X Xy +X)).
NT8 (Vx)(x T 0) = o(0).
NT9 (vx)((x T o(y)) = (x Ty) X X).
NT10 (Vx)(x < o(x)).
NT11 (Wx)(VY)((x <y) — (o(x) <Y)). (@ < bis an abbreviation for (a < b) Vv (a = b).
NT12 (vx)(VY)((=(x <¥)) < (¥ < X))
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NT1 (Vx)(o(x) % 0).

NT2 (vx)(vY)[(a(x) = o(y)) = (x =Y)].
NT3 (vx)((x = 0) v (Jy)(x = a(y)))-
NT4 (Vx)(x + 0 = x).
NTS (vx)(vY)((x + a(y)) = o(x +¥))-
NT6 (V¥x)(x x 0 =0).
NT7 (vx)(VY)((x x a(y)) = (X Xy +X)).
NT8 (Vx)(x T 0) = o(0).
NT9 (vx)((x T o(y)) = (x Ty) X X).
NT10 (Vx)(x < o(x)).
NT11 (Wx)(VY)((x <y) — (o(x) <Y)). (@ < bis an abbreviation for (a < b) Vv (a = b).
NT12 (vx)(VY)((=(x <¥)) < (¥ < X))
NT13 (vVx)(vy)(V2)[((x < Y) A (Y < 2)) — (x < 2)].
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms

Non-logical Axioms

NT1 (Vx)(o(x) # 0).
NT2 (vx)(vY)[(a(x) = o(y)) = (x =Y)].
NT3 (vx)((x = 0) v (Jy)(x = a(y)))-
NT4 (Vx)(x + 0 = x).
NTS  (V)(VY)((x + o(y)) = a(x +Y)).
NT6 (V¥x)(x x 0 =0).
NT7 (V)(vY)((x x a(y)) = (x Xy + X)).
NT8 (Vx)(x T 0) = o(0).
NTO (V)((x T a(y)) = (X Ty) x X).
NT10 (Vx)(x < o(x)).
NT11 (Wx)(VY)((x <y) — (o(x) <Y)). (@ < bis an abbreviation for (a < b) Vv (a = b).
NT12 (YX)(VY)((=(x <¥)) < (v < X)).
NT13 (¥x)(¥Y)(¥2)[((x < ¥) A (¥ < 2)) = (x < 2)].
NT14 (Vx)(Vy)(Vz)(Vz')[( mod (x,y,z) A mod (X,Y,2z")) — (z = z')].
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms (contd.)
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms (contd.)

Notational convenience

(i) mod(x,y, z) is an abbreviation for (Iw)((x =y X W +2) A (z < Y)).
(i) div(x,y,w) is an abbreviation for (3z)((x =y X W +2z) A (z < y)).
(i) NT=NTy ANT, A...NTy
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms (contd.)

Notational convenience
(i) mod(x,y, z) is an abbreviation for (Iw)((x =y X W +2) A (z < Y)).
(i) div(x,y,w) is an abbreviation for (3z)((x =y X W +2z) A (z < y)).
(i) NT=NTy ANT, A...NTy

(iv) We use 1 for o(0), 2 for o(c(0)), 3 for (o (c(0))) and so on.

Properties of Axiom set
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms (contd.)

Notational convenience
(i) mod(x,y, z) is an abbreviation for (Iw)((x =y X W +2) A (z < Y)).
(i) div(x,y,w) is an abbreviation for (3z)((x =y X W +2z) A (z < y)).
(i) NT=NTy ANT, A...NTy

(iv) We use 1 for o(0), 2 for o(c(0)), 3 for (o (c(0))) and so on.

Properties of Axiom set

(i) Is it sound?
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms (contd.)

Notational convenience
(i) mod(x,y, z) is an abbreviation for (Iw)((x =y X W +2) A (z < Y)).
(i) div(x,y,w) is an abbreviation for (3z)((x =y X W +2z) A (z < y)).
(i) NT=NTy ANT, A...NTy

(iv) We use 1 for o(0), 2 for o(c(0)), 3 for (o (c(0))) and so on.

Properties of Axiom set

(i) Isitsound? Yes!
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms (contd.)

Notational convenience
(i) mod(x,y, z) is an abbreviation for (Iw)((x =y X W +2) A (z < Y)).
(i) div(x,y,w) is an abbreviation for (3z)((x =y X W +2z) A (z < y)).
(i) NT=NTy ANT, A...NTy

(iv) We use 1 for o(0), 2 for o(c(0)), 3 for (o (c(0))) and so on.

Properties of Axiom set

(i) Isitsound? Yes! If NT k= ¢, then N |= ¢. Use induction on the number of steps in the proof
sequence of NT - ¢.
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms (contd.)

Notational convenience
(i) mod(x,y, z) is an abbreviation for (Iw)((x =y X W +2) A (z < Y)).
(i) div(x,y,w) is an abbreviation for (3z)((x =y X W +2z) A (z < y)).
(i) NT=NTy ANT, A...NTy

(iv) We use 1 for o(0), 2 for o(c(0)), 3 for (o (c(0))) and so on.

Properties of Axiom set

(i) Isitsound? Yes! If NT k= ¢, then N |= ¢. Use induction on the number of steps in the proof
sequence of NT - ¢.

(i) Isitcomplete? i.e., if N = ¢, does NT - ¢?
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms (contd.)

Notational convenience
(i) mod(x,y, z) is an abbreviation for (Iw)((x =y X W +2) A (z < Y)).
(i) div(x,y,w) is an abbreviation for (3z)((x =y X W +2z) A (z < y)).
(i) NT=NTy ANT, A...NTy

(iv) We use 1 for o(0), 2 for o(c(0)), 3 for (o (c(0))) and so on.

Properties of Axiom set

(i) Isitsound? Yes! If NT k= ¢, then N |= ¢. Use induction on the number of steps in the proof
sequence of NT - ¢.

(i) Isitcomplete? i.e., if N = ¢, does NT = ¢? Apparently not!
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms (contd.)

Notational convenience
(i) mod(x,y, z) is an abbreviation for (Iw)((x =y X W +2) A (z < Y)).
(i) div(x,y,w) is an abbreviation for (3z)((x =y X W +2z) A (z < y)).
(i) NT=NTy ANT, A...NTy

(iv) We use 1 for o(0), 2 for o(c(0)), 3 for (o (c(0))) and so on.

Properties of Axiom set

(i) Isitsound? Yes! If NT k= ¢, then N |= ¢. Use induction on the number of steps in the proof
sequence of NT - ¢.

(i) Isitcomplete? i.e., if N = ¢, does NT - ¢? Apparently not! For instance, there is no proof

from NT of the valid sentence (Vx)(Vy)[(X +Y) = (Y + X)].
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

A set of Axioms (contd.)

Notational convenience
(i) mod(x,y, z) is an abbreviation for (Iw)((x =y X W +2) A (z < Y)).
(i) div(x,y,w) is an abbreviation for (3z)((x =y X W +2z) A (z < y)).
(i) NT=NTy ANT, A...NTy

(iv) We use 1 for o(0), 2 for o(c(0)), 3 for (o (c(0))) and so on.

Properties of Axiom set

(i) Isitsound? Yes! If NT k= ¢, then N |= ¢. Use induction on the number of steps in the proof
sequence of NT - ¢.

(i) Isitcomplete? i.e., if N = ¢, does NT - ¢? Apparently not! For instance, there is no proof
from NT of the valid sentence (Vx)(Vy)[(x +y) = (y + x)]. In fact, no system of axioms
exists for N, that is both sound and complete.
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Outline

0 Axiomatizing Number Theory

@ Sample Proof
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Sample Proof

ShowthatNTH1<1+1

Proof

Consider the following proof sequence:
) (¥x)(¥y)((x + o(y)) = o(x +y)), NTS.
(i) (Yx)((x + o(0)) = o(x +0)), (i), u.i. (settingy = 0).
(i) (vx)((x +1) = o(x)), NTA4.
)
)(x

=

(iv) (Vx)(o(x) =x + 1), properties of equality.
v) (Vv < o(x)), NTI0.

(vi) 1 <o(1), (v),u.i (settingx = 1).

(i) o(1) =141, (iv), u.i. (setting x = 1).
(vii) 1 <141, (vi), (vii).
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Outline

0 Axiomatizing Number Theory

@ Complete fragments of number theory

Subramani Undecidability in Logic



Non-logic ioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Variable-Free Sentences

If ¢ is a variable-free sentence, then N |= ¢ < NT F ¢.
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Variable-Free Sentences

If ¢ is a variable-free sentence, then N |= ¢ < NT F ¢.

Proof.
Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t’
andt <t’.

Subramani decidability in Logic



Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Variable-Free Sentences

If ¢ is a variable-free sentence, then N |= ¢ < NT F ¢.

Proof.
Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t’
andt <t’.

(i) tandt’ are numbers -t = t’ is trivial to prove. t < t’ can be proved by using NT10 to prove
t < o(t), o(t) < o(o(t)) and so on.

Subramani Undecidability in Logic



Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Variable-Free Sentences

If ¢ is a variable-free sentence, then N |= ¢ < NT F ¢.

Proof.
Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t’
andt <t’.

(i) tandt’ are numbers -t = t’ is trivial to prove. t < t’ can be proved by using NT10 to prove
t < o(t), o(t) < o(o(t)) and so on. Eventually, we can use NT13 to establish the inequality.
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Variable-Free Sentences

If ¢ is a variable-free sentence, then N |= ¢ < NT F ¢.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t’
andt <t’.

(i) tandt’ are numbers -t = t’ is trivial to prove. t < t’ can be proved by using NT10 to prove
t < o(t), o(t) < o(o(t)) and so on. Eventually, we can use NT13 to establish the inequality.

(i) tandt’ are general variable-free terms (e.g.,t =2 1 3+ (4 x 7) + 6) - Both t and t’ have
values, say to and t§.

Subramani Undecidability in Logic



Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Variable-Free Sentences

If ¢ is a variable-free sentence, then N |= ¢ < NT F ¢.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t’
andt <t’.

(i) tandt’ are numbers -t = t’ is trivial to prove. t < t’ can be proved by using NT10 to prove
t < o(t), o(t) < o(o(t)) and so on. Eventually, we can use NT13 to establish the inequality.

(i) tandt’ are general variable-free terms (e.g.,t =2 1 3 + (4 x 7) + 6) - Both t and t’ have
values, say to and tj. We need to show that NT it = to and NT - t" = t{.
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Variable-Free Sentences

If ¢ is a variable-free sentence, then N |= ¢ < NT F ¢.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t’
andt <t’.

(i) tandt’ are numbers -t = t’ is trivial to prove. t < t’ can be proved by using NT10 to prove
t < o(t), o(t) < o(o(t)) and so on. Eventually, we can use NT13 to establish the inequality.

(i) tandt’ are general variable-free terms (e.g.,t =2 1 3 + (4 x 7) + 6) - Both t and t’ have
values, say to and tj. We need to show that NT i t = to and NT - t’ = t{. Use induction on
structure of t, by repeatedly applying the axioms NT9, NT7 and NT5. Ultimately, the
expression will be reduced to its value.

O
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Complexity as a number-theoretic concept

Bounded Quantifiers

(i) (Vx < t)¢ stands for (Vx)((x < t) — @).
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Complexity as a number-theoretic concept

Bounded Quantifiers

(i) (¥x < t)¢ stands for (Vx)((x < t) — ¢). Bounded prenex form.
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Bounded Quantifiers

(i) (¥x < t)¢ stands for (Vx)((x < t) — ¢). Bounded prenex form.
(i) Bounded sentence.

Suppose that ¢ is a bounded sentence. Then N |= ¢ < NT | ¢.

Croor,

Since NT is sound, NT = ¢ — N |= ¢.

V,
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Bounded Quantifiers

(i) (¥x < t)¢ stands for (Vx)((x < t) — ¢). Bounded prenex form.
(i) Bounded sentence.

Suppose that ¢ is a bounded sentence. Then N |= ¢ < NT | ¢.

Proof.
Since NT is sound, NT = ¢ — N [= ¢. We use induction on the number of quantifiers to prove the
converse.

v,
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Bounded Quantifiers

(i) (¥x < t)¢ stands for (Vx)((x < t) — ¢). Bounded prenex form.
(i) Bounded sentence.

Suppose that ¢ is a bounded sentence. Then N |= ¢ < NT | ¢.

Proof.
Since NT is sound, NT = ¢ — N [= ¢. We use induction on the number of quantifiers to prove the
converse.

(i) ¢ has no quantifiers - Variable-Free sentence!

v,
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Bounded Quantifiers

(i) (¥x < t)¢ stands for (Vx)((x < t) — ¢). Bounded prenex form.
(i) Bounded sentence.

Suppose that ¢ is a bounded sentence. Then N |= ¢ < NT | ¢.

Proof.
Since NT is sound, NT = ¢ — N [= ¢. We use induction on the number of quantifiers to prove the
converse.

(i) ¢ has no quantifiers - Variable-Free sentence!
(i) ¢ = (3x)y - Since N |= ¢, there is a specific integer n, such that N |= ¢[x < n].

v,
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Bounded Quantifiers

(i) (¥x < t)¢ stands for (Vx)((x < t) — ¢). Bounded prenex form.
(i) Bounded sentence.

Suppose that ¢ is a bounded sentence. Then N |= ¢ < NT | ¢.

Proof.
Since NT is sound, NT = ¢ — N [= ¢. We use induction on the number of quantifiers to prove the
converse.

(i) ¢ has no quantifiers - Variable-Free sentence!

(i) ¢ = (3x)y - Since N |= ¢, there is a specific integer n, such that N |= ¢[x < n]. By
induction, NT + %[x < n] and hence NT + ¢.

v,
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Bounded Quantifiers

(i) (¥x < t)¢ stands for (Vx)((x < t) — ¢). Bounded prenex form.
(i) Bounded sentence.

Suppose that ¢ is a bounded sentence. Then N |= ¢ < NT | ¢.

Proof.
Since NT is sound, NT = ¢ — N [= ¢. We use induction on the number of quantifiers to prove the
converse.

(i) ¢ has no quantifiers - Variable-Free sentence!

(i) ¢ = (3x)y - Since N |= ¢, there is a specific integer n, such that N |= ¢[x < n]. By
induction, NT + %[x < n] and hence NT + ¢.

(ii)) ¢ = (Vx < t)o -

v,
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converse.

(i) ¢ has no quantifiers - Variable-Free sentence!

(i) ¢ = (3x)y - Since N |= ¢, there is a specific integer n, such that N |= ¢[x < n]. By
induction, NT + %[x < n] and hence NT + ¢.

(i) ¢ = (Vx < t)y - Observe that t must be a variable-free term and hence a number.
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Suppose that ¢ is a bounded sentence. Then N |= ¢ < NT | ¢.
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(i) (¥x < t)¢ stands for (Vx)((x < t) — ¢). Bounded prenex form.
(i) Bounded sentence.

Suppose that ¢ is a bounded sentence. Then N |= ¢ < NT | ¢.

Proof.
Since NT is sound, NT = ¢ — N [= ¢. We use induction on the number of quantifiers to prove the
converse.

(i) ¢ has no quantifiers - Variable-Free sentence!

(i) ¢ = (3x)y - Since N |= ¢, there is a specific integer n, such that N |= ¢[x < n]. By
induction, NT + %[x < n] and hence NT + ¢.

(i) ¢ = (Vx < t)y - Observe that t must be a variable-free term and hence a number.
Repeatedly apply NT10 and NT11 to conclude that
NT = (YX)((x <n) = (x=0)V(x=1)V(x =2) V...(x =n — 1)). By induction
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Non-logical Axioms
Sample Proof
Complete fragments of number theory

Axiomatizing Number Theory

Bounded Quantifiers

(i) (¥x < t)¢ stands for (Vx)((x < t) — ¢). Bounded prenex form.
(i) Bounded sentence.

Suppose that ¢ is a bounded sentence. Then N |= ¢ < NT | ¢.

Proof.

Since NT is sound, NT = ¢ — N [= ¢. We use induction on the number of quantifiers to prove the
converse.

(i) ¢ has no quantifiers - Variable-Free sentence!

(i) ¢ = (3x)y - Since N |= ¢, there is a specific integer n, such that N |= ¢[x < n]. By
induction, NT + %[x < n] and hence NT + ¢.

(i) ¢ = (Vx < t)y - Observe that t must be a variable-free term and hence a number.
Repeatedly apply NT10 and NT11 to conclude that
NT = (YX)((x <n) = (x=0)V(x=1)V(x =2) V...(x =n — 1)). By induction
NT F ¢[x < j],0 <j < n.Hence NT - (VX)((x =0) V(x =1)...(x =n—1)) — ¢). It
follows that NT F ¢ = (VX < n)%.
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Procedure

LetM = (K, X, 4, s) denote a Turing Machine.
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Encoding Scheme

Procedure
LetM = (K, X, 4, s) denote a Turing Machine.

(i) Represent the symbols in X using integers in {0, 1, ..., |X| — 1} and the symbols in K using
integers in {X,X+1,..., | + |[K| — 1}.

(i) s is always encoded as |X| and 0 is always used to encode .
(iii) “yes” and “no” are encoded as |X| + 1| and |X| + 2 respectively.
(iv) U is encoded by 1.

Thus, all symbols can be encoded using b = |X| + |K| integers.
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Encoding Scheme

Procedure
LetM = (K, X, 4, s) denote a Turing Machine.

(i) Represent the symbols in X using integers in {0, 1, ..., |X| — 1} and the symbols in K using
integers in {X,X+1,..., | + |[K| — 1}.

(i) s is always encoded as |X| and 0 is always used to encode .
(iii) “yes” and “no” are encoded as |X| + 1| and |X| + 2 respectively.
(iv) U is encoded by 1.

Thus, all symbols can be encoded using b = |~| + |K| integers. Consider the configuration
C =(q,w,u),whereq € K andw = wj,Ws,...,Wn andu = U, Up,...Uy € £*. C can be
thought of as the unique integer whose b-ary representation is

SRy wi b g bt ST U b
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Example

peK, oc€X o(p, o)
s a (s,a, —)
s b (s,b,—)
s u (a,U, <)
s > (a,>,—)
q a (a,U, <)
q b ("no”,b, -)
q > ("yes", >, —)

Table: A Turing Machine that accepts a*
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Example

peK, oc€X o(p, o)
s a (s,a, —)
s b (s,b,—)
s u (a,U, <)
s > (a,>,—)
q a (a,U, <)
q b ("no”,b, -)
q > ("yes", >, —)

Table: A Turing Machine that accepts a*

Characteristics

|K| = |X| = 4and hence b = 8.
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Complexity as a number-theoretic concept Encoding sample
Example
peK, oc€X o(p, o)
s a (s,a, —)
s b (s,b,—)
s u (9,1, <)
s > (9,>,—)
q a (9,4, <)
q b ("no”, b, —)
q > ("yes”, >, —)

Table: A Turing Machine that accepts a*

Characteristics
|K| = |X| = 4and hence b = 8.
The configuration (q, >aa, LILI) is represented

by the sequence (0, 2,2, 7, 1, 1) or by the
integer 0227115 or 967310
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s u (a,U, <) -
s > (9,>,—) Observation
q a (q,4, <) S S
q b ("no”, b, —) The relation "yields in one step” over the configurations
q > ("yes",>, —) of M defines a relation Yy C N2

Table: A Turing Machine that accepts a*

Goal

To formulate a first-order expression yieldsy (X, y) in
Characteristics number theory, over the free variables x and y, such
that

|K| = |X| = 4and hence b = 8.
The configuration (q, >aa, LILI) is represented

by the sequence (0, 2,2, 7, 1, 1) or by the
integer 0227115 or 967310
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Example
peK, oceX o(p, o)
s a (s,a, —)
s b (s,b,—)
s u (a,U, <) -
s > (9,>,—) Observation
q a (q,4, <) S S
q b ("no”, b, —) The relation "yields in one step” over the configurations
q > ("yes",>, —) of M defines a relation Yy C N2

Table: A Turing Machine that accepts a*

Goal

To formulate a first-order expression yieldsy (X, y) in
Characteristics number theory, over the free variables x and y, such
that

Ny y=n [= yieldsy (x, y) iff Yy (m, n).

|K| = |X| = 4and hence b = 8.
The configuration (q, >aa, LILI) is represented

by the sequence (0, 2,2, 7, 1, 1) or by the
integer 0227115 or 967310

Subramani Undecidability in Logic



	Outline
	Main Talk
	Axiomatizing Number Theory
	Non-logical Axioms
	Sample Proof
	Complete fragments of number theory

	Complexity as a number-theoretic concept
	Representing Turing Machines as numbers
	Encoding sample



