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Axioms and Proofs
Model-specific theorems

Notion of truth
First-order theorems
Theoremhood and Validity

Axioms and Proofs

Goal

A systematic procedure to reveal truth, where truth coincides with the
notion of validity.

Logical Axioms (Fundamental valid expressions)

(i) Any expression whose Boolean form is a tautology.

(ii) Any expression deemed valid by the rules of equality.

(iii) Any expression deemed valid by the rules of quantification.

The above set of logical axioms is denoted by Λ.
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Definition
Let S = (φ1, φ2, . . . , φn) denote a set of first-order expressions, such that for each φi , 1 ≤ i ≤ n

in the sequence, either φi ∈ Λ or there are two expressions of the form ψ, ψ → φi , among the

expressions φ1, φ2, . . . , φi−1. Then, S is a proof of expression φn . φn , in turn, is called a

first-order theorem and this is denoted by ⊢ φn .

Proof of Symmetry (x = y) → (y = x)

(i) φ1 = [(x = y) ∧ (x = x)] → [(x = x) → (y = x)], properties of equality

(ii) φ2 = (x = x), properties of equality

(iii) φ3 = [(x = x)] → [(((x = y) ∧ (x = x)) → ((x = x) → (y = x))) → (x = y) → (y = x)],
boolean tautology

(iv) φ4 = [((x = y) ∧ (x = x)) → ((x = x) → (y = x))] → [(x = y) → (y = x)], from φ2 and
φ3, using Modus Ponens.

(v) φ5 = (x = y) → (y = x), from φ1 and φ4, using Modus Ponens.
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Two fundamental questions

Theoremhood

Given a formula φ, is it a theorem?

Theorem

Theoremhood is recursively enumerable.

Validity

Given a formula φ, is it valid?

Fact

|= φ⇔ ⊢ φ
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Axiomatic Method
If M |= φ0 and M |= φ ↔ |= φ0 → φ, then M |= φ.

Example
A group is a set S and a binary operator ◦, such that

(i) (∀x)(∀y)(∀z)((x ◦ y) ◦ z) = (x ◦ (y ◦ z)).

(ii) (∀x)(x ◦ 1) = x .

(iii) (∀x)(∃y)(x ◦ y = 1).

The above axioms are called the non-logical axioms of the theory.

Definition
An expression φ is a valid consequence of a set of expressions ∆, written ∆ |= φ, if every model

that satisfies ∆ also satisfies φ.
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Definition of model-specific theorems
Three fundamental techniques
The Soundness Theorem

Defining model-specific theorems

Definition
Let ∆ denote a set of expressions. Let S = (φ1, φ2, . . . , φn) denote finite sequence of first-order
expressions, such that for each φi , i ≤ i ≤ n, one of the following holds:

(a) φi ∈ Λ,

(b) φi ∈ ∆,

(c) there are two expressions of the form ψ, ψ → φi , among the expressions φ1, φ2, . . . , φi−1.

We say that S is a proof of φn from ∆ and that φn is a ∆-first-order theorem denoted by ∆ ⊢ φn .

Subramani First-Order Logic



Axioms and Proofs
Model-specific theorems

Definition of model-specific theorems
Three fundamental techniques
The Soundness Theorem

Defining model-specific theorems

Definition
Let ∆ denote a set of expressions. Let S = (φ1, φ2, . . . , φn) denote finite sequence of first-order
expressions, such that for each φi , i ≤ i ≤ n, one of the following holds:

(a) φi ∈ Λ,

(b) φi ∈ ∆,

(c) there are two expressions of the form ψ, ψ → φi , among the expressions φ1, φ2, . . . , φi−1.

We say that S is a proof of φn from ∆ and that φn is a ∆-first-order theorem denoted by ∆ ⊢ φn .

Subramani First-Order Logic



Axioms and Proofs
Model-specific theorems

Definition of model-specific theorems
Three fundamental techniques
The Soundness Theorem

Defining model-specific theorems

Definition
Let ∆ denote a set of expressions. Let S = (φ1, φ2, . . . , φn) denote finite sequence of first-order
expressions, such that for each φi , i ≤ i ≤ n, one of the following holds:

(a) φi ∈ Λ,

(b) φi ∈ ∆,

(c) there are two expressions of the form ψ, ψ → φi , among the expressions φ1, φ2, . . . , φi−1.

We say that S is a proof of φn from ∆ and that φn is a ∆-first-order theorem denoted by ∆ ⊢ φn .

Subramani First-Order Logic



Axioms and Proofs
Model-specific theorems

Definition of model-specific theorems
Three fundamental techniques
The Soundness Theorem

Defining model-specific theorems

Definition
Let ∆ denote a set of expressions. Let S = (φ1, φ2, . . . , φn) denote finite sequence of first-order
expressions, such that for each φi , i ≤ i ≤ n, one of the following holds:

(a) φi ∈ Λ,

(b) φi ∈ ∆,

(c) there are two expressions of the form ψ, ψ → φi , among the expressions φ1, φ2, . . . , φi−1.

We say that S is a proof of φn from ∆ and that φn is a ∆-first-order theorem denoted by ∆ ⊢ φn .

Subramani First-Order Logic



Axioms and Proofs
Model-specific theorems

Definition of model-specific theorems
Three fundamental techniques
The Soundness Theorem

Outline

1 Axioms and Proofs
Notion of truth
First-order theorems
Theoremhood and Validity

2 Model-specific theorems
Definition of model-specific theorems
Three fundamental techniques
The Soundness Theorem

Subramani First-Order Logic



Axioms and Proofs
Model-specific theorems

Definition of model-specific theorems
Three fundamental techniques
The Soundness Theorem

Derivation of model-specific theorems

Theorem

The Deduction Technique: Suppose that ∆ ∪ φ ⊢ ψ; then
∆ ⊢ (φ→ ψ).

Theorem

The Contradiction Technique: If ∆ ∪ {¬φ} is inconsistent, then ∆ ⊢ φ.

Theorem

Justified Generalization: Suppose that ∆ ⊢ φ and x is not free in any
expression of ∆. Then ∆ ⊢ (∀x)φ.
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Axioms and Proofs
Model-specific theorems

Definition of model-specific theorems
Three fundamental techniques
The Soundness Theorem

Example of applying the derivation theorems

Example
Show that (∀x)φ → (∃x)φ is a theorem, i.e., show that ⊢ (∀x)φ → (∃x)φ.

Proof.
(i) φ1 = (∀x)φ, hypothesis.

(ii) φ2 = (∀x)φ → φ, logical axiom arising from properties of quantifiers.

(iii) φ3 = φ, Modus Ponens on φ1 and φ2.

(iv) φ4 = (∀x)¬φ → ¬φ, logical axiom arising from properties of quantifiers.

(v) φ5 = ((∀x)¬φ → ¬φ) → (φ → (∃x)φ), logical axiom arising from Boolean tautology.

(vi) φ6 = φ → (∃x)φ, Modus Ponens on φ4 and φ5.

(vii) φ7 = (∃x)φ, Modus Ponens on φ3, and φ6.
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(i) φ1 = (∀x)φ, hypothesis.

(ii) φ2 = (∀x)φ → φ, logical axiom arising from properties of quantifiers.

(iii) φ3 = φ, Modus Ponens on φ1 and φ2.

(iv) φ4 = (∀x)¬φ → ¬φ, logical axiom arising from properties of quantifiers.

(v) φ5 = ((∀x)¬φ → ¬φ) → (φ → (∃x)φ), logical axiom arising from Boolean tautology.

(vi) φ6 = φ → (∃x)φ, Modus Ponens on φ4 and φ5.

(vii) φ7 = (∃x)φ, Modus Ponens on φ3, and φ6.
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Soundness of the proof system

Theorem

Soundness: If ∆ ⊢ φ, then ∆ |= φ.

Proof.
Let S = (φ1, φ2, . . . , φn), φn = φ, denote a proof of φ from ∆. We will show that ∆ |= φi , for each

i = 1, 2, . . . , n. If φi is a logical or non-logical axiom, then clearly ∆ |= φi . Assume that φi is

obtained using Modus Ponens from φj and φj → φi , j < i . By the inductive hypothesis, ∆ |= φj

and ∆ |= φj → φi . Thus, any model that satisfied ∆ also satisfies φj and φj → φi . It follows that

∆ |= φi .
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