First-Order Logic

An Introduction to First-Order Logic

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

Axioms, Proofs and Theoremhood

Subramani

Outline

Outline

Axioms and Proofs

- Notion of truth
- First-order theorems
- Theoremhood and Validity

2 Model-specific theorems

- Definition of model-specific theorems
- Three fundamental techniques
- The Soundness Theorem

Outline

Outline

Axioms and Proofs

- Notion of truth
- First-order theorems
- Theoremhood and Validity

2 Model-specific theorems

- Definition of model-specific theorems
- Three fundamental techniques
- The Soundness Theorem

Notion of truth First-order theorems Theoremhood and Validity

Outline

Axioms and Proofs • Notion of truth

- First-order theorems
- Theoremhood and Validity

2 Model-specific theorems

- Definition of model-specific theorems
- Three fundamental techniques
- The Soundness Theorem

< ∃ >

Notion of truth First-order theorems Theoremhood and Validity

Axioms and Proofs

Goal

A systematic procedure to reveal truth, where truth coincides with the notion of validity.

Logical Axioms (Fundamental valid expressions)

(i) Any expression whose Boolean form is a tautology.
(ii) Any expression deemed valid by the rules of equality.
(iii) Any expression deemed valid by the rules of quantificati
The above set of logical axioms is denoted by Λ.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Notion of truth First-order theorems Theoremhood and Validity

Axioms and Proofs

Goal

A systematic procedure to reveal truth, where truth coincides with the notion of validity.

Logical Axioms (Fundamental valid expressions)

(i) Any expression whose Boolean form is a tautology.

(ii) Any expression deemed valid by the rules of equality.

(iii) Any expression deemed valid by the rules of quantification.

The above set of logical axioms is denoted by Λ .

Notion of truth First-order theorems Theoremhood and Validity

Axioms and Proofs

Goal

A systematic procedure to reveal truth, where truth coincides with the notion of validity.

Logical Axioms (Fundamental valid expressions)

- (i) Any expression whose Boolean form is a tautology.
- (ii) Any expression deemed valid by the rules of equality.
- (iii) Any expression deemed valid by the rules of quantification.

The above set of logical axioms is denoted by Λ .

• • • • • • • • • • • • •

Notion of truth First-order theorems Theoremhood and Validity

Axioms and Proofs

Goal

A systematic procedure to reveal truth, where truth coincides with the notion of validity.

Logical Axioms (Fundamental valid expressions)

- (i) Any expression whose Boolean form is a tautology.
- (ii) Any expression deemed valid by the rules of equality.
- (iii) Any expression deemed valid by the rules of quantification.

The above set of logical axioms is denoted by Λ .

Notion of truth First-order theorems Theoremhood and Validity

Outline

- Notion of truth
- First-order theorems
- Theoremhood and Validity

2 Model-specific theorems

- Definition of model-specific theorems
- Three fundamental techniques
- The Soundness Theorem

< ∃ >

Let $S = (\phi_1, \phi_2, \dots, \phi_n)$ denote a set of first-order expressions, such that for each ϕ_i , $1 \le i \le n$ in the sequence, either $\phi_i \in \Lambda$ or there are two expressions of the form $\psi, \psi \to \phi_i$, among the expressions $\phi_1, \phi_2, \dots, \phi_{i-1}$. Then, *S* is a proof of expression ϕ_n . ϕ_n , in turn, is called a first-order theorem and this is denoted by $\vdash \phi_n$.

Proof of Symmetry $(x = y) \rightarrow (y = x)$

- (i) $\phi_1 = [(x = y) \land (x = x)] \rightarrow [(x = x) \rightarrow (y = x)]$, properties of equality
- (ii) $\phi_2 = (x = x)$, properties of equality
- (iii) $\phi_3 = [(x = x)] \rightarrow [(((x = y) \land (x = x))) \rightarrow ((x = x) \rightarrow (y = x))) \rightarrow (x = y) \rightarrow (y = x)],$ boolean tautology
- (iv) $\phi_4 = [((x = y) \land (x = x)) \rightarrow ((x = x) \rightarrow (y = x))] \rightarrow [(x = y) \rightarrow (y = x)]$, from ϕ_2 and ϕ_3 , using Modus Ponens.
- (v) $\phi_5 = (x = y) \rightarrow (y = x)$, from ϕ_1 and ϕ_4 , using Modus Ponens.

Let $S = (\phi_1, \phi_2, \dots, \phi_n)$ denote a set of first-order expressions, such that for each ϕ_i , $1 \le i \le n$ in the sequence, either $\phi_i \in \Lambda$ or there are two expressions of the form $\psi, \psi \to \phi_i$, among the expressions $\phi_1, \phi_2, \dots, \phi_{i-1}$. Then, *S* is a proof of expression ϕ_n . ϕ_n , in turn, is called a first-order theorem and this is denoted by $\vdash \phi_n$.

Proof of Symmetry $(x = y) \rightarrow (y = x)$

- (i) $\phi_1 = [(x = y) \land (x = x)] \rightarrow [(x = x) \rightarrow (y = x)]$, properties of equality
- (ii) $\phi_2 = (x = x)$, properties of equality
- (iii) $\phi_3 = [(x = x)] \rightarrow [(((x = y) \land (x = x)) \rightarrow ((x = x) \rightarrow (y = x))) \rightarrow (x = y) \rightarrow (y = x)],$ boolean tautology
- (iv) $\phi_4 = [((x = y) \land (x = x)) \rightarrow ((x = x) \rightarrow (y = x))] \rightarrow [(x = y) \rightarrow (y = x)]$, from ϕ_2 and ϕ_3 , using Modus Ponens.
- (v) $\phi_5 = (x = y) \rightarrow (y = x)$, from ϕ_1 and ϕ_4 , using Modus Ponens.

Let $S = (\phi_1, \phi_2, \dots, \phi_n)$ denote a set of first-order expressions, such that for each ϕ_i , $1 \le i \le n$ in the sequence, either $\phi_i \in \Lambda$ or there are two expressions of the form $\psi, \psi \to \phi_i$, among the expressions $\phi_1, \phi_2, \dots, \phi_{i-1}$. Then, *S* is a proof of expression ϕ_n . ϕ_n , in turn, is called a first-order theorem and this is denoted by $\vdash \phi_n$.

Proof of Symmetry $(x = y) \rightarrow (y = x)$

- (i) $\phi_1 = [(x = y) \land (x = x)] \rightarrow [(x = x) \rightarrow (y = x)]$, properties of equality
- (ii) $\phi_2 = (x = x)$, properties of equality
- (iii) $\phi_3 = [(x = x)] \rightarrow [(((x = y) \land (x = x)) \rightarrow ((x = x) \rightarrow (y = x))) \rightarrow (x = y) \rightarrow (y = x)],$ boolean tautology
- (iv) $\phi_4 = [((x = y) \land (x = x)) \rightarrow ((x = x) \rightarrow (y = x))] \rightarrow [(x = y) \rightarrow (y = x)]$, from ϕ_2 and ϕ_3 , using Modus Ponens.
- (v) $\phi_5 = (x = y) \rightarrow (y = x)$, from ϕ_1 and ϕ_4 , using Modus Ponens.

Let $S = (\phi_1, \phi_2, \dots, \phi_n)$ denote a set of first-order expressions, such that for each ϕ_i , $1 \le i \le n$ in the sequence, either $\phi_i \in \Lambda$ or there are two expressions of the form $\psi, \psi \to \phi_i$, among the expressions $\phi_1, \phi_2, \dots, \phi_{i-1}$. Then, *S* is a proof of expression ϕ_n . ϕ_n , in turn, is called a first-order theorem and this is denoted by $\vdash \phi_n$.

Proof of Symmetry $(x = y) \rightarrow (y = x)$

- (i) $\phi_1 = [(x = y) \land (x = x)] \rightarrow [(x = x) \rightarrow (y = x)]$, properties of equality
- (ii) $\phi_2 = (x = x)$, properties of equality
- (iii) $\phi_3 = [(x = x)] \rightarrow [(((x = y) \land (x = x)) \rightarrow ((x = x) \rightarrow (y = x))) \rightarrow (x = y) \rightarrow (y = x)],$ boolean tautology
- (iv) $\phi_4 = [((x = y) \land (x = x)) \rightarrow ((x = x) \rightarrow (y = x))] \rightarrow [(x = y) \rightarrow (y = x)]$, from ϕ_2 and ϕ_3 , using Modus Ponens.
- (v) $\phi_5 = (x = y) \rightarrow (y = x)$, from ϕ_1 and ϕ_4 , using Modus Ponens.

Let $S = (\phi_1, \phi_2, \dots, \phi_n)$ denote a set of first-order expressions, such that for each ϕ_i , $1 \le i \le n$ in the sequence, either $\phi_i \in \Lambda$ or there are two expressions of the form $\psi, \psi \to \phi_i$, among the expressions $\phi_1, \phi_2, \dots, \phi_{i-1}$. Then, *S* is a proof of expression ϕ_n . ϕ_n , in turn, is called a first-order theorem and this is denoted by $\vdash \phi_n$.

Proof of Symmetry $(x = y) \rightarrow (y = x)$

- (i) $\phi_1 = [(x = y) \land (x = x)] \rightarrow [(x = x) \rightarrow (y = x)]$, properties of equality
- (ii) $\phi_2 = (x = x)$, properties of equality
- (iii) $\phi_3 = [(x = x)] \rightarrow [(((x = y) \land (x = x)) \rightarrow ((x = x) \rightarrow (y = x))) \rightarrow (x = y) \rightarrow (y = x)],$ boolean tautology
- (iv) $\phi_4 = [((x = y) \land (x = x)) \rightarrow ((x = x) \rightarrow (y = x))] \rightarrow [(x = y) \rightarrow (y = x)]$, from ϕ_2 and ϕ_3 , using Modus Ponens.

(v) $\phi_5 = (x = y) \rightarrow (y = x)$, from ϕ_1 and ϕ_4 , using Modus Ponens.

Let $S = (\phi_1, \phi_2, \dots, \phi_n)$ denote a set of first-order expressions, such that for each ϕ_i , $1 \le i \le n$ in the sequence, either $\phi_i \in \Lambda$ or there are two expressions of the form $\psi, \psi \to \phi_i$, among the expressions $\phi_1, \phi_2, \dots, \phi_{i-1}$. Then, *S* is a proof of expression ϕ_n . ϕ_n , in turn, is called a first-order theorem and this is denoted by $\vdash \phi_n$.

Proof of Symmetry $(x = y) \rightarrow (y = x)$

- (i) $\phi_1 = [(x = y) \land (x = x)] \rightarrow [(x = x) \rightarrow (y = x)]$, properties of equality
- (ii) $\phi_2 = (x = x)$, properties of equality
- (iii) $\phi_3 = [(x = x)] \rightarrow [(((x = y) \land (x = x)) \rightarrow ((x = x) \rightarrow (y = x))) \rightarrow (x = y) \rightarrow (y = x)],$ boolean tautology
- (iv) $\phi_4 = [((x = y) \land (x = x)) \rightarrow ((x = x) \rightarrow (y = x))] \rightarrow [(x = y) \rightarrow (y = x)]$, from ϕ_2 and ϕ_3 , using Modus Ponens.
- (v) $\phi_5 = (x = y) \rightarrow (y = x)$, from ϕ_1 and ϕ_4 , using Modus Ponens.

Notion of truth First-order theorems Theoremhood and Validity

Outline

Axioms and Proofs

- Notion of truth
- First-order theorems
- Theoremhood and Validity

2 Model-specific theorems

- Definition of model-specific theorems
- Three fundamental techniques
- The Soundness Theorem

- ₹ ₹ >

Notion of truth First-order theorems Theoremhood and Validity

Two fundamental questions

Theoremhood

Given a formula ϕ , is it a theorem?

Theorem

Theoremhood is recursively enumerable.

Validity

Given a formula ϕ , is it valid?

Fact

 $\models \phi \Leftrightarrow \vdash \phi$

Notion of truth First-order theorems Theoremhood and Validity

Two fundamental questions

Theoremhood

Given a formula ϕ , is it a theorem?

Theorem

Theoremhood is recursively enumerable.

Validity

Given a formula ϕ , is it valid?

Fact

 $\models \phi \Leftrightarrow \vdash \phi$

<ロ> <同> <同> < 同> < 同> < 同> 、

Notion of truth First-order theorems Theoremhood and Validity

Two fundamental questions

Theoremhood

Given a formula ϕ , is it a theorem?

Theorem

Theoremhood is recursively enumerable.

Validity

Given a formula ϕ , is it valid?

Fact

 $= \phi \Leftrightarrow \vdash \phi$

Notion of truth First-order theorems Theoremhood and Validity

Two fundamental questions

Theoremhood

Given a formula ϕ , is it a theorem?

Theorem

Theoremhood is recursively enumerable.

Validity

Given a formula ϕ , is it valid?

Fact

 $\models \phi \Leftrightarrow \vdash \phi$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $M \models \phi_0$ and $M \models \phi \iff \models \phi_0 \rightarrow \phi$, then $M \models \phi$.

Example

A group is a set S and a binary operator o, such that

(i)
$$(\forall x)(\forall y)(\forall z)((x \circ y) \circ z) = (x \circ (y \circ z)).$$

(ii) $(\forall x)(x \circ 1) = x$.

(iii)
$$(\forall x)(\exists y)(x \circ y = 1).$$

The above axioms are called the non-logical axioms of the theory.

Definition

An expression ϕ is a valid consequence of a set of expressions Δ , written $\Delta \models \phi$, if every model that satisfies Δ also satisfies ϕ .

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

E

If $M \models \phi_0$ and $M \models \phi \iff \models \phi_0 \rightarrow \phi$, then $M \models \phi$.

Example

A group is a set S and a binary operator \circ , such that

- (i) $(\forall x)(\forall y)(\forall z)((x \circ y) \circ z) = (x \circ (y \circ z)).$
- (ii) $(\forall x)(x \circ 1) = x$.
- (iii) $(\forall x)(\exists y)(x \circ y = 1).$

The above axioms are called the non-logical axioms of the theory.

Definition

An expression ϕ is a valid consequence of a set of expressions Δ , written $\Delta \models \phi$, if every model that satisfies Δ also satisfies ϕ .

<ロ> <同> <同> < 回> < 回> < => < => <

If $M \models \phi_0$ and $M \models \phi \iff \models \phi_0 \rightarrow \phi$, then $M \models \phi$.

Example

A group is a set S and a binary operator \circ , such that

(i)
$$(\forall x)(\forall y)(\forall z)((x \circ y) \circ z) = (x \circ (y \circ z)).$$

- (ii) $(\forall x)(x \circ 1) = x$.
- (iii) $(\forall x)(\exists y)(x \circ y = 1).$

The above axioms are called the non-logical axioms of the theory.

Definition

An expression ϕ is a valid consequence of a set of expressions Δ , written $\Delta \models \phi$, if every model that satisfies Δ also satisfies ϕ .

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

If $M \models \phi_0$ and $M \models \phi \iff \models \phi_0 \rightarrow \phi$, then $M \models \phi$.

Example

A group is a set S and a binary operator \circ , such that

(i)
$$(\forall x)(\forall y)(\forall z)((x \circ y) \circ z) = (x \circ (y \circ z)).$$

- (ii) $(\forall x)(x \circ 1) = x$.
- (iii) $(\forall x)(\exists y)(x \circ y = 1).$

The above axioms are called the non-logical axioms of the theory.

Definition

An expression ϕ is a valid consequence of a set of expressions Δ , written $\Delta \models \phi$, if every model that satisfies Δ also satisfies ϕ .

If $M \models \phi_0$ and $M \models \phi \iff \models \phi_0 \rightarrow \phi$, then $M \models \phi$.

Example

A group is a set S and a binary operator \circ , such that

(i)
$$(\forall x)(\forall y)(\forall z)((x \circ y) \circ z) = (x \circ (y \circ z)).$$

(ii)
$$(\forall x)(x \circ 1) = x$$
.

(iii)
$$(\forall x)(\exists y)(x \circ y = 1).$$

The above axioms are called the non-logical axioms of the theory.

Definition

An expression ϕ is a valid consequence of a set of expressions Δ , written $\Delta \models \phi$, if every model that satisfies Δ also satisfies ϕ .

<ロ> <同> <同> <同> < 同> < 同>

If $M \models \phi_0$ and $M \models \phi \iff \models \phi_0 \rightarrow \phi$, then $M \models \phi$.

Example

A group is a set S and a binary operator o, such that

(i)
$$(\forall x)(\forall y)(\forall z)((x \circ y) \circ z) = (x \circ (y \circ z)).$$

(ii)
$$(\forall x)(x \circ 1) = x$$
.

(iii)
$$(\forall x)(\exists y)(x \circ y = 1).$$

The above axioms are called the non-logical axioms of the theory.

Definition

An expression ϕ is a valid consequence of a set of expressions Δ , written $\Delta \models \phi$, if every model that satisfies Δ also satisfies ϕ .

< ロ > < 同 > < 三 > < 三 > 、

If $M \models \phi_0$ and $M \models \phi \iff \models \phi_0 \rightarrow \phi$, then $M \models \phi$.

Example

A group is a set S and a binary operator o, such that

(i)
$$(\forall x)(\forall y)(\forall z)((x \circ y) \circ z) = (x \circ (y \circ z)).$$

(ii)
$$(\forall x)(x \circ 1) = x$$
.

(iii)
$$(\forall x)(\exists y)(x \circ y = 1).$$

The above axioms are called the non-logical axioms of the theory.

Definition

An expression ϕ is a valid consequence of a set of expressions Δ , written $\Delta \models \phi$, if every model

that satisfies Δ also satisfies ϕ .

Definition of model-specific theorems Three fundamental techniques The Soundness Theorem

• • • • • • • • • •

Outline

Axioms and Proofs

- Notion of truth
- First-order theorems
- Theoremhood and Validity

2 Model-specific theorems

- Definition of model-specific theorems
- Three fundamental techniques
- The Soundness Theorem

Definition of model-specific theorems Three fundamental techniques The Soundness Theorem

Defining model-specific theorems

Definition

Let Δ denote a set of expressions. Let $S = (\phi_1, \phi_2, \dots, \phi_n)$ denote finite sequence of first-order expressions, such that for each ϕ_i , $i \leq i \leq n$, one of the following holds:

(a) $\phi_i \in \Lambda$,

(b) $\phi_i \in \Delta$,

(c) there are two expressions of the form $\psi, \psi \to \phi_i$, among the expressions $\phi_1, \phi_2, \dots, \phi_{i-1}$.

We say that S is a proof of ϕ_n from Δ and that ϕ_n is a Δ -first-order theorem denoted by $\Delta \vdash \phi_n$.

< ロ > < 同 > < 三 > < 三 > -

Definition of model-specific theorems Three fundamental techniques The Soundness Theorem

< ロ > < 同 > < 三 > < 三 > -

Defining model-specific theorems

Definition

Let Δ denote a set of expressions. Let $S = (\phi_1, \phi_2, \dots, \phi_n)$ denote finite sequence of first-order expressions, such that for each ϕ_i , $i \leq i \leq n$, one of the following holds:

(a) $\phi_i \in \Lambda$,

(b) $\phi_i \in \Delta$,

(c) there are two expressions of the form $\psi, \psi \rightarrow \phi_i$, among the expressions $\phi_1, \phi_2, \ldots, \phi_{i-1}$.

We say that S is a proof of ϕ_n from Δ and that ϕ_n is a Δ -first-order theorem denoted by $\Delta \vdash \phi_n$.

Definition of model-specific theorems Three fundamental techniques The Soundness Theorem

Defining model-specific theorems

Definition

Let Δ denote a set of expressions. Let $S = (\phi_1, \phi_2, \dots, \phi_n)$ denote finite sequence of first-order expressions, such that for each ϕ_i , $i \leq i \leq n$, one of the following holds:

- (a) $\phi_i \in \Lambda$,
- (b) $\phi_i \in \Delta$,
- (c) there are two expressions of the form $\psi, \psi \to \phi_i$, among the expressions $\phi_1, \phi_2, \ldots, \phi_{i-1}$.

We say that S is a proof of ϕ_n from Δ and that ϕ_n is a Δ -first-order theorem denoted by $\Delta \vdash \phi_n$.

Definition of model-specific theorems Three fundamental techniques The Soundness Theorem

Defining model-specific theorems

Definition

Let Δ denote a set of expressions. Let $S = (\phi_1, \phi_2, \dots, \phi_n)$ denote finite sequence of first-order expressions, such that for each ϕ_i , $i \leq i \leq n$, one of the following holds:

- (a) $\phi_i \in \Lambda$,
- (b) $\phi_i \in \Delta$,
- (c) there are two expressions of the form $\psi, \psi \to \phi_i$, among the expressions $\phi_1, \phi_2, \dots, \phi_{i-1}$.

We say that S is a proof of ϕ_n from Δ and that ϕ_n is a Δ -first-order theorem denoted by $\Delta \vdash \phi_n$.

< ロ > < 同 > < 三 > < 三 > -

Definition of model-specific theorems Three fundamental techniques The Soundness Theorem

Outline

Axioms and Proofs

- Notion of truth
- First-order theorems
- Theoremhood and Validity

2 Model-specific theorems

- Definition of model-specific theorems
- Three fundamental techniques
- The Soundness Theorem

• • • • • • • • • •

Definition of model-specific theorems Three fundamental techniques The Soundness Theorem

Derivation of model-specific theorems

Theorem

The Deduction Technique: Suppose that $\Delta \cup \phi \vdash \psi$; then $\Delta \vdash (\phi \rightarrow \psi)$.

Theorem

The Contradiction Technique: If $\Delta \cup \{\neg \phi\}$ is inconsistent, then $\Delta \vdash \phi$.

Theorem

Justified Generalization: Suppose that $\Delta \vdash \phi$ and x is not free in any expression of Δ . Then $\Delta \vdash (\forall x)\phi$.

Example

Show that $(\forall x)\phi \rightarrow (\exists x)\phi$ is a theorem, i.e., show that $\vdash (\forall x)\phi \rightarrow (\exists x)\phi$.

Proof.

- (i) $\phi_1 = (\forall x)\phi$, hypothesis.
- (ii) $\phi_2 = (\forall x)\phi \rightarrow \phi$, logical axiom arising from properties of quantifiers.
- (iii) $\phi_3 = \phi$, Modus Ponens on ϕ_1 and ϕ_2 .
- (iv) $\phi_4 = (\forall x) \neg \phi \rightarrow \neg \phi$, logical axiom arising from properties of quantifiers.
- (v) $\phi_5 = ((\forall x) \neg \phi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow (\exists x) \phi)$, logical axiom arising from Boolean tautology
- (vi) $\phi_6 = \phi \rightarrow (\exists x)\phi$, Modus Ponens on ϕ_4 and ϕ_5 .
- (vii) $\phi_7 = (\exists x)\phi$, Modus Ponens on ϕ_3 , and ϕ_6 .

Example

Show that $(\forall x)\phi \rightarrow (\exists x)\phi$ is a theorem, i.e., show that $\vdash (\forall x)\phi \rightarrow (\exists x)\phi$.

Proof.

(i) $\phi_1 = (\forall x)\phi$, hypothesis.

- (ii) $\phi_2 = (\forall x)\phi \rightarrow \phi$, logical axiom arising from properties of quantifiers.
- (iii) $\phi_3 = \phi$, Modus Ponens on ϕ_1 and ϕ_2 .
- (iv) $\phi_4 = (\forall x) \neg \phi \rightarrow \neg \phi$, logical axiom arising from properties of quantifiers.
- (v) $\phi_5 = ((\forall x) \neg \phi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow (\exists x) \phi)$, logical axiom arising from Boolean tautology
- (vi) $\phi_6 = \phi \rightarrow (\exists x)\phi$, Modus Ponens on ϕ_4 and ϕ_5 .
- (vii) $\phi_7 = (\exists x)\phi$, Modus Ponens on ϕ_3 , and ϕ_6 .

Example

Show that $(\forall x)\phi \rightarrow (\exists x)\phi$ is a theorem, i.e., show that $\vdash (\forall x)\phi \rightarrow (\exists x)\phi$.

Proof.

- (i) $\phi_1 = (\forall x)\phi$, hypothesis.
- (ii) $\phi_2 = (\forall x)\phi \rightarrow \phi$, logical axiom arising from properties of quantifiers.
- (iii) $\phi_3 = \phi$, Modus Ponens on ϕ_1 and ϕ_2 .
- (iv) $\phi_4 = (\forall x) \neg \phi \rightarrow \neg \phi$, logical axiom arising from properties of quantifiers.
- (v) $\phi_5 = ((\forall x) \neg \phi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow (\exists x) \phi)$, logical axiom arising from Boolean tautology
- (vi) $\phi_6 = \phi \rightarrow (\exists x)\phi$, Modus Ponens on ϕ_4 and ϕ_5 .
- (vii) $\phi_7 = (\exists x)\phi$, Modus Ponens on ϕ_3 , and ϕ_6 .

< ロ > < 同 > < 三 > < 三 > -

Example

Show that $(\forall x)\phi \rightarrow (\exists x)\phi$ is a theorem, i.e., show that $\vdash (\forall x)\phi \rightarrow (\exists x)\phi$.

Proof.

- (i) $\phi_1 = (\forall x)\phi$, hypothesis.
- (ii) $\phi_2 = (\forall x)\phi \rightarrow \phi$, logical axiom arising from properties of quantifiers.
- (iii) $\phi_3 = \phi$, Modus Ponens on ϕ_1 and ϕ_2 .
- (iv) $\phi_4 = (\forall x) \neg \phi \rightarrow \neg \phi$, logical axiom arising from properties of quantifiers.
- (v) $\phi_5 = ((\forall x) \neg \phi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow (\exists x) \phi)$, logical axiom arising from Boolean tautology.
- (vi) $\phi_6 = \phi \rightarrow (\exists x)\phi$, Modus Ponens on ϕ_4 and ϕ_5 .
- (vii) $\phi_7 = (\exists x)\phi$, Modus Ponens on ϕ_3 , and ϕ_6 .

< ロ > < 同 > < 三 > < 三 > -

Example

Show that $(\forall x)\phi \rightarrow (\exists x)\phi$ is a theorem, i.e., show that $\vdash (\forall x)\phi \rightarrow (\exists x)\phi$.

Proof.

- (i) $\phi_1 = (\forall x)\phi$, hypothesis.
- (ii) $\phi_2 = (\forall x)\phi \rightarrow \phi$, logical axiom arising from properties of quantifiers.
- (iii) $\phi_3 = \phi$, Modus Ponens on ϕ_1 and ϕ_2 .
- (iv) $\phi_4 = (\forall x) \neg \phi \rightarrow \neg \phi$, logical axiom arising from properties of quantifiers.
- (v) $\phi_5 = ((\forall x) \neg \phi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow (\exists x) \phi)$, logical axiom arising from Boolean tautology.
- (vi) $\phi_6 = \phi \rightarrow (\exists x)\phi$, Modus Ponens on ϕ_4 and ϕ_5 .
- (vii) $\phi_7 = (\exists x)\phi$, Modus Ponens on ϕ_3 , and ϕ_6 .

< 口 > < 同 > < 三 > < 三 > -

Example

Show that $(\forall x)\phi \rightarrow (\exists x)\phi$ is a theorem, i.e., show that $\vdash (\forall x)\phi \rightarrow (\exists x)\phi$.

Proof.

- (i) $\phi_1 = (\forall x)\phi$, hypothesis.
- (ii) $\phi_2 = (\forall x)\phi \rightarrow \phi$, logical axiom arising from properties of quantifiers.
- (iii) $\phi_3 = \phi$, Modus Ponens on ϕ_1 and ϕ_2 .
- (iv) $\phi_4 = (\forall x) \neg \phi \rightarrow \neg \phi$, logical axiom arising from properties of quantifiers.
- (v) $\phi_5 = ((\forall x) \neg \phi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow (\exists x)\phi)$, logical axiom arising from Boolean tautology.
- (vi) $\phi_6 = \phi \rightarrow (\exists x)\phi$, Modus Ponens on ϕ_4 and ϕ_5 .
- (vii) $\phi_7 = (\exists x)\phi$, Modus Ponens on ϕ_3 , and ϕ_6 .

(a)

Example

Show that $(\forall x)\phi \rightarrow (\exists x)\phi$ is a theorem, i.e., show that $\vdash (\forall x)\phi \rightarrow (\exists x)\phi$.

Proof.

- (i) $\phi_1 = (\forall x)\phi$, hypothesis.
- (ii) $\phi_2 = (\forall x)\phi \rightarrow \phi$, logical axiom arising from properties of quantifiers.
- (iii) $\phi_3 = \phi$, Modus Ponens on ϕ_1 and ϕ_2 .
- (iv) $\phi_4 = (\forall x) \neg \phi \rightarrow \neg \phi$, logical axiom arising from properties of quantifiers.
- (v) $\phi_5 = ((\forall x) \neg \phi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow (\exists x) \phi)$, logical axiom arising from Boolean tautology.
- (vi) $\phi_6 = \phi \rightarrow (\exists x)\phi$, Modus Ponens on ϕ_4 and ϕ_5 .
- (vii) $\phi_7 = (\exists x)\phi$, Modus Ponens on ϕ_3 , and ϕ_6 .

Example of applying the derivation theorems

Example

Show that $(\forall x)\phi \rightarrow (\exists x)\phi$ is a theorem, i.e., show that $\vdash (\forall x)\phi \rightarrow (\exists x)\phi$.

Proof.

- (i) $\phi_1 = (\forall x)\phi$, hypothesis.
- (ii) $\phi_2 = (\forall x)\phi \rightarrow \phi$, logical axiom arising from properties of quantifiers.
- (iii) $\phi_3 = \phi$, Modus Ponens on ϕ_1 and ϕ_2 .
- (iv) $\phi_4 = (\forall x) \neg \phi \rightarrow \neg \phi$, logical axiom arising from properties of quantifiers.
- (v) $\phi_5 = ((\forall x) \neg \phi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow (\exists x) \phi)$, logical axiom arising from Boolean tautology.
- (vi) $\phi_6 = \phi \rightarrow (\exists x)\phi$, Modus Ponens on ϕ_4 and ϕ_5 .
- (vii) $\phi_7 = (\exists x)\phi$, Modus Ponens on ϕ_3 , and ϕ_6 .

Definition of model-specific theorems Three fundamental techniques The Soundness Theorem

• • • • • • • • • •

Outline

Axioms and Proofs

- Notion of truth
- First-order theorems
- Theoremhood and Validity

2 Model-specific theorems

- Definition of model-specific theorems
- Three fundamental techniques
- The Soundness Theorem

Definition of model-specific theorems Three fundamental techniques The Soundness Theorem

Soundness of the proof system

Theorem

Soundness: If $\Delta \vdash \phi$, then $\Delta \models \phi$.

Proof.

Let $S = (\phi_1, \phi_2, \dots, \phi_n)$, $\phi_n = \phi_i$ denote a proof of ϕ from Δ . We will show that $\Delta \models \phi_i$, for each $i = 1, 2, \dots, n$. If ϕ_i is a logical or non-logical axiom, then clearly $\Delta \models \phi_i$. Assume that ϕ_i is obtained using Modus Ponens from ϕ_j and $\phi_j \rightarrow \phi_i$, j < i. By the inductive hypothesis, $\Delta \models \phi_j$ and $\Delta \models \phi_j \rightarrow \phi_i$. Thus, any model that satisfied Δ also satisfies ϕ_j and $\phi_j \rightarrow \phi_i$. It follows that $\Delta \models \phi_i$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition of model-specific theorems Three fundamental techniques The Soundness Theorem

Soundness of the proof system

Theorem

Soundness: If $\Delta \vdash \phi$, then $\Delta \models \phi$.

Proof.

Let $S = (\phi_1, \phi_2, \dots, \phi_n)$, $\phi_n = \phi$, denote a proof of ϕ from Δ . We will show that $\Delta \models \phi_i$, for each $i = 1, 2, \dots, n$. If ϕ_i is a logical or non-logical axiom, then clearly $\Delta \models \phi_i$. Assume that ϕ_i is obtained using Modus Ponens from ϕ_j and $\phi_j \rightarrow \phi_i$, j < i. By the inductive hypothesis, $\Delta \models \phi_j$ and $\Delta \models \phi_j \rightarrow \phi_i$. Thus, any model that satisfied Δ also satisfies ϕ_j and $\phi_j \rightarrow \phi_i$. It follows that $\Delta \models \phi_i$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >