Computational Complexity - Homework | (Solutions)

K. Subramani
LCSEE,
West Virginia University,
Morgantown, WV
{ksmani@csee.wvu.edu

1 Problems

1. Assume that you are given an instance of the Travelings8&la Problem (TSP) with cities and inter-city distances
dij, 1,5 =1,2,...n. LetS denote some subset of the cities, excluding tignd letC[S, j] denote the shortest path
that starts in cityl, visits all the cities inS and ends in cityj.

(a) Use Dynamic Programming to compdtés, j], i.e., in computing”|[S, j] for a givenS, use the values computed
for subsets of.

(b) Analyze the space and time requirements of your algworith

(c) Modify this algorithm to devise polynomial timealgorithm for the problem of computing the shortest patirfro
city 1 to city n; note that this shortest path need not visit all the othé<it

Solution:

(a) Focus on the vertexe S, which is connected to vertekin the path determined b¥[.S, j]. Regardless of how
i is chosen, we must hav@[S — {i},] as the shortest path that starts from vertexisits all the vertices in
C[S — {i}] and ends at vertex Accordingly, the dynamic programming solution is:

ClS, 5] = min(C[S — {d}, 1] + dij)

The entry of interesti€'[{2,3,...,n — 1}, 1].

(b) Given thatthe size of varies from0 to (n — 1) and for a specific sizg, there are(";l) distinct subsets, the total

number of subsets generateﬁ;é (";1). For a sefS of sizek, we need to comput€|[S, j] forall (n— 1 — k)
possibilities ofj; each of these computations takesteps. Thus, the total time required is:

n—1

() 1o

k=0

Space requirements can be computed in similar fashion bggttat all combinations of and;j have to be
stored resulting in space requirements of

g(”;l)-(n—1—k)eom-2n)

(c) Let pfj denote the shortest path from verteto vertexj, with intermediate vertices drawn only from the set
Sk = {1,2,...,k}. Itis straightforward to see that eithpfj is equal tOpfj‘1 (if vertex k does not lie on the

shortest path fromi to j with all the intermediate vertices i) orpfj = pfk’l + pﬁ;l (if vertex k does lie on
the shortest path fromto ; with all the intermediate vertices if};). Accordingly,

pl = min(pftpl oY) ifE>1
= d, ifk=0.

It is not hard to see that if the entries are computed in bottipnfashion, eaclpfj entry can be computed in
constant time. There are such entries that have to be computed for daeh0, 1, ...,n — 1; thus the running
time of the corresponding algorithm @(n?). Note that in the absence of negative cost cycles, the effitry o
interest isd” !, since the shortest path froirto n cannot have vertex as an intermediate vertex. The shortest

In

path problem is not defined in the presence of negative ca¢<sy For additional information, please see the
description of the Floyd-Warshall algorithm in [CLRSO01].

a

2. Argue that if a Turing Machine uses less thdog log n space, for alk > 0, then it uses constant space.

Solution: The proof of the assertion in this problem requires the dguaknt of two concepts, viz., semi-configurations
and crossing sequences.

Assume that our model of computation i&-&tring Turing machine with input and output denoted by
M = (Qnr,Xm,00Mm,s), where the symbols have their usual meaning.

Definition 1.1 (Semi-Configuration)A semi-configuration of the Turing machihé, that runs in s(n) space, consists
of:

(i) Its current state [/| possibilities),

(i) The symbol currently being read on the input tafe ;| possibilities),
(iii) The contents of the work tap&{,,|*"™) possibilities), and
(iv) The position of the work head on the work tapén possibilities).

Observe that/ has at mostV = |Q /| - [Sas|* ™+ - 5(n) = 29(:(") possible semi-configurations.

Definition 1.2 A semi-configuration if a Turing Machin® is right-moving if A moves its input head to the right
on this semi-configuration, arldft-moving, otherwise.

Definition 1.3 (Crossing Sequencelet = be an input accepted by/, and leti be a position inz. The crossing
sequence at positiol C*(z), is defined to be the ordered sequence of semi-configuraifalswhenever the input
head is on théth position of the input tape.

Note that|C(z)| < N, sinceM would not halt onr otherwise.

Theorem 1.11f M runsins(n) = o(loglog(n)) space, then it has at mostn) crossing sequences.

Proof: As each crossing sequence has length at foghere are at most

ZN: NI — 7N;+iz L O(NM) =0 <(20(s(n)))20(5(n))> =0 (22°<3<">>) = o(n)
j=0

crossing sequences in all, singe) = o(loglogn). O

We have therefore established tiidthas at mosb(n) crossing sequences. Thus, there exists an integesuch that
for alln > ng, there are less thaf possible semi-configurations on inputs of siz¢by the definition ofo()!).

Letn; > ng be such that(n) < s(ny) for all n < n;. If such ann; does not exist, then the functiaris bounded
above by a constant and we are done! To see this, assume tlathe; exists ands(n) is not bounded by a
constant. Then for every constantthere exists an integer. > 0, such that. is the smallest positive integer for
which s(n.) > ¢. Thus, foranyd < n < n., we haves(n) < ¢ < s(n.). It follows thatn,. satisfies the qualities of
then, we are looking for, i.e., if no such; exists, thers(n) is bound by a constant.

We will now show thats(n;) is an upper bound fof(n), regardless of the value ef i.e., regardless of the length of
the input string.

Assume the contrary. Latbe a string of minimum length such that:

(@) M accepts,
(b) |z| > ni,and
(c) M (z) uses more than(n,) space.

Let || = n > ng. As|z| > ng, forany0 < i < |z|, the number of possible crossing sequences: Gt
positioni is less tham/3. Thus, by the pigeon hole principle, there exist positions i < j < k < n such that
Ci(z) = Ci(z) = C*(x).

Letz = aaBavyad with thea's at positions, 7, andk, wherea, 5 and~ are strings. (Why must each position have
the same characte®) Also letC'(z) = C7(z) = Cj ... C}, with C} thoughC} representing the semi-configurations
in C*(x). We will now traverse though the computation/af on inputz’ = aavyad.

The executions of\/ () and M («’) are identical until they come to the first right-moving sesoifiguration in the
sequenc€’ (z), sayC!. . The execution of\/ (2”) after this pointis now identical to the execution'df(z) beginning
atCy, until M (z') comes to the next left-moving semi-configuration followitify , sayCy, . The execution oM (z)
after this point is now identical to the execution/af(x) beginning aCC;,, and so on. Matters continue in this vein,

until M (2) reaches semi-configuratiaff = Cf (and this has to happen, sinee < ro < ...). From this point
onwards, the execution @f/ (z') will be identical to the execution d¥/ (z) and hencéll accepts’.

A similar argument shows that/ accepts the string”, where we define” = aafad. Note that both:’ andz” are
strictly shorter than: and accepted by/.

Let s,, denote the maximum number of work cells (peak workspace) bgé\/ on input the stringo. If s, work
cells are used by/ (x) when its input head is within the substring or the substring, thens,, s,» > s,. (Why?)
If s, work cells are used by/ (x) when its input head is within the substring thens,, > s,. (Why?) Similarly, if
s, work cells are used by/(z) when its input head is within the substrigg thens,» > s,. If less thans, cells
are used byM (z) in all three cases, theW (z) uses less thas, space!

From the above discussion, it follows that eitkgr > s, > s(n1) or sp» > s, > s(nq). Without loss of generality,
assume the former. In this case, we must have> n;. (Why?) In other wordsy’ satisfies the following three
properties:

(a) M accepts/,

(b) |#'| > nq, and

(c) M(x) uses more tham(n;) space.
Further, sincdz’| < |z|, we have a contradiction to our hypothesis that the shorteststring satisfying these
properties.
There exist a number of approaches for this problem; the mdediscussed above is detailed in [Kat] and [Gol08]. A
similar argument is outlined in [Koz06]. For a completelffelient approach, see [Sze94].
. Assume that you havekastring NDTM (Non-deterministic Turing Machine) that aptea languagé in time f(n).
Show thatlL can accepted by 2xstring NDTM in timeO(f(n)).

Solution: If & < 2, the problem is trivial, so assunie> 2. The key observation is that a single step of thgtring
NDTM (7}) can be simulated ik steps of the-string NDTM (75). Note that a single move df; involves moves
on all k£ strings. T> simply guesse$ triplets, which correspond to the moves made orkadtrings by7; on its

first tape. It then uses the second tape to verify the guesSiese T’ acceptsL in f(n) steps,T: acceptsL in
k- f(n) =0O(f(n)) steps.0

. Classify each of the following languages (with apprajerjastification) as recursive, recursively enumerablé ot
recursive), or not recursively enumerable.

(@) L ={(M) : M halts on the empty string}.
(b) L = {(M) : M halts on at least one string}.
() L={(M, M’y : L(M)=L(M")}.

Solution:

(a) This language is not recursive, however it is recurgieelumerable. To see this, assume the contrary arifl let
denote a Turing machine that decidesLet NV denote an arbitrary Turing machine anddebe an input tav.
We construct the Turing machiné’ defined as follows:

N'(y) = N(x),Vy

Observe what happens whéN’) is provided as input td@". T'(N’) will accept if and only if N halts onz.
In other words,I" can be used to solve the Halting Problem, ileis not recursive. Howevek is recursively
enumerable as the operation/df(¢) can be simulated.

(b) This language is not recursive, however it is recurgieglumerable. To see this, assume the contrary arid let
denote a Turing machine that decidesLet NV denote an arbitrary Turing machine anddebe an input taVv.
We construct the Turing machiné’ defined as follows:

N'(y) = N(xz),Vy

Observe what happens whéN"’) is provided as input t@’. T'(N') will accept if and only if N’ halts on some
input. Letz be such an input. By the definition df’ we have thatV'(z) = N(z) which means thal’(N')
will accept if and only if N halts onz. In other words,I" can be used to solve the Halting Problem, ileis
not recursive. Howevek is recursively enumerable as the operatiod/ffz) can be simulated over allthough
dovetailing.

(c) This language is not recursively enumerable. To seedb@ime the contrary and [Etdenote a Turing machine
that acceptd.. Let N denote a Turing machine that does not halt on any inputA.éénote an arbitrary Turing
machine and let be an input taP. We construct the Turing machir& defined as follows:

P'ly) = Pla),ify==
= /", otherwise

Observe what happens whéR’, N) is provided as input t@”. T'(P’, N') will halt and accept if and only i’ does
not halt onz. In other words,I" can be used to solve the complement of the Halting Problem,/i.is not even
recursively enumerable, much less recursive.

. LetS be an infinite set of boolean expressions, such that evetg Snbset of5 is satisfiable. Argue thaf itself
must be satisfiable. i.e., the conjunction of all the expoessin S is satisfiable.

Solution: We are being asked to prove the Compactness theorem fordololgic. The arguments used to establish
the Compactness theorem for first-order logic clearly sefffic

Note that in case of boolean logic, a model is merely an asségwof{tr ue, false} to the variables of the expression.

If S is unsatisfiable, then any assignment that satisfiedso satisfiesp A —¢, where¢ is an arbitrary boolean
expression. But by the completeness theorem of first-oodge (and hence boolean logic) there must exist a proof
of ¢ A =¢ from S. By the definition of proofs, this proof must have finite leémgThis implies that a finite subset of
S gives rise to a contradiction, which contradicts the hypsth

A second approach is discussed on Pgigef [Pap94].0

References

[CLRSO01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and @irstintroduction to AlgorithmsMIT Press, 2001.
[Gol08] Oded GoldreichComputational ComplexityCambridge University Press, 2008.

[Kat] Jonathan Katz. Lecture Notes on Complexity.

[Koz06] Dexter KozenTheory of ComputatianSpringer, 2006.

[Pap94] Christos H. Papadimitrio@omputational ComplexityAddison-Wesley, New York, 1994.

[Sze94] Andrzej Szepietowskiuring Machiens with Sublogarithmic Spadéumber 843 in Lecture Notes in Computer
Science. Springer, 1994.

