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Axioms and Proofs

A systematic procedure to reveal truth, where truth coincides with the
notion of validity.

4

Logical Axioms (Fundamental valid expressions)

(i) Any expression whose Boolean form is a tautology.
(i) Any expression deemed valid by the rules of equality.
(i) Any expression deemed valid by the rules of quantification.

The above set of logical axioms is denoted by A.

Subramani First-Order Logic



Notion of truth
First-order theorems
Theoremhood and Validity

Axioms and Proofs

Outline

0 Axioms and Proofs

@ First-order theorems

Subramani First-Order Logic



Notion of truth
First-order theorems
Theoremhood and Validity

Axioms and Proofs

Definition

LetS = (1, ¢2, ..., ¢n) denote a set of first-order expressions, such that for each ¢j, 1 <i <n
in the sequence, either ¢; € A or there are two expressions of the form ¢, ¢ — ¢;, among the
expressions ¢1, ¢z, ..., ¢i—1. Then, S is a proof of expression ¢n. ¢n, in turn, is called a

first-order theorem and this is denoted by - ¢n.

Proof of Symmetry (x =y) — (y = x)
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Definition

LetS = (1, ¢2, ..., ¢n) denote a set of first-order expressions, such that for each ¢j, 1 <i <n

in the sequence, either ¢; € A or there are two expressions of the form 1, ¢» — ¢;, among the
expressions ¢1, ¢z, ..., ¢i—1. Then, S is a proof of expression ¢n. ¢n, in turn, is called a

first-order theorem and this is denoted by - ¢n.

Proof of Symmetry (x =y) — (y = x)
() ¢1 =[x =y)A(x=x)] — [(x =x)— (y = x)], properties of equality
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(i) ¢z =[x =X)] = [((x=y)A(x=x)) = (x=%) = (Y =X))) = (X =Y) = (¥ =x)],
boolean tautology
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in the sequence, either ¢; € A or there are two expressions of the form ¢, ¢ — ¢;, among the
expressions ¢1, ¢z, ..., ¢i—1. Then, S is a proof of expression ¢n. ¢n, in turn, is called a
first-order theorem and this is denoted by - ¢n.

Proof of Symmetry (x =y) — (y = x)

(i) ¢1 =[x =Yy)A(Xx=x)]— [(x =x)— (y = x)], properties of equality
(i) @2 = (x = x), properties of equality
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¢3, using Modus Ponens.
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LetS = (1, ¢2, ..., ¢n) denote a set of first-order expressions, such that for each ¢j, 1 <i <n

in the sequence, either ¢; € A or there are two expressions of the form 1, ¢» — ¢;, among the
expressions ¢1, ¢z, ..., ¢i—1. Then, S is a proof of expression ¢n. ¢n, in turn, is called a
first-order theorem and this is denoted by - ¢n.
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(i) @2 = (x = x), properties of equality
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boolean tautology

V) da=[(x=y)A(Xx=x)) = ((x =x) = (y =x))] = [(x =Yy) = (y =Xx)], from ¢ and
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(V) ¢5 =(x =y) — (y = x), from ¢; and ¢4, using Modus Ponens.
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Two fundamental questions

Theoremhood
Given a formula ¢, is it a theorem?

Theoremhood is recursively enumerable.

Given a formula ¢, is it valid?

Foe ko
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P The Soundness Theorem

Axiomatic Method

IfMEg¢oandM = ¢ < = ¢o — ¢, then M |= ¢.
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Axiomatic Method
fME@dandM E ¢ — E¢og— ¢, thenM | ¢.

Example

A group is a set S and a binary operator o, such that
() (vx)(vy)(Vz)((x 0 y) 02) = (x o (y 0 2)).

(i) (Yx)(x o1) =x.

(i) (¥x)(Jy)(x oy = 1).

The above axioms are called the non-logical axioms of the theory.

| \

Definition

An expression ¢ is a valid consequence of a set of expressions A, written A |= ¢, if every model

that satisfies A also satisfies ¢.
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Defining model-specific theorems

Let A denote a set of expressions. Let S = (¢1, ¢2, - . - , ¢n) denote finite sequence of first-order
expressions, such that for each ¢;, i < i < n, one of the following holds:
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Let A denote a set of expressions. Let S = (¢1, ¢2, - . - , ¢n) denote finite sequence of first-order
expressions, such that for each ¢;, i < i < n, one of the following holds:

(@ ¢ €N,

(b) ¢ €A,
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Defining model-specific theorems

Model-specific theorems

Definition

Let A denote a set of expressions. Let S = (¢1, ¢2, - . - , ¢n) denote finite sequence of first-order
expressions, such that for each ¢;, i < i < n, one of the following holds:

(@ ¢i €N,

(b) ¢i € A,

(c) there are two expressions of the form v, 1) — ¢;, among the expressions ¢1, ¢2, . .., pi_1.

We say that S is a proof of ¢, from A and that ¢, is a A-first-order theorem denoted by A + ¢n.
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Derivation of model-specific theorems

The Deduction Technique: Suppose that A U ¢ - v; then
At (¢ — 9).

The Contradiction Technique: If A U {—¢} is inconsistent, then A I ¢.

Justified Generalization: Suppose that A F ¢ and x is not free in any
expression of A. Then A = (Vx)¢.
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Example of applying the derivation theorems

Show that (Vx)¢ — (3x)¢ is a theorem, i.e., show that - (Vx)¢p — (Ix)e.

Proof.
(i) ¢1 = (Vx)¢, hypothesis.
(i) @2 = (Vx)¢ — ¢, logical axiom arising from properties of quantifiers.
(iii) ¢3 = ¢, Modus Ponens on ¢, and ¢,.
(iv) ¢a = (VX)—¢p — —¢, logical axiom arising from properties of quantifiers.
(V) ¢5 = ((VX)=¢p — =¢) — (¢ — (Ix)¢), logical axiom arising from Boolean tautology.
(Vi) ¢6 = ¢ — (3x)¢p, Modus Ponens on ¢4 and ¢s.
(vii) ¢7 = (3x)¢, Modus Ponens on ¢3, and ¢g.
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Soundness of the proof system

Soundness: If A ¢, then A = 6.
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Definition of model ific theorems
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Model-specific theorems The Soundness Theorem

Soundness of the proof system

Soundness: If A ¢, then A = 6.

LetS = (¢1, ¢2,- -, én), $n = ¢, denote a proof of ¢ from A. We will show that A = ¢;, for each

i=1,2,...,n. If ¢ is alogical or non-logical axiom, then clearly A |= ¢;. Assume that ¢; is
obtained using Modus Ponens from ¢; and ¢; — ¢, ] < i. By the inductive hypothesis, A = ¢;
and A |= ¢; — ¢;. Thus, any model that satisfied A also satisfies ¢; and ¢; — ¢;. It follows that
A ¢ O
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