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(i) Every Turing Machine M = (K, X, §, s)) can be represented as a number in b-ary notation,
where b = |K| + |Z].
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Number-theoretic encoding of computation

Turing Machine encodings

(i) Every Turing Machine M = (K, X, §, s)) can be represented as a number in b-ary notation,

where b = |K| + |Z].
(i) Therefore, configurations can be encoded as sequences of integers in b-ary representation.

(iii) The “yields in one step” function over configurations of a Turing Machine, defines a relation
Yu C N?

Goal
To formulate a first-order expression yieldsy (X, y) in number theory, over the free variables x and
y, such that

Ny—m.y—n [= yieldsy (x, y) iff Yy (m, n).
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Table: A Turing Machine that accepts a*
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Formulating the encoding technique

Consider the C; = (q, >aa, LILI) and the
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Formulating the encoding technique

Consider the C; = (q, >aa, LILI) and the

pEK, o€EX 4(p, o) configuration that follows
s a (s,a,—) c, — "
s b (s.b,—) > = (q,>a, L U U). The corresponding
s L (q,u, <) encodings m = 022711g and 027111g are
Z : ((3:5’7 :)) related under Yy.
q b ("no”,b, 5)
q > ("yes", >, —)

Table: A Turing Machine that accepts a*
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Formulating the encoding technique

Example

Consider the C; = (q, >aa, LILI) and the

pEK, o€EX 4(p, o) configuration that follows
s a (s,a,—) c, — "
s b (s.b,—) > = (q,>a, L U U). The corresponding
s L (q,u, <) encodings m = 022711g and 027111g are
Z : ((3:5’7 :)) related under Yy.
q b ("no”,b, 5)
q > ("yes", >, —)

Observation
Table: A Turing Machine that accepts a*
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Formulating the encoding technique

Example

Consider the C; = (q, >aa, LILI) and the

pEK, o€EX 4(p, o) configuration that follows
s a (s,a,—) c, — "
s b (s.b,—) > = (q,>a, L U U). The corresponding
s L (q,u, <) encodings m = 022711g and 027111g are
Z : ((3:5’7 :)) related under Yy.
q b ("no”,b, 5)
q > ("yes", >, —)

Observation

(i) m and n are identical, except for the
replacement of 271g in m, by 711g in n.

Table: A Turing Machine that accepts a*
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Formulating the encoding technique

Example

Consider the C; = (q, >aa, LILI) and the

pEK, o€EX 4(p, o) configuration that follows
s a (s,a,—) c, — "
s b (s.b,—) > = (q,>a, L U U). The corresponding
s L (q,u, <) encodings m = 022711g and 027111g are
Z : ((3:5’7 :)) related under Yy.
q b ("no”,b, 5)
q > ("yes", >, —)

Observation
(i) m and n are identical, except for the
replacement of 271g in m, by 711g in n.

(i) But this corresponds to Rule 5 in the
table!

Table: A Turing Machine that accepts a*
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Formulating the encoding technique

Example

Consider the C; = (q, >aa, LILI) and the

pEK, o€EX 4(p, o) configuration that follows
s a (s,a,—) c, — "
s b (s.b,—) > = (q,>a, L U U). The corresponding
s L (q,u, <) encodings m = 022711g and 027111g are
Z : ((3:5’7 :)) related under Yy.
q b ("no”,b, 5)
q > ("yes", >, —)

Observation

(i) m and n are identical, except for the
replacement of 271g in m, by 711g in n.

(i) But this corresponds to Rule 5 in the
table! Thus, every move is a local
replacement of digits.

Table: A Turing Machine that accepts a*
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Formulating the encoding technique (contd.)

Triplet ¢ e |

Capture each rule change as a triplet transformation!
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Number-theoretic encoding of computation

Formulating the encoding technique (contd.)

Triplet

Capture each rule change as a triplet transformation!

042 — 0245
0435 —  034g
041y —  0ldg
2424 — 2244
2434 —  234g
241y —  214g
2424 — 2244
2424 — 2244
371 —  361g

Table: Encoding the triplet changes
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Number-theoretic encoding of computation

Formulating the encoding technique (contd.)

Triplet changes

Capture each rule change as a triplet transformation!

042 — 0245
0435 —  034g
041y —  0ldg
2424 — 2244
2434 —  234g
241y —  214g
2424 — 2244
2424 — 2244
371 —  361g

Table: Encoding the triplet changes
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Formulating the encoding technique (contd.)

The computation of M on input aa:
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Formulating the encoding technique (contd.)

The computation of M on input aa:
04223,
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Formulating the encoding technique (contd.)

The computation of M on input aa:
0422g, 0242,
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Formulating the encoding technique (contd.)

The computation of M on input aa:
0422g, 02425, 02243,
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Number-theoretic encoding of computation

Formulating the encoding technique (contd.)

Padding

The computation of M on input aa:
0422g, 0242g, 02245, 022415, . . ..
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The Actual Formula

yieldsy (x, x") =
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A first-order Number-Theoretic expression for Computation

The Actual Formula
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A first-order Number-Theoretic expression for Computation

The Actual Formula

yieldsy (x, x") = padsy (x,x") V

3y < x)(Fz1 < x)(Fz2 < x)(Tzy < x)(Tzz < x)(T2zg < X)(3z4 < X)

(confi (x) A confiy (x') A

mod (x,b Ty,2z1) Adiv(x,b Ty,z) A mod (x',b 1y,z1) Adiv(x',b T y,25) A
mod (z2,b T 3,23) Adiv(zz,b 1 3,24) A mod (z,,b T 3,23) Adiv(zy, b T 3,24) A

tabley (z3, z5)
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Number-theoretic encoding of computation

A first-order Number-Theoretic expression for Computation

The Actual Formula

yieldsy (x, x") = padsy (x,x") V

3y < x)(Fz1 < x)(Fz2 < x)(Tzy < x)(Tzz < x)(T2zg < X)(3z4 < X)

(confi (x) A confiy (x') A

mod (x,b Ty,2z1) Adiv(x,b Ty,z) A mod (x',b 1y,z1) Adiv(x',b T y,25) A
mod (z2,b T 3,23) Adiv(zz,b 1 3,24) A mod (z,,b T 3,23) Adiv(zy, b T 3,24) A

tabley (z3, z5)

Auxiliary expressions

Similar expressions can be written for padsy (x, x”) (x” is obtained from x by adding a L) and
confiy (x) (the b-ary representation of x correctly encodes a configuration of M).
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A first-order Number-Theoretic expression for Computation (contd.)
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A first-order Number-Theoretic expression for Computation (contd.)
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Number-theoretic encoding of computation

A first-order Number-Theoretic expression for Computation (contd.)

Observation

Whole computations of M can be encoded!
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Number-theoretic encoding of computation

A first-order Number-Theoretic expression for Computation (contd.)

Observation

Whole computations of M can be encoded!

For each Turing machine M, we can construct a bounded expression compy (x) in number theory

such that: Vn € N, Nx—, = compy (x) < the b-ary representation of n is the juxtaposition of
consecutive configurations of a halting computation of M, starting from the empty string.
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Undecidability Recursive Inseparability

Sentence Classification

(i) ¢isvalid,ie., = ¢ (Lv).
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Subramani Undecidability in Logic



Sentence Classification

Undecidability Recursive Inseparability

Sentence Classification

(i) ¢isvalid,ie., = ¢ (Lv).
(i) ¢ is provable from NT, i.e., NT - ¢ (Lp).
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Sentence Classification

Undecidability Recursive Inseparability

Sentence Classification

(i) ¢isvalid,ie., = ¢ (Lv).
(i) ¢ is provable from NT, i.e., NT - ¢ (Lp).
(i) Nis a model for ¢, i.e., N |= ¢ (Lm).
(iv) Nis a model for —¢, i.e., N |= =¢ (Lom).
(v) —¢ is provable from NT, i.e., NT = =¢ (Lnp).

(vi) —¢isvalid, ie., = ¢ (Lus).

Subramani Undecidability in Logic



Sentence Classification

Undecidability Recursive Inseparability

Outline

© Undecidability

@ Recursive Inseparability

Subramani Undecidability in Logic



Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability

Definition

Two languages L; and L, are said to be recursively inseparable, if there does not exist a recursive

language R suchthatLy "R =@ and L, C R.
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Undecidability Recursive Inseparability

Recursive Inseparability

Definition

Two languages L; and L, are said to be recursively inseparable, if there does not exist a recursive

language R suchthatLy "R =@ and L, C R.

Letl; = {M : M(M) = “yes”’}and L, = {M : M(M) = “no’’}. Ly and L, are recursively
inseparable.

Subramani Undecidability in Logic



Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability

Definition
Two languages L; and L, are said to be recursively inseparable, if there does not exist a recursive
language R suchthatLy "R =@ and L, C R.

Letl; = {M : M(M) = “yes”’}and L, = {M : M(M) = “no’’}. Ly and L, are recursively
inseparable.

Corollary (Inseparability of halting on empty string)
LetLy = {M : M(e) = “yes”’}and L, = {M : M(e) = “no’”’}. Ly and L, are recursively
inseparable.
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Recursive Inseparability of L, and

L, and Lys are recursively inseparable.

Main idea:
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Undecidability Recursive Inseparability

Recursive Inseparability of L, and Lys

L, and Lys are recursively inseparable.

Proof.

Main idea: Given an Turing Machine M, we construct an expression ¢y such that if M(e) = “yes”’,
then NT - ¢y and if M(e) = “no”’, them ¢y is unsatisfiable.
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Recursive Inseparability of L, and Lys

L, and Lys are recursively inseparable.

Proof.

Main idea: Given an Turing Machine M, we construct an expression ¢y such that if M(e) = “yes”’,

then NT - ¢y and if M(e) = “no”’, them ¢y is unsatisfiable.
Assume that there exists an algorithm A to separate L, from Lys, i.e., A separates the true

properties of integers from the unsatisfiable sentences.
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Undecidability Recursive Inseparability

Recursive Inseparability of L, and Lys

L, and Lys are recursively inseparable.

Proof.

Main idea: Given an Turing Machine M, we construct an expression ¢y such that if M(e) = “yes”’,
then NT - ¢y and if M(e) = “no”’, them ¢y is unsatisfiable.

Assume that there exists an algorithm A to separate L, from Lys, i.e., A separates the true
properties of integers from the unsatisfiable sentences.

But now we can separate Ly and L,!
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Undecidability Recursive Inseparability

Recursive Inseparability of L, and Lys

L, and Lys are recursively inseparable.

Proof.

Main idea: Given an Turing Machine M, we construct an expression ¢y such that if M(e) = “yes”’,
then NT - ¢y and if M(e) = “no”’, them ¢y is unsatisfiable.

Assume that there exists an algorithm A to separate L, from Lys, i.e., A separates the true
properties of integers from the unsatisfiable sentences.

But now we can separate Ly and L,!

Given an arbitrary Turing machine M, construct ¢y and then provide it to A!
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Recursive Inseparability of L, and Lys

L, and Lys are recursively inseparable.
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Main idea: Given an Turing Machine M, we construct an expression ¢y such that if M(e) = “yes”’,
then NT - ¢y and if M(e) = “no”’, them ¢y is unsatisfiable.
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Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability of L, and Lys

L, and Lys are recursively inseparable.

Proof.

Main idea: Given an Turing Machine M, we construct an expression ¢y such that if M(e) = “yes”’,
then NT - ¢y and if M(e) = “no”’, them ¢y is unsatisfiable.

Assume that there exists an algorithm A to separate L, from Lys, i.e., A separates the true
properties of integers from the unsatisfiable sentences.

But now we can separate Ly and L,!

Given an arbitrary Turing machine M, construct ¢y and then provide it to A! What is ¢y ?

ém = NT A 1, where,

¥ = (3x)(compu () A ((Vy < x)=compw(y)) A mod (x,b T2,b- (][ +1))).
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Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability of L, and Lys

L, and Lys are recursively inseparable.

Proof.

Main idea: Given an Turing Machine M, we construct an expression ¢y such that if M(e) = “yes”’,
then NT - ¢y and if M(e) = “no”’, them ¢y is unsatisfiable.

Assume that there exists an algorithm A to separate L, from Lys, i.e., A separates the true
properties of integers from the unsatisfiable sentences.

But now we can separate Ly and L,!

Given an arbitrary Turing machine M, construct ¢y and then provide it to A! What is ¢y ?

ém = NT A 1, where,

¥ = (3x)(compu () A ((Vy < x)=compw(y)) A mod (x,b T2,b- (][ +1))).

1) states that there exists a smallest integer, which encodes an accepting computation of M. O
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Undecidability Recursive Inseparability

Recursive Inseparability (contd.)
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Undecidability Recursive Inseparability

Recursive Inseparability (contd.)

Proof (contd

(i) Assume M(e) = “yes’’.
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Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability (contd.)

Proof (contd »

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the “yes’’ state.
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Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability (contd.)

Proof (contd »

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
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Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability (contd.)

Proof (contd »

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
Therefore, N |= (3x)compy (x) and
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Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability (contd.)

oot con)

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
Therefore, N |= (3x)compy (x) and since n is unique,

N = (3x)(compw (x) A (VY < x)=compw (¥)))-
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Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability (contd.)

oot con)

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
Therefore, N |= (3x)compy (x) and since n is unique,

N = (3x)(compwu (x) A ((Vy < x)—comppm(y)))- Since the last two digits of the b-ary
expansion of n are |X| + 1 and 0, we have N |= .
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Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability (contd.)

oot con)

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
Therefore, N |= (3x)compy (x) and since n is unique,

N = (3x)(compwu (x) A ((Vy < x)—comppm(y)))- Since the last two digits of the b-ary
expansion of n are |X| + 1 and 0, we have N |= .
Observe that ¢) can be written as a bounded sentence in prenex form.
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Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability (contd.)

oot con)

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
Therefore, N |= (3x)compy (x) and since n is unique,

N = (3x)(compwu (x) A ((Vy < x)—comppm(y)))- Since the last two digits of the b-ary
expansion of n are |X| + 1 and 0, we have N |= .

Observe that ¢ can be written as a bounded sentence in prenex form. Thus, NT F ) and
hence NT F ¢p.
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Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability (contd.)

oot con)

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
Therefore, N |= (3x)compy (x) and since n is unique,

N = (3x)(compwu (x) A ((Vy < x)—comppm(y)))- Since the last two digits of the b-ary
expansion of n are |X| + 1 and 0, we have N |= .

Observe that ¢ can be written as a bounded sentence in prenex form. Thus, NT F ¢ and
hence NT I ¢y . In other words, M(e) = “yes’’ implies NT - ¢y.

Subramani Undecidability in Logic



Sentence Classification

Undecidability Recursive Inseparability

Recursive Inseparability (contd.)

oot comd)

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
Therefore, N |= (3x)compy (x) and since n is unique,

N = (3x)(compwu (x) A ((Vy < x)—comppm(y)))- Since the last two digits of the b-ary
expansion of n are |X| + 1 and 0, we have N |= .

Observe that ¢ can be written as a bounded sentence in prenex form. Thus, NT F ¢ and
hence NT I ¢y . In other words, M(e) = “yes’’ implies NT - ¢y.

(i) Assume that M(e) = “no’’.
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Recursive Inseparability (contd.)

Proof (contd. |

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
Therefore, N |= (3x)compy (x) and since n is unique,

N = (3x)(compwu (x) A ((Vy < x)—comppm(y)))- Since the last two digits of the b-ary
expansion of n are |X| + 1 and 0, we have N |= .

Observe that ¢ can be written as a bounded sentence in prenex form. Thus, NT F ¢ and
hence NT I ¢y . In other words, M(e) = “yes’’ implies NT - ¢y.

(ii) Assume that M(e) = “no’’. Using the above argument, we can show that N = ¢y, where

éw = (3x")(compw (x') A ((Vy < x)—~compu(y)) A mod (x',b T 2,b - (|Z| +2))).
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Recursive Inseparability (contd.)

Proof (contd. |

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
Therefore, N |= (3x)compy (x) and since n is unique,

N = (3x)(compwu (x) A ((Vy < x)—comppm(y)))- Since the last two digits of the b-ary
expansion of n are |X| + 1 and 0, we have N |= .

Observe that ¢ can be written as a bounded sentence in prenex form. Thus, NT F ¢ and
hence NT I ¢y . In other words, M(e) = “yes’’ implies NT - ¢y.

(ii) Assume that M(e) = “no’’. Using the above argument, we can show that N = ¢y, where
b = (3x)(compy (x') A (WY < x)~compu(y)) A mod (x',b T 2,b- (|| + 2))).

Since ¢}, can be written as a bounded sentence, NT  ¢y,.
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Recursive Inseparability (contd.)

oot comd)

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
Therefore, N |= (3x)compy (x) and since n is unique,

N = (3x)(compwu (x) A ((Vy < x)—comppm(y)))- Since the last two digits of the b-ary
expansion of n are |X| + 1 and 0, we have N |= .

Observe that ¢ can be written as a bounded sentence in prenex form. Thus, NT F ¢ and
hence NT I ¢y . In other words, M(e) = “yes’’ implies NT - ¢y.

(ii) Assume that M(e) = “no’’. Using the above argument, we can show that N = ¢y, where
b = (3x)(compy (x') A (WY < x)~compu(y)) A mod (x',b T 2,b- (|| + 2))).

Since ¢}, can be written as a bounded sentence, NT F ¢;,. We need to show that ¢y and ¢;,
are inconsistent.

—
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Recursive Inseparability (contd.)

(i) Assume M(e) = "yes’’. There exists a unique computation of M that starts with e and halts in
the "yes’’ state. Thus, there exists a unique integer n, such that N = compy [x « n].
Therefore, N |= (3x)compy (x) and since n is unique,

N = (3x)(compwu (x) A ((Vy < x)—comppm(y)))- Since the last two digits of the b-ary
expansion of n are |X| + 1 and 0, we have N |= .

Observe that ¢ can be written as a bounded sentence in prenex form. Thus, NT F ¢ and
hence NT I ¢y . In other words, M(e) = “yes’’ implies NT - ¢y.

(ii) Assume that M(e) = “no’’. Using the above argument, we can show that N = ¢y, where
b = (3x)(compy (x') A (WY < x)~compu(y)) A mod (x',b T 2,b- (|| + 2))).

Since ¢;, can be written as a bounded sentence, NT F ¢;,. We need to show that ¢y and ¢;,
are inconsistent. But this is obvious! [J

-
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Undecidability of some basic problems

The following questions, regarding a given sentence ¢, are undecidable:
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Undecidability of some basic problems

The following questions, regarding a given sentence ¢, are undecidable:

(i) Is = ¢?
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Undecidability Recursive Inseparability

Undecidability of some basic problems

The following questions, regarding a given sentence ¢, are undecidable:
@) Is = ¢?
(i) Is+ ¢?
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Undecidability of some basic problems

The following questions, regarding a given sentence ¢, are undecidable:
@) Is = ¢?

(i) Is+ ¢?

(i) Does N |= ¢?
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Sentence Cl fication

Undecidability Recursive Inseparability

Undecidability of some basic problems

The following questions, regarding a given sentence ¢, are undecidable:
@) Is = ¢?

(i) Is+ ¢?

(i) Does N |= ¢?

(iv) Does NT F ¢?

Subramani Undecidability in Logic



Gg@del's Incompleteness Theorem
Incompleteness

Outline

Q Incompleteness
@ Ggdel's Incompleteness Theorem

Subramani Undecidability in Logic



Ggdel's Incompleteness Theorem
Incompleteness

Ggdel's Incompleteness Theorem

There does not exist a recursively enumerable set of axioms =, such that for all sentences ¢, = F ¢
ifand only if N |= ¢.

Proof.

Let Lpr denote the set of all proofs from =.
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Ggdel's Incompleteness Theorem

There does not exist a recursively enumerable set of axioms =, such that for all sentences ¢, = F ¢
ifand only if N |= ¢.

Let Lpr denote the set of all proofs from =.
Since = is recursively enumerable, so is Ly : For each expression in the sequence, check whether it
is

(i) alogical axiom,
(ii) it follows by modus ponens,
(iii) itisin =.

J
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Ggdel's Incompleteness Theorem
Incompleteness

Ggdel's Incompleteness Theorem

There does not exist a recursively enumerable set of axioms =, such that for all sentences ¢, = F ¢
ifand only if N |= ¢.

Let Lpr denote the set of all proofs from =.
Since = is recursively enumerable, so is Ly : For each expression in the sequence, check whether it
is

(i) alogical axiom,
(ii) it follows by modus ponens,
(iii) itisin =.

Since Ly is recursively enumerable, there exists a Turing machine that enumerates it.

J
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Ggdel's Incompleteness Theorem
Incompleteness

Ggdel's Incompleteness Theorem

There does not exist a recursively enumerable set of axioms =, such that for all sentences ¢, = F ¢
ifand only if N |= ¢.

Let Lpr denote the set of all proofs from =.
Since = is recursively enumerable, so is Ly : For each expression in the sequence, check whether it
is

(i) alogical axiom,
(ii) it follows by modus ponens,
(iii) itisin=.
Since Ly is recursively enumerable, there exists a Turing machine that enumerates it. It follows that

there exists a Turing Machine that enumerates {¢ : = - ¢}.

J
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Ggdel's Incompleteness Theorem
Incompleteness

Ggdel's Incompleteness Theorem

There does not exist a recursively enumerable set of axioms =, such that for all sentences ¢, = F ¢
ifand only if N |= ¢.

Let Lpr denote the set of all proofs from =.
Since = is recursively enumerable, so is Ly : For each expression in the sequence, check whether it
is

(i) alogical axiom,

(ii) it follows by modus ponens,

(iii) itisin =.
Since Ly is recursively enumerable, there exists a Turing machine that enumerates it. It follows that
there exists a Turing Machine that enumerates {¢ : = - ¢}. By the hypothesis, there exists a
Turing machine that enumerates Le = {¢ : N |= ¢}.

J
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Ggdel's Incompleteness Theorem
Incompleteness

Ggdel's Incompleteness Theorem

There does not exist a recursively enumerable set of axioms =, such that for all sentences ¢, = F ¢
ifand only if N |= ¢.

Let Lpr denote the set of all proofs from =.
Since = is recursively enumerable, so is Ly : For each expression in the sequence, check whether it
is

(i) alogical axiom,

(ii) it follows by modus ponens,

(iii) itisin =.
Since Ly is recursively enumerable, there exists a Turing machine that enumerates it. It follows that
there exists a Turing Machine that enumerates {¢ : = - ¢}. By the hypothesis, there exists a
Turing machine that enumerates Le = {¢ : N |= ¢}. Hence, L. is recursively enumerable.

J
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Ggdel's Incompleteness Theorem
Incompleteness

Ggdel's Incompleteness Theorem

There does not exist a recursively enumerable set of axioms =, such that for all sentences ¢, = F ¢
ifand only if N |= ¢.

Let Lpr denote the set of all proofs from =.
Since = is recursively enumerable, so is Ly : For each expression in the sequence, check whether it
is

(i) alogical axiom,

(ii) it follows by modus ponens,

(iii) itisin =.
Since Ly is recursively enumerable, there exists a Turing machine that enumerates it. It follows that
there exists a Turing Machine that enumerates {¢ : = - ¢}. By the hypothesis, there exists a
Turing machine that enumerates Le = {¢ : N |= ¢}. Hence, L. is recursively enumerable. Arguing
in identical fashion, the language Lne = {¢ : N |= —¢} is recursively enumerable.

J
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Incompleteness

Ggdel's Incompleteness Theorem

There does not exist a recursively enumerable set of axioms =, such that for all sentences ¢, = F ¢
ifand only if N |= ¢.

Let Lpr denote the set of all proofs from =.
Since = is recursively enumerable, so is Ly : For each expression in the sequence, check whether it
is

(i) alogical axiom,

(ii) it follows by modus ponens,

(iii) itisin =.
Since Ly is recursively enumerable, there exists a Turing machine that enumerates it. It follows that
there exists a Turing Machine that enumerates {¢ : = - ¢}. By the hypothesis, there exists a
Turing machine that enumerates Le = {¢ : N |= ¢}. Hence, L. is recursively enumerable. Arguing
in identical fashion, the language Lne = {¢ : N |= —¢} is recursively enumerable. This means that
Le and Lye are recursive! O
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Consequences of Ggdel's Incompleteness Theorem
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Consequences of Ggdel's Incompleteness Theorem

on-existence

There cannot exist a recursively enumerable (much less recursive) set of axioms that captures all

and only the true properties of integers.
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Consequences of Ggdel's Incompleteness Theorem

Non-existence
There cannot exist a recursively enumerable (much less recursive) set of axioms that captures all

and only the true properties of integers. Any sound system must be incomplete, i.e., there must

exist a true property of integers that cannot be proved by it.
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Gg@del's Incompleteness Theorem
Incompleteness

Consequences of Ggdel's Incompleteness Theorem

Non-existence

There cannot exist a recursively enumerable (much less recursive) set of axioms that captures all

and only the true properties of integers. Any sound system must be incomplete, i.e., there must

exist a true property of integers that cannot be proved by it.

Categorization

The languages L = {¢ : N = ¢} and L® = {¢ : N |= —¢} are not recursively enumerable.
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Gg@del's Incompleteness Theorem
Incompleteness

Consequences of Ggdel's Incompleteness Theorem

Non-existence

There cannot exist a recursively enumerable (much less recursive) set of axioms that captures all

and only the true properties of integers. Any sound system must be incomplete, i.e., there must

exist a true property of integers that cannot be proved by it.

Categorization

The languages L = {¢ : N = ¢} and L® = {¢ : N |= —¢} are not recursively enumerable. Thus L

and L are neither RE nor coRE!
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