
Computational Complexity - Homework I (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems

1. Assume that you are given an instance of the Traveling Salesman Problem (TSP) withn cities and inter-city distances
dij , i, j = 1, 2, . . . n. Let S denote some subset of the cities, excluding city1 and letC[S, j] denote the shortest path
that starts in city1, visits all the cities inS and ends in cityj.

(a) Use Dynamic Programming to computeC[S, j], i.e., in computingC[S, j] for a givenS, use the values computed
for subsets ofS.

(b) Analyze the space and time requirements of your algorithm.

(c) Modify this algorithm to devise apolynomial timealgorithm for the problem of computing the shortest path from
city 1 to city n; note that this shortest path need not visit all the other cities.

Solution:

(a) Focus on the vertexi ∈ S, which is connected to vertexj in the path determined byC[S, j]. Regardless of how
i is chosen, we must haveC[S − {i}, i] as the shortest path that starts from vertex1, visits all the vertices in
C[S − {i}] and ends at vertexi. Accordingly, the dynamic programming solution is:

C[S, j] = min
i∈S

(C[S − {i}, i] + dij)

The entry of interest isC[{2, 3, . . . , n − 1}, 1].

(b) Given that the size ofS varies from0 to (n−1) and for a specific sizek, there are
(

n−1
k

)

distinct subsets, the total

number of subsets generated is
∑n−1

k=0

(

n−1
k

)

. For a setS of sizek, we need to computeC[S, j] for all (n−1−k)
possibilities ofj; each of these computations takesk steps. Thus, the total time required is:

n−1
∑

k=0

(

n − 1

k

)

· k · (n − 1 − k) ∈ O(n2 · 2n)

Space requirements can be computed in similar fashion by noting that all combinations ofS andj have to be
stored resulting in space requirements of

n−1
∑

k=0

(

n − 1

k

)

· (n − 1 − k) ∈ O(n · 2n)

(c) Let pk
ij denote the shortest path from vertexi to vertexj, with intermediate vertices drawn only from the set

Sk = {1, 2, . . . , k}. It is straightforward to see that eitherpk
ij is equal topk−1

ij (if vertex k does not lie on the

1

shortest path fromi to j with all the intermediate vertices inSk) or pk
ij = pk−1

ik + pk−1
kj (if vertexk does lie on

the shortest path fromi to j with all the intermediate vertices inSk). Accordingly,

pk
ij = min(pk−1

ij , pk−1
ik + pk−1

kj), if k ≥ 1

= dij , if k = 0.

It is not hard to see that if the entries are computed in bottom-up fashion, eachpk
ij entry can be computed in

constant time. There aren2 such entries that have to be computed for eachk = 0, 1, . . . , n − 1; thus the running
time of the corresponding algorithm isO(n3). Note that in the absence of negative cost cycles, the entry of
interest isdn−1

1n , since the shortest path from1 to n cannot have vertexn as an intermediate vertex. The shortest
path problem is not defined in the presence of negative cost cycles. For additional information, please see the
description of the Floyd-Warshall algorithm in [CLRS01].

2

2. Argue that if a Turing Machine uses less thanc log log n space, for allc > 0, then it uses constant space.

Solution: The proof of the assertion in this problem requires the development of two concepts, viz., semi-configurations
and crossing sequences.

Assume that our model of computation is ak-string Turing machine with input and output denoted by
M = (QM , ΣM , δM , s), where the symbols have their usual meaning.

Definition 1.1 (Semi-Configuration)A semi-configuration of the Turing machineM , that runs in s(n) space, consists
of:

(i) Its current state (|QM | possibilities),

(ii) The symbol currently being read on the input tape (|ΣM | possibilities),

(iii) The contents of the work tape (|ΣM |s(n) possibilities), and

(iv) The position of the work head on the work tape (s(n) possibilities).

Observe thatM has at mostN = |QM | · |ΣM |s(n)+1 · s(n) = 2O(s(n)) possible semi-configurations.

Definition 1.2 A semi-configuration if a Turing MachineM is right-moving, if M moves its input head to the right
on this semi-configuration, andleft-moving, otherwise.

Definition 1.3 (Crossing Sequence)Let x be an input accepted byM , and leti be a position inx. The crossing
sequence at positioni, Ci(x), is defined to be the ordered sequence of semi-configurationsof M whenever the input
head is on theith position of the input tape.

Note that|Ci(x)| ≤ N , sinceM would not halt onx otherwise.

Theorem 1.1If M runs ins(n) = o(log log(n)) space, then it has at mosto(n) crossing sequences.

Proof: As each crossing sequence has length at mostN , there are at most

N
∑

j=0

N j =
NN+1 − 1

N − 1
= O(NN) = O

(

(

2O(s(n))
)2O(s(n)))

= O
(

22O(s(n))
)

= o(n)

crossing sequences in all, sinces(n) = o(log log n). 2

We have therefore established thatM has at mosto(n) crossing sequences. Thus, there exists an integern0, such that
for all n > n0, there are less thann3 possible semi-configurations on inputs of sizen (by the definition ofo()!).

2

Let n1 ≥ n0 be such thats(n) < s(n1) for all n < n1. If such ann1 does not exist, then the functions is bounded
above by a constant and we are done! To see this, assume that nosuchn1 exists ands(n) is not bounded by a
constant. Then for every constantc, there exists an integernc > 0, such thatnc is the smallest positive integer for
whichs(nc) > c. Thus, for any0 < n < nc, we have,s(n) ≤ c < s(nc). It follows thatnc satisfies the qualities of
then1 we are looking for, i.e., if no suchn1 exists, thens(n) is bound by a constant.

We will now show thats(n1) is an upper bound fors(n), regardless of the value ofn, i.e., regardless of the length of
the input string.

Assume the contrary. Letx be a string of minimum length such that:

(a) M acceptsx,

(b) |x| ≥ n1, and

(c) M(x) uses more thans(n1) space.

Let |x| = n > n0. As |x| > n0, for any 0 < i ≤ |x|, the number of possible crossing sequences onx at
positioni is less thann/3. Thus, by the pigeon hole principle, there exist positions0 < i < j < k ≤ n such that
Ci(x) = Cj(x) = Ck(x).

Let x = αaβaγaδ with thea′s at positionsi, j, andk, whereα, β andγ are strings. (Why must each position have
the same charactera?) Also letCi(x) = Cj(x) = Ci

1 . . . Ci
l , with Ci

1 thoughCi
l representing the semi-configurations

in Ci(x). We will now traverse though the computation ofM on inputx′ = αaγaδ.

The executions ofM(x) andM(x′) are identical until they come to the first right-moving semi-configuration in the
sequenceCi(x), sayCi

r1
. The execution ofM(x′) after this point is now identical to the execution ofM(x) beginning

atCj
r1

until M(x′) comes to the next left-moving semi-configuration followingCj
r1

, sayCj
r2

. The execution ofM(x′)
after this point is now identical to the execution ofM(x) beginning atCi

r2
, and so on. Matters continue in this vein,

until M(x′) reaches semi-configurationCi
l = Cj

l (and this has to happen, sincer1 < r2 < . . .). From this point
onwards, the execution ofM(x′) will be identical to the execution ofM(x) and henceM acceptsx′.

A similar argument shows thatM accepts the stringx′′, where we definex′′ = αaβaδ. Note that bothx′ andx′′ are
strictly shorter thanx and accepted byM .

Let sw denote the maximum number of work cells (peak workspace) used by M on input the stringw. If sx work
cells are used byM(x) when its input head is within the substringαa or the substringδ, thensx′ , sx′′ ≥ sx. (Why?)
If sx work cells are used byM(x) when its input head is within the substringγa thensx′ ≥ sx. (Why?) Similarly, if
sx work cells are used byM(x) when its input head is within the substringβa thensx′′ ≥ sx. If less thansx cells
are used byM(x) in all three cases, thenM(x) uses less thansx space!

From the above discussion, it follows that eithersx′ ≥ sx ≥ s(n1) or sx′′ ≥ sx ≥ s(n1). Without loss of generality,
assume the former. In this case, we must have|x′| ≥ n1. (Why?) In other words,x′ satisfies the following three
properties:

(a) M acceptsx′,

(b) |x′| ≥ n1, and

(c) M(x) uses more thans(n1) space.

Further, since|x′| < |x|, we have a contradiction to our hypothesis thatx is the shorteststring satisfying these
properties.

There exist a number of approaches for this problem; the method discussed above is detailed in [Kat] and [Gol08]. A
similar argument is outlined in [Koz06]. For a completely different approach, see [Sze94].2

3. Assume that you have ak-string NDTM (Non-deterministic Turing Machine) that accepts a languageL in timef(n).
Show thatL can accepted by a2-string NDTM in timeO(f(n)).

Solution: If k ≤ 2, the problem is trivial, so assumek > 2. The key observation is that a single step of thek-string
NDTM (T1) can be simulated ink steps of the2-string NDTM (T2). Note that a single move ofT1 involves moves
on all k strings. T2 simply guessesk triplets, which correspond to the moves made on allk strings byT1 on its

3

first tape. It then uses the second tape to verify the guesses.SinceT1 acceptsL in f(n) steps,T2 acceptsL in
k · f(n) = O(f(n)) steps.2

4. Classify each of the following languages (with appropriate justification) as recursive, recursively enumerable (but not
recursive), or not recursively enumerable.

(a) L = {〈M〉 : M halts on the empty string}.

(b) L = {〈M〉 : M halts on at least one string}.

(c) L = {〈M, M ′〉 : L(M) = L(M ′)}.

Solution:

(a) This language is not recursive, however it is recursively enumerable. To see this, assume the contrary and letT
denote a Turing machine that decidesL. Let N denote an arbitrary Turing machine and letx be an input toN .
We construct the Turing machineN ′ defined as follows:

N ′(y) = N(x), ∀ y

Observe what happens when〈N ′〉 is provided as input toT . T (N ′) will accept if and only ifN halts onx.
In other words,T can be used to solve the Halting Problem, i.e.,L is not recursive. HoweverL is recursively
enumerable as the operation ofM(ǫ) can be simulated.

(b) This language is not recursive, however it is recursively enumerable. To see this, assume the contrary and letT
denote a Turing machine that decidesL. Let N denote an arbitrary Turing machine and letx be an input toN .
We construct the Turing machineN ′ defined as follows:

N ′(y) = N(x), ∀ y

Observe what happens when〈N ′〉 is provided as input toT . T (N ′) will accept if and only ifN ′ halts on some
input. Letz be such an input. By the definition ofN ′ we have thatN ′(z) = N(x) which means thatT (N ′)
will accept if and only ifN halts onx. In other words,T can be used to solve the Halting Problem, i.e.,L is
not recursive. HoweverL is recursively enumerable as the operation ofM(x) can be simulated over allx though
dovetailing.

(c) This language is not recursively enumerable. To see this, assume the contrary and letT denote a Turing machine
that acceptsL. Let N denote a Turing machine that does not halt on any input. LetP denote an arbitrary Turing
machine and letx be an input toP . We construct the Turing machineP ′ defined as follows:

P ′(y) = P (x), if y = x

= ր, otherwise

Observe what happens when〈P ′, N〉 is provided as input toT . T (P ′, N) will halt and accept if and only ifP ′ does
not halt onx. In other words,T can be used to solve the complement of the Halting Problem, i.e., L is not even
recursively enumerable, much less recursive.2

5. Let S be an infinite set of boolean expressions, such that every finite subset ofS is satisfiable. Argue thatS itself
must be satisfiable. i.e., the conjunction of all the expressions inS is satisfiable.

Solution: We are being asked to prove the Compactness theorem for boolean logic. The arguments used to establish
the Compactness theorem for first-order logic clearly suffice!

Note that in case of boolean logic, a model is merely an assignment of{true, false} to the variables of the expression.
If S is unsatisfiable, then any assignment that satisfiesS also satisfiesφ ∧ ¬φ, whereφ is an arbitrary boolean
expression. But by the completeness theorem of first-order logic (and hence boolean logic) there must exist a proof
of φ ∧ ¬φ from S. By the definition of proofs, this proof must have finite length. This implies that a finite subset of
S gives rise to a contradiction, which contradicts the hypothesis.

A second approach is discussed on Page85 of [Pap94].2

4

References

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.MIT Press, 2001.

[Gol08] Oded Goldreich.Computational Complexity. Cambridge University Press, 2008.

[Kat] Jonathan Katz. Lecture Notes on Complexity.

[Koz06] Dexter Kozen.Theory of Computation. Springer, 2006.

[Pap94] Christos H. Papadimitriou.Computational Complexity. Addison-Wesley, New York, 1994.

[Sze94] Andrzej Szepietowski.Turing Machiens with Sublogarithmic Space. Number 843 in Lecture Notes in Computer
Science. Springer, 1994.

5

