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Number-theoretic encoding of computation

Turing Machine encodings
(i) Every Turing Machine M = (K ,Σ, δ, s〉) can be represented as a number in b-ary notation,

where b = |K | + |Σ|.

(ii) Therefore, configurations can be encoded as sequences of integers in b-ary representation.

(iii) The “yields in one step” function over configurations of a Turing Machine, defines a relation
YM ⊆ N

2

Goal
To formulate a first-order expression yieldsM (x, y) in number theory, over the free variables x and
y, such that

Nx=m,y=n |= yieldsM (x, y) iff YM(m, n).
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Formulating the encoding technique

p ∈ K , σ ∈ Σ δ(p, σ)
s a (s, a,→)
s b (s, b,→)
s ⊔ (q,⊔,←)
s ⊲ (q, ⊲,→)
q a (q,⊔,←)
q b (”no”, b,−)
q ⊲ (”yes”, ⊲,→)

Table: A Turing Machine that accepts a∗

Example
Consider the C1 = (q, ⊲aa,⊔⊔) and the

configuration that follows

C2 = (q, ⊲a,⊔ ⊔ ⊔). The corresponding

encodings m = 0227118 and 0271118 are

related under YM .

Observation
(i) m and n are identical, except for the

replacement of 2718 in m, by 7118 in n.

(ii) But this corresponds to Rule 5 in the
table! Thus, every move is a local
replacement of digits.
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Formulating the encoding technique (contd.)

Triplet changes
Capture each rule change as a triplet transformation!

0428 → 0248
0438 → 0348
0418 → 0148
2428 → 2248
2438 → 2348
2418 → 2148
2428 → 2248
2428 → 2248

..

.
..
.

3718 → 3618

Table: Encoding the triplet changes

tableM (x, y) = ((x = 0428 ∧ y =
0248) ∨ . . . (x = 3718 ∧ y = 3618))
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Formulating the encoding technique (contd.)

Padding
The computation of M on input aa:

04228 , 02428 , 02248 , 022418 , . . ..
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A first-order Number-Theoretic expression for Computation

The Actual Formula

yieldsM (x, x′

) = padsM (x, x′

) ∨

(∃y < x)(∃z1 < x)(∃z2 < x)(∃z′

2 < x)(∃z3 < x)(∃z′

3 < x)(∃z4 < x)

(confM (x) ∧ confM (x′) ∧

mod (x, b ↑ y , z1) ∧ div(x, b ↑ y , z2) ∧ mod (x′
, b ↑ y , z1) ∧ div(x′

, b ↑ y , z′

2) ∧

mod (z2, b ↑ 3, z3) ∧ div(z2, b ↑ 3, z4) ∧ mod (z′

2, b ↑ 3, z′

3) ∧ div(z′

2, b ↑ 3, z4) ∧

tableM (z3, z
′

3)

Auxiliary expressions

Similar expressions can be written for padsM (x, x′) (x′ is obtained from x by adding a ⊔) and

confM (x) (the b-ary representation of x correctly encodes a configuration of M).
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A first-order Number-Theoretic expression for Computation (contd.)

Observation
Whole computations of M can be encoded!

Lemma
For each Turing machine M, we can construct a bounded expression compM (x) in number theory

such that: ∀n ∈ N , Nx=n |= compM (x)↔ the b-ary representation of n is the juxtaposition of

consecutive configurations of a halting computation of M, starting from the empty string.

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness

A first-order Number-Theoretic expression for Computation (contd.)

Observation
Whole computations of M can be encoded!

Lemma
For each Turing machine M, we can construct a bounded expression compM (x) in number theory

such that: ∀n ∈ N , Nx=n |= compM (x)↔ the b-ary representation of n is the juxtaposition of

consecutive configurations of a halting computation of M, starting from the empty string.

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness

A first-order Number-Theoretic expression for Computation (contd.)

Observation
Whole computations of M can be encoded!

Lemma
For each Turing machine M, we can construct a bounded expression compM (x) in number theory

such that: ∀n ∈ N , Nx=n |= compM (x)↔ the b-ary representation of n is the juxtaposition of

consecutive configurations of a halting computation of M, starting from the empty string.

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness

A first-order Number-Theoretic expression for Computation (contd.)

Observation
Whole computations of M can be encoded!

Lemma
For each Turing machine M, we can construct a bounded expression compM (x) in number theory

such that: ∀n ∈ N , Nx=n |= compM (x)↔ the b-ary representation of n is the juxtaposition of

consecutive configurations of a halting computation of M, starting from the empty string.

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness

Sentence Classification
Recursive Inseparability

Outline

1 Number-theoretic encoding of computation

2 Undecidability
Sentence Classification
Recursive Inseparability

3 Incompleteness
Gø̈del’s Incompleteness Theorem

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness

Sentence Classification
Recursive Inseparability

Sentence Classification

(i) φ is valid, i.e., |= φ (Lv ).

(ii) φ is provable from NT, i.e., NT ⊢ φ (Lp ).

(iii) N is a model for φ, i.e., N |= φ (Lm).

(iv) N is a model for ¬φ, i.e., N |= ¬φ (Lnm).

(v) ¬φ is provable from NT, i.e., NT ⊢ ¬φ (Lnp ).

(vi) ¬φ is valid, i.e., |= ¬φ (Lus ).
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Recursive Inseparability

Definition
Two languages L1 and L2 are said to be recursively inseparable, if there does not exist a recursive

language R such that L1 ∩ R = ∅ and L2 ⊂ R.

Theorem
Let L1 = {M : M(M) = “yes′′} and L2 = {M : M(M) = “no′′}. L1 and L2 are recursively

inseparable.

Corollary (Inseparability of halting on empty string)

Let Ly = {M : M(ǫ) = “yes′′} and Ln = {M : M(ǫ) = “no′′}. Ly and Ln are recursively

inseparable.

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness

Sentence Classification
Recursive Inseparability

Recursive Inseparability

Definition
Two languages L1 and L2 are said to be recursively inseparable, if there does not exist a recursive

language R such that L1 ∩ R = ∅ and L2 ⊂ R.

Theorem
Let L1 = {M : M(M) = “yes′′} and L2 = {M : M(M) = “no′′}. L1 and L2 are recursively

inseparable.

Corollary (Inseparability of halting on empty string)

Let Ly = {M : M(ǫ) = “yes′′} and Ln = {M : M(ǫ) = “no′′}. Ly and Ln are recursively

inseparable.

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness

Sentence Classification
Recursive Inseparability

Recursive Inseparability

Definition
Two languages L1 and L2 are said to be recursively inseparable, if there does not exist a recursive

language R such that L1 ∩ R = ∅ and L2 ⊂ R.

Theorem
Let L1 = {M : M(M) = “yes′′} and L2 = {M : M(M) = “no′′}. L1 and L2 are recursively

inseparable.

Corollary (Inseparability of halting on empty string)

Let Ly = {M : M(ǫ) = “yes′′} and Ln = {M : M(ǫ) = “no′′}. Ly and Ln are recursively

inseparable.

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness

Sentence Classification
Recursive Inseparability

Recursive Inseparability of Lp and Lus

Theorem
Lp and Lus are recursively inseparable.

Proof.
Main idea: Given an Turing Machine M, we construct an expression φM such that if M(ǫ) = “yes′′,
then NT ⊢ φM and if M(ǫ) = “no′′, them φM is unsatisfiable.
Assume that there exists an algorithm A to separate Lp from Lus , i.e., A separates the true
properties of integers from the unsatisfiable sentences.
But now we can separate Ly and Ln !
Given an arbitrary Turing machine M, construct φM and then provide it to A! What is φM ?
φM = NT ∧ ψ, where,

ψ = (∃x)(compM (x) ∧ ((∀y < x)¬compM (y)) ∧ mod (x, b ↑ 2, b · (|Σ|+ 1))).

ψ states that there exists a smallest integer, which encodes an accepting computation of M.
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Recursive Inseparability (contd.)

Proof (contd.)

(i) Assume M(ǫ) = “yes′′. There exists a unique computation of M that starts with ǫ and halts in
the “yes′′ state. Thus, there exists a unique integer n, such that N |= compM [x ← n].
Therefore, N |= (∃x)compM (x) and since n is unique,
N |= (∃x)(compM (x) ∧ ((∀y < x)¬compM (y))). Since the last two digits of the b-ary
expansion of n are |Σ|+ 1 and 0, we have N |= ψ.
Observe that ψ can be written as a bounded sentence in prenex form. Thus, NT ⊢ ψ and
hence NT ⊢ φM . In other words, M(ǫ) = “yes′′ implies NT ⊢ φM .

(ii) Assume that M(ǫ) = “no′′. Using the above argument, we can show that N |= φ′

M , where

φ
′

M = (∃x′)(compM (x′) ∧ ((∀y < x)¬compM (y)) ∧ mod (x′
, b ↑ 2, b · (|Σ|+ 2))).

Since φ′

M can be written as a bounded sentence, NT ⊢ φ′

M . We need to show that φM and φ′

M
are inconsistent. But this is obvious! �
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Undecidability of some basic problems

Theorem
The following questions, regarding a given sentence φ, are undecidable:

(i) Is |= φ?

(ii) Is ⊢ φ?

(iii) Does N |= φ?

(iv) Does NT ⊢ φ?
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Gø̈del’s Incompleteness Theorem

Theorem
There does not exist a recursively enumerable set of axioms Ξ, such that for all sentences φ, Ξ ⊢ φ

if and only if N |= φ.

Proof.
Let Lpr denote the set of all proofs from Ξ.
Since Ξ is recursively enumerable, so is Lpr : For each expression in the sequence, check whether it
is

(i) a logical axiom,

(ii) it follows by modus ponens,

(iii) it is in Ξ.

Since Lpr is recursively enumerable, there exists a Turing machine that enumerates it. It follows that

there exists a Turing Machine that enumerates {φ : Ξ ⊢ φ}. By the hypothesis, there exists a

Turing machine that enumerates Le = {φ : N |= φ}. Hence, Le is recursively enumerable. Arguing

in identical fashion, the language Lne = {φ : N |= ¬φ} is recursively enumerable. This means that

Le and Lne are recursive!
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Consequences of Gø̈del’s Incompleteness Theorem

Non-existence
There cannot exist a recursively enumerable (much less recursive) set of axioms that captures all

and only the true properties of integers. Any sound system must be incomplete, i.e., there must

exist a true property of integers that cannot be proved by it.

Categorization

The languages L = {φ : N |= φ} and Lc = {φ : N |= ¬φ} are not recursively enumerable. Thus L

and Lc are neither RE nor coRE !

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness
Gø̈del’s Incompleteness Theorem

Consequences of Gø̈del’s Incompleteness Theorem

Non-existence
There cannot exist a recursively enumerable (much less recursive) set of axioms that captures all

and only the true properties of integers. Any sound system must be incomplete, i.e., there must

exist a true property of integers that cannot be proved by it.

Categorization

The languages L = {φ : N |= φ} and Lc = {φ : N |= ¬φ} are not recursively enumerable. Thus L

and Lc are neither RE nor coRE !

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness
Gø̈del’s Incompleteness Theorem

Consequences of Gø̈del’s Incompleteness Theorem

Non-existence
There cannot exist a recursively enumerable (much less recursive) set of axioms that captures all

and only the true properties of integers. Any sound system must be incomplete, i.e., there must

exist a true property of integers that cannot be proved by it.

Categorization

The languages L = {φ : N |= φ} and Lc = {φ : N |= ¬φ} are not recursively enumerable. Thus L

and Lc are neither RE nor coRE !

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness
Gø̈del’s Incompleteness Theorem

Consequences of Gø̈del’s Incompleteness Theorem

Non-existence
There cannot exist a recursively enumerable (much less recursive) set of axioms that captures all

and only the true properties of integers. Any sound system must be incomplete, i.e., there must

exist a true property of integers that cannot be proved by it.

Categorization

The languages L = {φ : N |= φ} and Lc = {φ : N |= ¬φ} are not recursively enumerable. Thus L

and Lc are neither RE nor coRE !

Subramani Undecidability in Logic



Number-theoretic encoding of computation
Undecidability

Incompleteness
Gø̈del’s Incompleteness Theorem

Consequences of Gø̈del’s Incompleteness Theorem

Non-existence
There cannot exist a recursively enumerable (much less recursive) set of axioms that captures all

and only the true properties of integers. Any sound system must be incomplete, i.e., there must

exist a true property of integers that cannot be proved by it.

Categorization

The languages L = {φ : N |= φ} and Lc = {φ : N |= ¬φ} are not recursively enumerable. Thus L

and Lc are neither RE nor coRE !

Subramani Undecidability in Logic


	Outline
	Main Talk
	Number-theoretic encoding of computation
	Undecidability
	Sentence Classification
	Recursive Inseparability

	Incompleteness
	Gødel's Incompleteness Theorem



