Undecidability in Logic

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

Number Theory and Computation

Subramani

Undecidability in Logic -Part I

K. Subramani¹

Outline

Axiomatizing Number Theory

- Non-logical Axioms
- Sample Proof
- Complete fragments of number theory

Complexity as a number-theoretic concept
 Representing Turing Machines as numbers
 Encoding sample

A (1) > A (1) >

Outline

Axiomatizing Number Theory

- Non-logical Axioms
- Sample Proof
- Complete fragments of number theory

2 Complexity as a number-theoretic concept

- Representing Turing Machines as numbers
- Encoding sample

< 🗇 🕨 < 🖃 >

Axiomatizing Number Theory Complexity as a number-theoretic concept

Outline

Non-logical Axioms Sample Proof Complete fragments of number theory

Axiomatizing Number Theory

- Non-logical Axioms
- Sample Proof
- Complete fragments of number theory

Complexity as a number-theoretic concept
 Representing Turing Machines as numbers
 Encoding sample

• • • • • • • • • • • •

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
```

Non-logical Axioms

Complete fragments of number theory

Sample Proof

<ロ> <同> <同> < 同> < 同> < 同> <

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
NT2 (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].
```

Non-logical Axioms

Complete fragments of number theory

Sample Proof

<ロ> <同> <同> < 同> < 同> < 同> <

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
NT2 (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].
NT3 (\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).
```

Non-logical Axioms

Complete fragments of number theory

Sample Proof

<ロ> <同> <同> < 同> < 同> < 同> <

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
NT2 (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].
NT3 (\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).
NT4 (\forall x)(x + 0 = x).
```

Non-logical Axioms

Complete fragments of number theory

Sample Proof

<ロ> <同> <同> < 同> < 同> < 同> <

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
NT2 (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].
NT3 (\forall x)((x=0) \lor (\exists y)(x=\sigma(y))).
NT4 (\forall x)(x + 0 = x).
NT5 (\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).
```

Non-logical Axioms

Complete fragments of number theory

Sample Proof

<ロ> <同> <同> < 同> < 同> < 同> <

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
NT2 (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].
NT3 (\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).
NT4 (\forall x)(x + 0 = x).
NT5 (\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).
NT6 (\forall x)(x \times 0 = 0).
```

Non-logical Axioms

Complete fragments of number theory

Sample Proof

<ロ> <同> <同> < 同> < 同> < 同> <

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
NT2 (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].
NT3 (\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).
NT4 (\forall x)(x + 0 = x).
NT5 (\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).
NT6 (\forall x)(x \times 0 = 0).
NT7 (\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)).
```

Non-logical Axioms

Complete fragments of number theory

Sample Proof

< 口 > < 同 > < 三 > < 三 > -

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
NT2 (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].
NT3 (\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).
NT4 (\forall x)(x + 0 = x).
NT5 (\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).
NT6 (\forall x)(x \times 0 = 0).
NT7 (\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)).
NT8 (\forall x)(x \uparrow 0) = \sigma(0).
```

Non-logical Axioms

Complete fragments of number theory

Sample Proof

< 口 > < 同 > < 三 > < 三 > -

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
NT2 (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].
NT3 (\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).
NT4 (\forall x)(x + 0 = x).
NT5 (\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).
NT6 (\forall x)(x \times 0 = 0).
NT7 (\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)).
NT8 (\forall x)(x \uparrow 0) = \sigma(0).
NT9 (\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x).
```

Non-logical Axioms

Complete fragments of number theory

Sample Proof

< 口 > < 同 > < 三 > < 三 > -

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
 NT2 (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].
 NT3 (\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).
 NT4 (\forall x)(x + 0 = x).
 NT5 (\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).
 NT6 (\forall x)(x \times 0 = 0).
 NT7 (\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)).
 NT8 (\forall x)(x \uparrow 0) = \sigma(0).
 NT9 (\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x).
NT10 (\forall x)(x < \sigma(x)).
```

Non-logical Axioms

Complete fragments of number theory

Sample Proof

< 口 > < 同 > < 三 > < 三 > -

Non-logical Axioms

Non-logical Axioms

Complete fragments of number theory

Sample Proof

э.

Non-logical Axioms

Non-logical Axioms

Complete fragments of number theory

Sample Proof

э.

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
 NT2 (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].
 NT3 (\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).
 NT4 (\forall x)(x + 0 = x).
 NT5 (\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).
 NT6 (\forall x)(x \times 0 = 0).
 NT7 (\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)).
 NT8 (\forall x)(x \uparrow 0) = \sigma(0).
 NT9 (\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x).
NT10 (\forall x)(x < \sigma(x)).
NT11 (\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \le y)). (a \le b \text{ is an abbreviation for } (a < b) \lor (a = b).
NT12 (\forall x)(\forall y)((\neg (x < y)) \leftrightarrow (y < x)).
NT13 (\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)].
```

Non-logical Axioms

Complete fragments of number theory

Sample Proof

Non-logical Axioms

```
NT1 (\forall x)(\sigma(x) \neq 0).
 NT2 (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].
 NT3 (\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).
 NT4 (\forall x)(x + 0 = x).
 NT5 (\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).
 NT6 (\forall x)(x \times 0 = 0).
 NT7 (\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)).
 NT8 (\forall x)(x \uparrow 0) = \sigma(0).
 NT9 (\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x).
NT10 (\forall x)(x < \sigma(x)).
NT11 (\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \le y)). (a \le b \text{ is an abbreviation for } (a < b) \lor (a = b).
NT12 (\forall x)(\forall y)((\neg (x < y)) \leftrightarrow (y < x)).
NT13 (\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)].
NT14 (\forall x)(\forall y)(\forall z)(\forall z')[(\mod(x, y, z) \land \mod(x, y, z')) \rightarrow (z = z')].
```

Non-logical Axioms Sample Proof Complete fragments of number theory

A set of Axioms (contd.)

Notational convenience

- (i) mod(x, y, z) is an abbreviation for $(\exists w)((x = y \times w + z) \land (z < y))$.
- (ii) div(x, y, w) is an abbreviation for $(\exists z)((x = y \times w + z) \land (z < y))$.
- (iii) $NT = NT_1 \land NT_2 \land \dots NT_{14}$
- (iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(\sigma(0)))$ and so on.

Properties of Axiom set

- (i) Is it sound? Yes! If NT ⊢ φ, then N ⊨ φ. Use induction on the number of steps in the proof sequence of NT ⊢ φ.
- (ii) Is it complete? i.e., if N ⊨ φ, does NT ⊢ φ? Apparently not! For instance, there is no proof from NT of the valid sentence (∀x)(∀y)[(x + y) = (y + x)]. In fact, no system of axioms exists for N, that is both sound and complete.

A set of Axioms (contd.)

Notational convenience

- (i) mod(x, y, z) is an abbreviation for $(\exists w)((x = y \times w + z) \land (z < y))$.
- (ii) div(x, y, w) is an abbreviation for $(\exists z)((x = y \times w + z) \land (z < y))$.
- (iii) $NT = NT_1 \land NT_2 \land \dots NT_{14}$

iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(0))$) and so on.

Properties of Axiom set

- (i) Is it sound? Yes! If NT ⊢ φ, then N ⊨ φ. Use induction on the number of steps in the proof sequence of NT ⊢ φ.
- (ii) Is it complete? i.e., if N ⊨ φ, does NT ⊢ φ? Apparently not! For instance, there is no proof from NT of the valid sentence (∀x)(∀y)[(x + y) = (y + x)]. In fact, no system of axioms exists for N, that is both sound and complete.

< 口 > < 同 > < 三 > < 三 > -

A set of Axioms (contd.)

Notational convenience

- (i) mod(x, y, z) is an abbreviation for $(\exists w)((x = y \times w + z) \land (z < y))$.
- (ii) div(x, y, w) is an abbreviation for $(\exists z)((x = y \times w + z) \land (z < y))$.
- (iii) $NT = NT_1 \land NT_2 \land \dots NT_{14}$
- (iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(0))$) and so on.

Properties of Axiom set

- (i) Is it sound? Yes! If NT ⊢ φ, then N ⊨ φ. Use induction on the number of steps in the proof sequence of NT ⊢ φ.
- (ii) Is it complete? i.e., if N ⊨ φ, does NT ⊢ φ? Apparently not! For instance, there is no proof from NT of the valid sentence (∀x)(∀y)[(x + y) = (y + x)]. In fact, no system of axioms exists for N, that is both sound and complete.

< ロ > < 同 > < 三 > < 三 > -

A set of Axioms (contd.)

Notational convenience

- (i) mod(x, y, z) is an abbreviation for $(\exists w)((x = y \times w + z) \land (z < y))$.
- (ii) div(x, y, w) is an abbreviation for $(\exists z)((x = y \times w + z) \land (z < y))$.
- (iii) $NT = NT_1 \land NT_2 \land \dots NT_{14}$
- (iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(0))$) and so on.

Properties of Axiom set

- (i) Is it sound? Yes! If NT ⊢ φ, then N ⊨ φ. Use induction on the number of steps in the proof sequence of NT ⊢ φ.
- (ii) Is it complete? i.e., if N ⊨ φ, does NT ⊢ φ? Apparently not! For instance, there is no proof from NT of the valid sentence (∀x)(∀y)[(x + y) = (y + x)]. In fact, no system of axioms exists for N, that is both sound and complete.

< ロ > < 同 > < 三 > < 三 > -

A set of Axioms (contd.)

Notational convenience

- (i) mod(x, y, z) is an abbreviation for $(\exists w)((x = y \times w + z) \land (z < y))$.
- (ii) div(x, y, w) is an abbreviation for $(\exists z)((x = y \times w + z) \land (z < y))$.
- (iii) $NT = NT_1 \land NT_2 \land \dots NT_{14}$
- (iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(0))$) and so on.

Properties of Axiom set

- (i) Is it sound? Yes! If NT ⊢ φ, then N ⊨ φ. Use induction on the number of steps in the proof sequence of NT ⊢ φ.
- (ii) Is it complete? i.e., if N ⊨ φ, does NT ⊢ φ? Apparently not! For instance, there is no proof from NT of the valid sentence (∀x)(∀y)[(x + y) = (y + x)]. In fact, no system of axioms exists for N, that is both sound and complete.

< 口 > < 同 > < 三 > < 三 > -

A set of Axioms (contd.)

Notational convenience

- (i) mod(x, y, z) is an abbreviation for $(\exists w)((x = y \times w + z) \land (z < y))$.
- (ii) div(x, y, w) is an abbreviation for $(\exists z)((x = y \times w + z) \land (z < y))$.
- (iii) $NT = NT_1 \land NT_2 \land \dots NT_{14}$
- (iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(0))$) and so on.

Properties of Axiom set

- (i) Is it sound? Yes! If NT ⊢ φ, then N ⊨ φ. Use induction on the number of steps in the proof sequence of NT ⊢ φ.
- (ii) Is it complete? i.e., if N ⊨ φ, does NT ⊢ φ? Apparently not! For instance, there is no proof from NT of the valid sentence (∀x)(∀y)[(x + y) = (y + x)]. In fact, no system of axioms exists for N, that is both sound and complete.

< 口 > < 同 > < 三 > < 三 > -

A set of Axioms (contd.)

Notational convenience

- (i) mod(x, y, z) is an abbreviation for $(\exists w)((x = y \times w + z) \land (z < y))$.
- (ii) div(x, y, w) is an abbreviation for $(\exists z)((x = y \times w + z) \land (z < y))$.
- (iii) $NT = NT_1 \land NT_2 \land \dots NT_{14}$
- (iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(\sigma(0)))$ and so on.

Properties of Axiom set

- (i) Is it sound? Yes! If NT ⊢ φ, then N ⊨ φ. Use induction on the number of steps in the proof sequence of NT ⊢ φ.
- (ii) Is it complete? i.e., if N ⊨ φ, does NT ⊢ φ? Apparently not! For instance, there is no proof from NT of the valid sentence (vx)(vy)[(x + y) = (y + x)]. In fact, no system of axioms exists for N, that is both sound and complete.

A set of Axioms (contd.)

Notational convenience

- (i) mod(x, y, z) is an abbreviation for $(\exists w)((x = y \times w + z) \land (z < y))$.
- (ii) div(x, y, w) is an abbreviation for $(\exists z)((x = y \times w + z) \land (z < y))$.
- (iii) $NT = NT_1 \land NT_2 \land \dots NT_{14}$
- (iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(0))$) and so on.

Properties of Axiom set

- (i) Is it sound? Yes! If NT ⊢ φ, then N ⊨ φ. Use induction on the number of steps in the proof sequence of NT ⊢ φ.
- (ii) Is it complete? i.e., if N ⊨ φ, does NT ⊢ φ? Apparently not! For instance, there is no proof from NT of the valid sentence (∀x)(∀y)[(x + y) = (y + x)]. In fact, no system of axioms exists for N, that is both sound and complete.

< 口 > < 同 > < 三 > < 三 > -

A set of Axioms (contd.)

Notational convenience

- (i) mod(x, y, z) is an abbreviation for $(\exists w)((x = y \times w + z) \land (z < y))$.
- (ii) div(x, y, w) is an abbreviation for $(\exists z)((x = y \times w + z) \land (z < y))$.
- (iii) $NT = NT_1 \land NT_2 \land \dots NT_{14}$
- (iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(0))$) and so on.

Properties of Axiom set

- (i) Is it sound? Yes! If NT ⊢ φ, then N ⊨ φ. Use induction on the number of steps in the proof sequence of NT ⊢ φ.
- (ii) Is it complete? i.e., if N ⊨ φ, does NT ⊢ φ? Apparently not! For instance, there is no proof from NT of the valid sentence (∀x)(∀y)[(x + y) = (y + x)]. In fact, no system of axioms exists for N, that is both sound and complete.

(a)

A set of Axioms (contd.)

Notational convenience

- (i) mod(x, y, z) is an abbreviation for $(\exists w)((x = y \times w + z) \land (z < y))$.
- (ii) div(x, y, w) is an abbreviation for $(\exists z)((x = y \times w + z) \land (z < y))$.
- (iii) $NT = NT_1 \land NT_2 \land \dots NT_{14}$
- (iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(0))$) and so on.

Properties of Axiom set

- (i) Is it sound? Yes! If NT ⊢ φ, then N ⊨ φ. Use induction on the number of steps in the proof sequence of NT ⊢ φ.
- (ii) Is it complete? i.e., if N ⊨ φ, does NT ⊢ φ? Apparently not! For instance, there is no proof from NT of the valid sentence (∀x)(∀y)[(x + y) = (y + x)]. In fact, no system of axioms exists for N, that is **both** sound and complete.

Axiomatizing Number Theory Complexity as a number-theoretic concept

Outline

Non-logical Axioms Sample Proof Complete fragments of number theory

Axiomatizing Number Theory

- Non-logical Axioms
- Sample Proof
- Complete fragments of number theory

Complexity as a number-theoretic concept
 Representing Turing Machines as numbers
 Encoding sample

Sample Proof

Example

Show that $\mathbf{NT} \vdash 1 < 1 + 1$.

Proof.

Consider the following proof sequence:

(i)
$$(\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y))$$
, NT5.

(ii)
$$(\forall x)((x + \sigma(0)) = \sigma(x + 0))$$
, (i), u.i. (setting $y = 0$).

(iii)
$$(\forall x)((x+1) = \sigma(x))$$
, **NT4**.

(iv)
$$(\forall x)(\sigma(x) = x + 1)$$
, properties of equality.

(v) $(\forall x)(x < \sigma(x))$, NT10.

(vi)
$$1 < \sigma(1)$$
, (v), u.i. (setting $x = 1$).

(vii)
$$\sigma(1) = 1 + 1$$
, (iv), u.i. (setting $x = 1$).

(viii) 1 < 1 + 1, (vi), (vii).

Non-logical Axioms Sample Proof Complete fragments of number theory

Axiomatizing Number Theory Complexity as a number-theoretic concept

Outline

Non-logical Axioms Sample Proof Complete fragments of number theory

Axiomatizing Number Theory

- Non-logical Axioms
- Sample Proof
- Complete fragments of number theory

Complexity as a number-theoretic concept
 Representing Turing Machines as numbers
 Encoding sample

Variable-Free Sentences

Theorem

If ϕ is a variable-free sentence, then $\mathbf{N} \models \phi \Leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t' and t < t'.

- (i) t and t' are numbers t = t' is trivial to prove. t < t' can be proved by using NT10 to prove $t < \sigma(t), \sigma(t) < \sigma(\sigma(t))$ and so on. Eventually, we can use NT13 to establish the inequality.
- (ii) *t* and *t'* are general variable-free terms (e.g., *t* = 2 ↑ 3 + (4 × 7) + 6) Both *t* and *t'* have values, say *t*₀ and *t'*₀. We need to show that NT ⊢ *t* = *t*₀ and NT ⊢ *t'* = *t'*₀. Use induction on structure of *t*, by repeatedly applying the axioms NT9, NT7 and NT5. Ultimately, the expression will be reduced to its value.

Variable-Free Sentences

Theorem

If ϕ is a variable-free sentence, then $\mathbf{N} \models \phi \Leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t' and t < t'.

- (i) t and t' are numbers t = t' is trivial to prove. t < t' can be proved by using **NT10** to prove $t < \sigma(t), \sigma(t) < \sigma(\sigma(t))$ and so on. Eventually, we can use **NT13** to establish the inequality.
- (iii) *t* and *t'* are general variable-free terms (e.g., *t* = 2 ↑ 3 + (4 × 7) + 6) Both *t* and *t'* have values, say *t*₀ and *t'*. We need to show that NT ⊢ *t* = *t*₀ and NT ⊢ *t'* = *t'*₀. Use induction on structure of *t*, by repeatedly applying the axioms NT9, NT7 and NT5. Ultimately, the expression will be reduced to its value.

Variable-Free Sentences

Theorem

If ϕ is a variable-free sentence, then $\mathbf{N} \models \phi \Leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t' and t < t'.

(i) *t* and *t'* are numbers - t = t' is trivial to prove. t < t' can be proved by using **NT10** to prove $t < \sigma(t), \sigma(t) < \sigma(\sigma(t))$ and so on. Eventually, we can use **NT13** to establish the inequality.

(ii) *t* and *t'* are general variable-free terms (e.g., $t = 2 \uparrow 3 + (4 \times 7) + 6$) - Both *t* and *t'* have values, say t_0 and t'_0 . We need to show that NT $\vdash t = t_0$ and NT $\vdash t' = t'_0$. Use induction on structure of *t*, by repeatedly applying the axioms NT9, NT7 and NT5. Ultimately, the expression will be reduced to its value.

Variable-Free Sentences

Theorem

If ϕ is a variable-free sentence, then $\mathbf{N} \models \phi \Leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t' and t < t'.

- (i) *t* and *t'* are numbers t = t' is trivial to prove. t < t' can be proved by using **NT10** to prove $t < \sigma(t), \sigma(t) < \sigma(\sigma(t))$ and so on. Eventually, we can use **NT13** to establish the inequality.
- (ii) *t* and *t'* are general variable-free terms (e.g., $t = 2 \uparrow 3 + (4 \times 7) + 6)$ Both *t* and *t'* have values, say t_0 and t'_0 . We need to show that $NT \vdash t = t_0$ and $NT \vdash t' = t'_0$. Use induction on structure of *t*, by repeatedly applying the axioms NT9, NT7 and NT5. Ultimately, the expression will be reduced to its value.

Variable-Free Sentences

Theorem

If ϕ is a variable-free sentence, then $\mathbf{N} \models \phi \Leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t' and t < t'.

- (i) *t* and *t'* are numbers t = t' is trivial to prove. t < t' can be proved by using **NT10** to prove $t < \sigma(t), \sigma(t) < \sigma(\sigma(t))$ and so on. Eventually, we can use **NT13** to establish the inequality.
- (ii) *t* and *t'* are general variable-free terms (e.g., $t = 2 \uparrow 3 + (4 \times 7) + 6$) Both *t* and *t'* have values, say t_0 and t'_0 . We need to show that NT $\vdash t = t_0$ and NT $\vdash t' = t'_0$. Use induction on structure of *t*, by repeatedly applying the axioms NT9, NT7 and NT5. Ultimately, the expression will be reduced to its value.

Variable-Free Sentences

Theorem

If ϕ is a variable-free sentence, then $\mathbf{N} \models \phi \Leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t' and t < t'.

- (i) *t* and *t'* are numbers t = t' is trivial to prove. t < t' can be proved by using **NT10** to prove $t < \sigma(t), \sigma(t) < \sigma(\sigma(t))$ and so on. Eventually, we can use **NT13** to establish the inequality.
- (ii) *t* and *t'* are general variable-free terms (e.g., $t = 2 \uparrow 3 + (4 \times 7) + 6$) Both *t* and *t'* have values, say t_0 and t'_0 . We need to show that **NT** $\vdash t = t_0$ and **NT** $\vdash t' = t'_0$. Use induction on structure of *t*, by repeatedly applying the axioms **NT9**, **NT7** and **NT5**. Ultimately, the expression will be reduced to its value.

Variable-Free Sentences

Theorem

If ϕ is a variable-free sentence, then $\mathbf{N} \models \phi \Leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t' and t < t'.

- (i) *t* and *t'* are numbers t = t' is trivial to prove. t < t' can be proved by using **NT10** to prove $t < \sigma(t), \sigma(t) < \sigma(\sigma(t))$ and so on. Eventually, we can use **NT13** to establish the inequality.
- (ii) *t* and *t'* are general variable-free terms (e.g., $t = 2 \uparrow 3 + (4 \times 7) + 6$) Both *t* and *t'* have values, say t_0 and t'_0 . We need to show that **NT** $\vdash t = t_0$ and **NT** $\vdash t' = t'_0$. Use induction on structure of *t*, by repeatedly applying the axioms **NT9**, **NT7** and **NT5**. Ultimately, the expression will be reduced to its value.

Bounded Quantifiers

Notation

(i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.

ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbb{N} \models \phi \leftrightarrow \mathbb{NT} \vdash \phi$.

Proof.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) φ = (∃x)ψ Since N ⊨ φ, there is a specific integer n, such that N ⊨ ψ[x ← n]. By induction, NT ⊢ ψ[x ← n] and hence NT ⊢ φ.
- (iii) $\phi = (\forall x < t)\psi$ Observe that *t* must be a variable-free term and hence a number. Repeatedly apply NT10 and NT11 to conclude that NT $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \dots (x = n - 1))$. By induction NT $\vdash \psi[x \leftarrow j], 0 \le j < n$. Hence NT $\vdash (\forall x)(((x = 0) \lor (x = 1) \dots (x = n - 1)) \rightarrow \psi)$. It follows that NT $\vdash \phi = (\forall x < n)\psi$.

Notation

(i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.

ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbb{N} \models \phi \leftrightarrow \mathbb{NT} \vdash \phi$.

Proof.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) φ = (∃x)ψ Since N ⊨ φ, there is a specific integer n, such that N ⊨ ψ[x ← n]. By induction, NT ⊢ ψ[x ← n] and hence NT ⊢ φ.
- (iii) φ = (∀x < t)ψ Observe that t must be a variable-free term and hence a number. Repeatedly apply NT10 and NT11 to conclude that NT ⊢ (∀x)((x < n) → ((x = 0) ∨ (x = 1) ∨ (x = 2) ∨ ... (x = n - 1)). By induction NT ⊢ ψ[x ← J], 0 ≤ j < n. Hence NT ⊢ (∀x)(((x = 0) ∨ (x = 1) ... (x = n - 1)) → ψ). It follows that NT ⊢ φ = (∀x < n)ψ.</p>

Bounded Quantifiers

Notation

- (i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
- (ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) φ = (∃x)ψ Since N ⊨ φ, there is a specific integer n, such that N ⊨ ψ[x ← n]. By induction, NT ⊢ ψ[x ← n] and hence NT ⊢ φ.
- (iii) $\phi = (\forall x < t)\psi$. Observe that *t* must be a variable-free term and hence a number. Repeatedly apply NT10 and NT11 to conclude that NT $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \dots (x = n - 1))$. By induction NT $\vdash \psi[x \leftarrow J], 0 \le j < n$. Hence NT $\vdash (\forall x)(((x = 0) \lor (x = 1) \dots (x = n - 1)) \rightarrow \psi)$. It follows that NT $\vdash \phi = (\forall x < n)\psi$.

Bounded Quantifiers

Notation

- (i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
- (ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) φ = (∃x)ψ Since N ⊨ φ, there is a specific integer n, such that N ⊨ ψ[x ← n]. By induction, NT ⊢ ψ[x ← n] and hence NT ⊢ φ.
- (iii) $\phi = (\forall x < t)\psi$. Observe that *t* must be a variable-free term and hence a number. Repeatedly apply NT10 and NT11 to conclude that NT $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \dots (x = n - 1))$. By induction NT $\vdash \psi[x \leftarrow J], 0 \le j < n$. Hence NT $\vdash (\forall x)(((x = 0) \lor (x = 1) \dots (x = n - 1)) \rightarrow \psi)$. It follows that NT $\vdash \phi = (\forall x < n)\psi$.

Bounded Quantifiers

Notation

- (i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
- (ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

Since NT is sound, NT $\vdash \phi \rightarrow N \models \phi$. We use induction on the number of quantifiers to prove the converse.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) φ = (∃x)ψ Since N ⊨ φ, there is a specific integer n, such that N ⊨ ψ[x ← n]. By induction, NT ⊢ ψ[x ← n] and hence NT ⊢ φ.

(iii) $\phi = (\forall x < t)\psi$ - Observe that *t* must be a variable-free term and hence a number. Repeatedly apply NT10 and NT11 to conclude that NT $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \dots (x = n - 1))$. By induction NT $\vdash \psi[x \leftarrow j], 0 \le j < n$. Hence NT $\vdash (\forall x)(((x = 0) \lor (x = 1) \dots (x = n - 1)) \rightarrow \psi)$. It follows that NT $\vdash \phi = (\forall x < n)\psi$.

Notation

- (i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
- (ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) $\phi = (\exists x)\psi$ Since **N** $\models \phi$, there is a specific integer *n*, such that **N** $\models \psi[x \leftarrow n]$. By induction, **NT** $\vdash \psi[x \leftarrow n]$ and hence **NT** $\vdash \phi$.
- (iii) $\phi = (\forall x < t)\psi$ Observe that *t* must be a variable-free term and hence a number. Repeatedly apply NT10 and NT11 to conclude that NT $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \dots (x = n - 1))$. By induction NT $\vdash \psi[x \leftarrow j], 0 \le j < n$. Hence NT $\vdash (\forall x)(((x = 0) \lor (x = 1) \dots (x = n - 1)) \rightarrow \psi)$. It follows that NT $\vdash \phi = (\forall x < n)\psi$.

Notation

- (i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
- (ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) $\phi = (\exists x)\psi$ Since **N** $\models \phi$, there is a specific integer *n*, such that **N** $\models \psi[x \leftarrow n]$. By induction, **NT** $\vdash \psi[x \leftarrow n]$ and hence **NT** $\vdash \phi$.
- (iii) $\phi = (\forall x < t)\psi$ Observe that *t* must be a variable-free term and hence a number. Repeatedly apply NT10 and NT11 to conclude that NT $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \dots (x = n - 1))$. By induction NT $\vdash \psi[x \leftarrow j], 0 \le j < n$. Hence NT $\vdash (\forall x)(((x = 0) \lor (x = 1) \dots (x = n - 1)) \rightarrow \psi)$. It follows that NT $\vdash \phi = (\forall x < n)\psi$.

Notation

- (i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
- (ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

Since **NT** is sound, **NT** $\vdash \phi \rightarrow$ **N** $\models \phi$. We use induction on the number of quantifiers to prove the converse.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) $\phi = (\exists x)\psi$ Since **N** $\models \phi$, there is a specific integer *n*, such that **N** $\models \psi[x \leftarrow n]$. By induction, **NT** $\vdash \psi[x \leftarrow n]$ and hence **NT** $\vdash \phi$.

(iii) $\phi = (\forall x < t)\psi$ - Observe that *t* must be a variable-free term and hence a number. Repeatedly apply NT10 and NT11 to conclude that NT $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \dots (x = n - 1))$. By induction NT $\vdash \psi[x \rightarrow j], 0 \le j < n$. Hence NT $\vdash (\forall x)(((x = 0) \lor (x = 1) \dots (x = n - 1)) \rightarrow \psi)$. It follows that NT $\vdash \phi = (\forall x < n)\psi$.

Notation

- (i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
- (ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) $\phi = (\exists x)\psi$ Since **N** $\models \phi$, there is a specific integer *n*, such that **N** $\models \psi[x \leftarrow n]$. By induction, **NT** $\vdash \psi[x \leftarrow n]$ and hence **NT** $\vdash \phi$.
- (iii) $\phi = (\forall x < t)\psi$ Observe that *t* must be a variable-free term and hence a number. Repeatedly apply NT0 and NT11 to conclude that NT $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \dots (x = n - 1))$. By induction NT $\vdash \psi[x \leftarrow j], 0 \le j < n$. Hence NT $\vdash (\forall x)((x = 0) \lor (x = 1) - (x = n - 1)) \rightarrow \psi$) It follows that NT $\vdash \phi = (\forall x < n)\psi$.

Bounded Quantifiers

Notation

- (i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
- (ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) $\phi = (\exists x)\psi$ Since **N** $\models \phi$, there is a specific integer *n*, such that **N** $\models \psi[x \leftarrow n]$. By induction, **NT** $\vdash \psi[x \leftarrow n]$ and hence **NT** $\vdash \phi$.
- (iii) $\phi = (\forall x < t)\psi$ Observe that *t* must be a variable-free term and hence a number. Repeatedly apply **NT10** and **NT11** to conclude that **NT** $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor ... (x = n - 1))$. By induction NT $\vdash \psi[x - j] = 0 < (x = n) \vdash (x)(((x = 0) \lor (x = 1) \dots (x = n - 1)) \rightarrow \psi)$. It follows that NT $\vdash \psi[x - j] = 0 < (x = n)$.

Bounded Quantifiers

Notation

- (i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
- (ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) $\phi = (\exists x)\psi$ Since **N** $\models \phi$, there is a specific integer *n*, such that **N** $\models \psi[x \leftarrow n]$. By induction, **NT** $\vdash \psi[x \leftarrow n]$ and hence **NT** $\vdash \phi$.
- (iii) $\phi = (\forall x < t)\psi$ Observe that *t* must be a variable-free term and hence a number. Repeatedly apply **NT10** and **NT11** to conclude that **NT** $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \dots (x = n - 1))$. By induction **NT** $\vdash \psi[x \leftarrow j], 0 \le j < n$. Hence **NT** $\vdash (\forall x)((x = 0) \lor (x = 1) \dots (x = n - 1)) \rightarrow \psi$. It follows that **NT** $\vdash \phi = (\forall x < n)\psi$.

Bounded Quantifiers

Notation

- (i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
- (ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) $\phi = (\exists x)\psi$ Since **N** $\models \phi$, there is a specific integer *n*, such that **N** $\models \psi[x \leftarrow n]$. By induction, **NT** $\vdash \psi[x \leftarrow n]$ and hence **NT** $\vdash \phi$.
- (iii) $\phi = (\forall x < t)\psi$ Observe that *t* must be a variable-free term and hence a number. Repeatedly apply **NT10** and **NT11** to conclude that **NT** $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \dots (x = n - 1))$. By induction **NT** $\vdash \psi[x \leftarrow j], 0 \le j < n$. Hence **NT** $\vdash (\forall x)(((x = 0) \lor (x = 1) \dots (x = n - 1)) \rightarrow \psi)$. It follows that **NT** $\vdash \phi = (\forall x < n)\psi$.

Bounded Quantifiers

Notation

- (i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
- (ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \leftrightarrow \mathbf{NT} \vdash \phi$.

Proof.

- (i) ϕ has no quantifiers Variable-Free sentence!
- (ii) $\phi = (\exists x)\psi$ Since **N** $\models \phi$, there is a specific integer *n*, such that **N** $\models \psi[x \leftarrow n]$. By induction, **NT** $\vdash \psi[x \leftarrow n]$ and hence **NT** $\vdash \phi$.
- (iii) $\phi = (\forall x < t)\psi$ Observe that *t* must be a variable-free term and hence a number. Repeatedly apply **NT10** and **NT11** to conclude that **NT** $\vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \dots (x = n - 1))$. By induction **NT** $\vdash \psi[x \leftarrow j], 0 \le j < n$. Hence **NT** $\vdash (\forall x)(((x = 0) \lor (x = 1) \dots (x = n - 1)) \rightarrow \psi)$. It follows that **NT** $\vdash \phi = (\forall x < n)\psi$.

Axiomatizing Number Theory Complexity as a number-theoretic concept Representing Turing Machines as numbers Encoding sample

Outline

Axiomatizing Number Theory

- Non-logical Axioms
- Sample Proof
- Complete fragments of number theory

2 Complexity as a number-theoretic concept

- Representing Turing Machines as numbers
- Encoding sample

• • • • • • • • • • • •

Representing Turing Machines as numbers Encoding sample

Encoding Scheme

Procedure

Let $M = (K, \Sigma, \delta, s)$ denote a Turing Machine.

- (i) Represent the symbols in Σ using integers in $\{0, 1, ..., |\Sigma| 1\}$ and the symbols in K using integers in $\{\Sigma, \Sigma+1, ..., \Sigma| + |K| 1\}$.
- (ii) s is always encoded as $|\Sigma|$ and 0 is always used to encode \triangleright .
- (iii) "yes" and "no" are encoded as $|\Sigma| + 1|$ and $|\Sigma| + 2$ respectively.
- (iv) \Box is encoded by 1.

Thus, all symbols can be encoded using $b = |\Sigma| + |K|$ integers. Consider the configuration

C = (q, w, u), where $q \in K$ and $w = w_1, w_2, \ldots, w_m$ and $u = u_1, u_2, \ldots, u_n \in \Sigma^*$. C can be

thought of as the unique integer whose *b*-ary representation is

 $\sum_{i=1}^{n} w_i \cdot b^{m+n+1-i} + q \cdot b^n + \sum_{i=1}^{n} u_i \cdot b^{n-i}$

(a)

Procedure

Let $M = (K, \Sigma, \delta, s)$ denote a Turing Machine.

- (i) Represent the symbols in Σ using integers in $\{0, 1, \ldots, |\Sigma| 1\}$ and the symbols in K using integers in $\{\Sigma, \Sigma+1, \ldots, \Sigma| + |K| 1\}$.
- (ii) s is always encoded as $|\Sigma|$ and 0 is always used to encode \triangleright .
- (iii) "yes" and "no" are encoded as $|\Sigma| + 1|$ and $|\Sigma| + 2$ respectively.
- (iv) ⊔ is encoded by 1.

Thus, all symbols can be encoded using $b = |\Sigma| + |K|$ integers. Consider the configuration

C = (q, w, u), where $q \in K$ and $w = w_1, w_2, \ldots, w_m$ and $u = u_1, u_2, \ldots, u_n \in \Sigma^*$. C can be

thought of as the unique integer whose b-ary representation is

 $\sum_{i=1}^{n} w_i \cdot b^{m+n+1-i} + q \cdot b^n + \sum_{i=1}^{n} u_i \cdot b^{n-i}.$

(a)

Procedure

Let $M = (K, \Sigma, \delta, s)$ denote a Turing Machine.

- (i) Represent the symbols in Σ using integers in $\{0, 1, ..., |\Sigma| 1\}$ and the symbols in K using integers in $\{\Sigma, \Sigma+1, ..., \Sigma| + |K| 1\}$.
- (ii) s is always encoded as $|\Sigma|$ and 0 is always used to encode \triangleright .
- (iii) "yes" and "no" are encoded as $|\Sigma| + 1|$ and $|\Sigma| + 2$ respectively.
- (iv) \Box is encoded by 1.

Thus, all symbols can be encoded using $b = |\Sigma| + |K|$ integers. Consider the configuration C = (q, w, u), where $q \in K$ and $w = w_1, w_2, \ldots, w_m$ and $u = u_1, u_2, \ldots, u_n \in \Sigma^*$. *C* can be thought of as the unique integer whose *b*-ary representation is $\sum_{i=1}^{n} w_i \cdot b^{m+n+1-i} + q \cdot b^n + \sum_{i=1}^{n} u_i \cdot b^{n-i}$.

(a)

э.

Procedure

Let $M = (K, \Sigma, \delta, s)$ denote a Turing Machine.

- (i) Represent the symbols in Σ using integers in $\{0, 1, \ldots, |\Sigma| 1\}$ and the symbols in K using integers in $\{\Sigma, \Sigma+1, \ldots, \Sigma| + |K| 1\}$.
- (ii) s is always encoded as $|\Sigma|$ and 0 is always used to encode \triangleright .
- (iii) "yes" and "no" are encoded as $|\Sigma|+1|$ and $|\Sigma|+2$ respectively.

(iv) \Box is encoded by 1.

Thus, all symbols can be encoded using $b = |\Sigma| + |K|$ integers. Consider the configuration

C = (q, w, u), where $q \in K$ and $w = w_1, w_2, \ldots, w_m$ and $u = u_1, u_2, \ldots, u_n \in \Sigma^*$. C can be

thought of as the unique integer whose *b*-ary representation is

 $\sum_{i=1}^{n} w_i \cdot b^{m+n+1-i} + q \cdot b^n + \sum_{i=1}^{n} u_i \cdot b^{n-i}.$

Procedure

Let $M = (K, \Sigma, \delta, s)$ denote a Turing Machine.

- (i) Represent the symbols in Σ using integers in $\{0, 1, \ldots, |\Sigma| 1\}$ and the symbols in K using integers in $\{\Sigma, \Sigma+1, \ldots, \Sigma| + |K| 1\}$.
- (ii) s is always encoded as $|\Sigma|$ and 0 is always used to encode \triangleright .
- (iii) "yes" and "no" are encoded as $|\Sigma|+1|$ and $|\Sigma|+2$ respectively.
- (iv) \sqcup is encoded by 1.

Thus, all symbols can be encoded using $b = |\Sigma| + |K|$ integers. Consider the configuration

C = (q, w, u), where $q \in K$ and $w = w_1, w_2, \dots, w_m$ and $u = u_1, u_2, \dots, u_n \in \Sigma^*$. C can be thought of as the unique integer whose *b*-ary representation is $\sum_{i=1}^{n} w_i \cdot b^{m+n+1-i} + q \cdot b^n + \sum_{i=1}^{n} u_i \cdot b^{n-i}$.

Procedure

Let $M = (K, \Sigma, \delta, s)$ denote a Turing Machine.

- (i) Represent the symbols in Σ using integers in $\{0, 1, \ldots, |\Sigma| 1\}$ and the symbols in K using integers in $\{\Sigma, \Sigma+1, \ldots, \Sigma| + |K| 1\}$.
- (ii) s is always encoded as $|\Sigma|$ and 0 is always used to encode \triangleright .
- (iii) "yes" and "no" are encoded as $|\Sigma|+1|$ and $|\Sigma|+2$ respectively.
- (iv) \sqcup is encoded by 1.

Thus, all symbols can be encoded using $b = |\Sigma| + |K|$ integers. Consider the configuration C = (q, w, u), where $q \in K$ and $w = w_1, w_2, \ldots, w_m$ and $u = u_1, u_2, \ldots, u_n \in \Sigma^*$. C can be thought of as the unique integer whose *b*-ary representation is $\sum_{i=1}^{n} w_i \cdot b^{m+n+1-i} + q \cdot b^n + \sum_{i=1}^{n} u_i \cdot b^{n-i}$.

(日)

Axiomatizing Number Theory Complexity as a number-theoretic concept Representing Turing Machines as numbers Encoding sample

Outline

Axiomatizing Number Theory

- Non-logical Axioms
- Sample Proof
- Complete fragments of number theory

Complexity as a number-theoretic concept
 Representing Turing Machines as numbers

Encoding sample

• • • • • • • • • • • •

$p \in K$,	$\sigma \in \Sigma$	$\delta(p, \sigma)$
S	а	(s, a, ightarrow)
S	b	(s, b, \rightarrow)
S		(q, \sqcup, \leftarrow)
S	\triangleright	$(q, \triangleright, \rightarrow)$
q	а	(q,\sqcup,\leftarrow)
q	b	(" no" , b, −)
q	⊳	$("yes", \triangleright, \rightarrow)$

Table: A Turing Machine that accepts a^*

Characteristics

 $|K| = |\Sigma| = 4$ and hence b = 8.

The configuration $(q, \triangleright aa, \Box \Box)$ is represented by the sequence (0, 2, 2, 7, 1, 1) or by the integer 022711₈ or 9673₁₀. Representing Turing Machines as numbers Encoding sample

Observation

The relation "yields in one step" over the configurations of M defines a relation $Y_M \subseteq N^2$.

Goal

To formulate a first-order expression yields_M(x, y) in number theory, over the free variables x and y, such that

《口》《聞》《臣》《臣》

$p \in K$,	$\sigma \in \Sigma$	$\delta(p, \sigma)$
S	а	(s, a, ightarrow)
S	b	(s, b, \rightarrow)
S		(q, \sqcup, \leftarrow)
S	\triangleright	$(q, \triangleright, \rightarrow)$
q	а	(q,\sqcup,\leftarrow)
q	b	(" no" , b, −)
q	⊳	$("yes", \triangleright, \rightarrow)$

Table: A Turing Machine that accepts a^*

Characteristics

 $|\mathcal{K}| = |\Sigma| = 4$ and hence b = 8.

The configuration $(q, \triangleright aa, \sqcup \sqcup)$ is represented by the sequence (0, 2, 2, 7, 1, 1) or by the integer 022711_8 or 9673_{10} . Representing Turing Machines as numbers Encoding sample

Observation

The relation "yields in one step" over the configurations of M defines a relation $Y_M \subseteq N^2$.

Goal

To formulate a first-order expression yields_M(x, y) in number theory, over the free variables x and y, such that

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$p \in K$,	$\sigma \in \Sigma$	$\delta(p, \sigma)$
S	а	(s, a, ightarrow)
S	b	(s, b, \rightarrow)
S		(q, \sqcup, \leftarrow)
S	\triangleright	$(q, \triangleright, \rightarrow)$
q	а	(q,\sqcup,\leftarrow)
q	b	(" no" , b, −)
q	⊳	$("yes", \triangleright, \rightarrow)$

Table: A Turing Machine that accepts a^*

Characteristics

 $|\mathcal{K}| = |\Sigma| = 4$ and hence b = 8.

The configuration $(q, \triangleright aa, \sqcup \sqcup)$ is represented by the sequence (0, 2, 2, 7, 1, 1) or by the integer 022711₈ or 9673₁₀. Representing Turing Machines as numbers Encoding sample

Observation

The relation "yields in one step" over the configurations of M defines a relation $Y_M \subseteq \mathcal{N}^2$.

Goal

To formulate a first-order expression yields_M(x, y) in number theory, over the free variables x and y, such that

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$p \in K$,	$\sigma \in \Sigma$	$\delta(p, \sigma)$
S	а	(s, a, ightarrow)
S	b	(s, b, \rightarrow)
S		(q, \sqcup, \leftarrow)
S	\triangleright	$(q, \triangleright, \rightarrow)$
q	а	(q,\sqcup,\leftarrow)
q	b	(" no" , b, −)
q	⊳	$("yes", \triangleright, \rightarrow)$

Table: A Turing Machine that accepts a^*

Characteristics

 $|K| = |\Sigma| = 4$ and hence b = 8.

The configuration $(q, \triangleright aa, \sqcup \sqcup)$ is represented by the sequence (0, 2, 2, 7, 1, 1) or by the integer 022711₈ or 9673₁₀.

Representing Turing Machines as numbers Encoding sample

Observation

The relation "yields in one step" over the configurations of M defines a relation $Y_M \subseteq \mathcal{N}^2$.

Goal

To formulate a first-order expression yields_M(x, y) in number theory, over the free variables x and y, such that

$p \in K$,	$\sigma \in \Sigma$	$\delta(p, \sigma)$
S	а	(s, a, ightarrow)
S	b	(s, b, \rightarrow)
S		(q, \sqcup, \leftarrow)
S	\triangleright	$(q, \triangleright, \rightarrow)$
q	а	(q,\sqcup,\leftarrow)
q	b	(" no" , b, −)
q	⊳	$("yes", \triangleright, \rightarrow)$

Table: A Turing Machine that accepts a^*

Characteristics

 $|\mathcal{K}| = |\Sigma| = 4$ and hence b = 8.

The configuration $(q, \triangleright aa, \sqcup \sqcup)$ is represented by the sequence (0, 2, 2, 7, 1, 1) or by the

integer 0227118 or 967310.

Representing Turing Machines as numbers Encoding sample

Observation

The relation "yields in one step" over the configurations of M defines a relation $Y_M \subseteq \mathcal{N}^2$.

Goal

To formulate a first-order expression yields $_{M}(x, y)$ in number theory, over the free variables x and y, such that

< 口 > < 同 > < 三 > < 三 > -

3

 $N_{x=m,y=n} \models yields_M(x, y)$ iff $Y_M(m, n)$.

$p \in K$,	$\sigma \in \Sigma$	$\delta(p, \sigma)$
S	а	(s, a, ightarrow)
S	b	(s, b, \rightarrow)
S		(q, \sqcup, \leftarrow)
S	\triangleright	$(q, \triangleright, \rightarrow)$
q	а	(q,\sqcup,\leftarrow)
q	b	(" no" , b, −)
q	⊳	$("yes", \triangleright, \rightarrow)$

Table: A Turing Machine that accepts a^*

Characteristics

 $|K| = |\Sigma| = 4$ and hence b = 8.

The configuration $(q, \triangleright aa, \sqcup \sqcup)$ is represented by the sequence (0, 2, 2, 7, 1, 1) or by the

integer 0227118 or 967310.

Representing Turing Machines as numbers Encoding sample

Observation

The relation "yields in one step" over the configurations of M defines a relation $Y_M\subseteq \mathcal{N}^2.$

Goal

To formulate a first-order expression yields M(x, y) in number theory, over the free variables x and y, such that

< 口 > < 同 > < 三 > < 三 > -

3