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Axiomatizing Number Theory
Complexity as a number-theoretic concept

Non-logical Axioms
Sample Proof
Complete fragments of number theory

A set of Axioms

Non-logical Axioms
NT1 (∀x)(σ(x) 6= 0).

NT2 (∀x)(∀y)[(σ(x) = σ(y))→ (x = y)].

NT3 (∀x)((x = 0) ∨ (∃y)(x = σ(y))).

NT4 (∀x)(x + 0 = x).

NT5 (∀x)(∀y)((x + σ(y)) = σ(x + y)).

NT6 (∀x)(x × 0 = 0).

NT7 (∀x)(∀y)((x × σ(y)) = (x × y + x)).

NT8 (∀x)(x ↑ 0) = σ(0).

NT9 (∀x)((x ↑ σ(y)) = (x ↑ y)× x).

NT10 (∀x)(x < σ(x)).

NT11 (∀x)(∀y)((x < y)→ (σ(x) ≤ y)). (a ≤ b is an abbreviation for (a < b) ∨ (a = b).

NT12 (∀x)(∀y)((¬(x < y))↔ (y ≤ x)).

NT13 (∀x)(∀y)(∀z)[((x < y) ∧ (y < z))→ (x < z)].

NT14 (∀x)(∀y)(∀z)(∀z′)[( mod (x, y , z) ∧ mod (x, y , z′))→ (z = z′)].
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Axiomatizing Number Theory
Complexity as a number-theoretic concept

Non-logical Axioms
Sample Proof
Complete fragments of number theory

A set of Axioms (contd.)

Notational convenience
(i) mod(x, y , z) is an abbreviation for (∃w)((x = y × w + z) ∧ (z < y)).

(ii) div(x, y ,w) is an abbreviation for (∃z)((x = y × w + z) ∧ (z < y)).

(iii) NT = NT1 ∧ NT2 ∧ . . .NT14

(iv) We use 1 for σ(0), 2 for σ(σ(0)), 3 for σ(σ(σ(0))) and so on.

Properties of Axiom set
(i) Is it sound? Yes! If NT ⊢ φ, then N |= φ. Use induction on the number of steps in the proof

sequence of NT ⊢ φ.

(ii) Is it complete? i.e., if N |= φ, does NT ⊢ φ? Apparently not! For instance, there is no proof

from NT of the valid sentence (∀x)(∀y)[(x + y) = (y + x)]. In fact, no system of axioms

exists for N, that is both sound and complete.
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Sample Proof

Example
Show that NT ⊢ 1 < 1 + 1.

Proof.
Consider the following proof sequence:

(i) (∀x)(∀y)((x + σ(y)) = σ(x + y)), NT5.

(ii) (∀x)((x + σ(0)) = σ(x + 0)), (i), u.i. (setting y = 0).

(iii) (∀x)((x + 1) = σ(x)), NT4.

(iv) (∀x)(σ(x) = x + 1), properties of equality.

(v) (∀x)(x < σ(x)), NT10.

(vi) 1 < σ(1), (v), u.i. (setting x = 1).

(vii) σ(1) = 1 + 1, (iv), u.i. (setting x = 1).

(viii) 1 < 1 + 1, (vi), (vii).
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Variable-Free Sentences

Theorem
If φ is a variable-free sentence, then N |= φ⇔ NT ⊢ φ.

Proof.
Any variable-free sentence is an arbitrary boolean combination of expressions of the form: t = t′

and t < t′.

(i) t and t′ are numbers - t = t′ is trivial to prove. t < t′ can be proved by using NT10 to prove
t < σ(t), σ(t) < σ(σ(t)) and so on. Eventually, we can use NT13 to establish the inequality.

(ii) t and t′ are general variable-free terms (e.g., t = 2 ↑ 3 + (4 × 7) + 6) - Both t and t′ have
values, say t0 and t′0 . We need to show that NT ⊢ t = t0 and NT ⊢ t′ = t′0 . Use induction on
structure of t , by repeatedly applying the axioms NT9, NT7 and NT5. Ultimately, the
expression will be reduced to its value.
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Bounded Quantifiers

Notation
(i) (∀x < t)φ stands for (∀x)((x < t)→ φ). Bounded prenex form.

(ii) Bounded sentence.

Theorem
Suppose that φ is a bounded sentence. Then N |= φ↔ NT ⊢ φ.

Proof.
Since NT is sound, NT ⊢ φ→ N |= φ. We use induction on the number of quantifiers to prove the
converse.

(i) φ has no quantifiers - Variable-Free sentence!

(ii) φ = (∃x)ψ - Since N |= φ, there is a specific integer n, such that N |= ψ[x ← n]. By
induction, NT ⊢ ψ[x ← n] and hence NT ⊢ φ.

(iii) φ = (∀x < t)ψ - Observe that t must be a variable-free term and hence a number.
Repeatedly apply NT10 and NT11 to conclude that
NT ⊢ (∀x)((x < n)→ ((x = 0) ∨ (x = 1) ∨ (x = 2) ∨ . . . (x = n − 1)). By induction
NT ⊢ ψ[x ← j], 0 ≤ j < n. Hence NT ⊢ (∀x)(((x = 0) ∨ (x = 1) . . . (x = n − 1))→ ψ). It
follows that NT ⊢ φ = (∀x < n)ψ.
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Proof.
Since NT is sound, NT ⊢ φ→ N |= φ. We use induction on the number of quantifiers to prove the
converse.

(i) φ has no quantifiers - Variable-Free sentence!

(ii) φ = (∃x)ψ - Since N |= φ, there is a specific integer n, such that N |= ψ[x ← n]. By
induction, NT ⊢ ψ[x ← n] and hence NT ⊢ φ.

(iii) φ = (∀x < t)ψ - Observe that t must be a variable-free term and hence a number.
Repeatedly apply NT10 and NT11 to conclude that
NT ⊢ (∀x)((x < n)→ ((x = 0) ∨ (x = 1) ∨ (x = 2) ∨ . . . (x = n − 1)). By induction
NT ⊢ ψ[x ← j], 0 ≤ j < n. Hence NT ⊢ (∀x)(((x = 0) ∨ (x = 1) . . . (x = n − 1))→ ψ). It
follows that NT ⊢ φ = (∀x < n)ψ.
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Axiomatizing Number Theory
Complexity as a number-theoretic concept

Representing Turing Machines as numbers
Encoding sample

Encoding Scheme

Procedure
Let M = (K ,Σ, δ, s) denote a Turing Machine.

(i) Represent the symbols in Σ using integers in {0, 1, . . . , |Σ| − 1} and the symbols in K using
integers in {Σ,Σ+1,. . . , Σ|+ |K | − 1}.

(ii) s is always encoded as |Σ| and 0 is always used to encode ⊲.

(iii) “yes” and “no” are encoded as |Σ|+ 1| and |Σ|+ 2 respectively.

(iv) ⊔ is encoded by 1.

Thus, all symbols can be encoded using b = |Σ|+ |K | integers. Consider the configuration

C = (q,w , u), where q ∈ K and w = w1,w2, . . . ,wm and u = u1, u2, . . . un ∈ Σ∗. C can be

thought of as the unique integer whose b-ary representation is
Pn

i=1 wi · b
m+n+1−i + q · bn +

Pn
i=1 ui · b

n−i .
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Example

p ∈ K , σ ∈ Σ δ(p, σ)
s a (s, a,→)
s b (s, b,→)
s ⊔ (q,⊔,←)
s ⊲ (q, ⊲,→)
q a (q,⊔,←)
q b (”no”, b,−)
q ⊲ (”yes”, ⊲,→)

Table: A Turing Machine that accepts a∗

Characteristics
|K | = |Σ| = 4 and hence b = 8.

The configuration (q, ⊲aa,⊔⊔) is represented

by the sequence (0, 2, 2, 7, 1, 1) or by the

integer 0227118 or 967310 .

Observation
The relation ”yields in one step” over the configurations

of M defines a relation YM ⊆ N
2.

Goal
To formulate a first-order expression yieldsM (x, y) in
number theory, over the free variables x and y, such
that

Nx=m,y=n |= yieldsM (x, y) iff YM (m, n).
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