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Definition (DP)

A Language L is in the class DP if and only if there are two languages L1 ∈ NP and
L2 ∈ coNP such that L = L1 ∩ L2.
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SAT-UNSAT

Definition (SAT-UNSAT)

Given two boolean clauses φ, φ′ both in conjunctive normal from with three literals per
clause. Is it true that φ is satisfiable and φ′ is not.

Theorem

SAT-UNSAT is DP-complete.

Proof.

1 SAT-UNSAT ∈ DP.
Simple let L1 = {(φ, φ′) : φ is satisfiable} and L2 = {(φ, φ′) : φ′ is unsatisfiable}

2 If L ∈ DP then L reduces to SAT-UNSAT
Let L1 ∈ NP and L2 ∈ coNP be languages such that L = L1 ∩ L2. Let R1 be a
reduction from L1 to SAT and let R2 be a reduction from L2 to UNSAT. Thus the
reduction R from L to SAT-UNSAT is for input x , R(x) = (R1(x),R2(x)).
We have that R(x) ∈ SAT-UNSAT iff R1(x) ∈ SAT and R2(x) ∈ UNSAT, which is
true iff x ∈ L1 and x ∈ L2, or equivalently that x ∈ L.
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Other problems in DP

Problems

1 EXACT TSP
Given a distance matrix and an integer B, is the length of the shortest tour equal
to B.

2 CRITICAL SAT
Given a boolean expression φ is it unsatisfiable, but does removing any clause
make it satisfiable

3 CRITICAL HAMILTONIAN PATH
Given a Graph does it have no Hamiltonian path, but does the addition of any
edge give it a Hamiltonian Path.

4 CRITICAL 3-COLORABILITY
Given a graph is it not three colorable, but does removing any node make it three
colorable.

In fact all of these problems are DP-complete
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Definition (PNP )

A language L, is in PNP if there exists a language L′ ∈ NP such that L can be decided
by a polynomial time Oracle machine using an L′ Oracle.

Explanation of an Oracle

A Turing Machine MA with oracle A is a multi-string Turing Machine with a special string
called the Query String and special states q?, the query state, and qYES ,qNO , the
answer states. From q? MA moves to qYES or qno depending on whether the query
string is in A or not. This result can be used in further computations.
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Theorem

DP ⊆ PNP

Proof.

Let L ∈ DP. We have that L can be reduced in polynomial time to SAT-UNSAT using the
reduction shown before. Now simply query whether R1(x) ∈ SAT and whether R2(x) 6∈
SAT. Where R1, R2, and x have the same meanings they did in the reduction.

Definition (FPNP )

FPNP is the set of all function problems that can be computed in polynomial time using
an oracle in NP.
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Definition (Polynomial Hierarchy)

The polynomial hierarchy is the following sequence of classes:
1 ∆0P = Σ0P = Π0P = P
2 ∆i+1P = PΣi P

3 Σi+1P = NPΣi P

4 Πi+1P = coNPΣi P

For all i ≥ 0.
We also define the collective class PH =

S

i≥0 ΣiP.

Observations

Note that because Σ0P = P, we have that Σ1P = NP, ∆1P = P, and Π1P = coNP. At each
level the classes are believed to be distinct and are known to hold the same
relationship as P, NP and coNP. Also, each class at each level includes all classes at
the previous levels.
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Theorem

Let L be a Language, and i ≥ 1. L ∈ ΣiP iff there is a polynomially balanced relation R
such that the language {(x, y) : (x, y) ∈ R} is in Πi−1P and L = {x: there is a y such
that (x, y) ∈ R}.

Proof.

We will show this by using induction on i .
If i = 1 then this reduces to proposition 9.1.
If i > 1 then suppose such a relation R exists, to show that L ∈ Σi P we will construct
machine M which guessed an appropriate y and asks a Σi−1P oracle whether
(x, y) 6∈ R.
Conversely we can assume that L ∈ Σi P. By the definition of Σi P there is a NDTM MK

using oracle K ∈ Σi−1P. Thus, by induction, there is a relation S recognizable in Πi−2P
such that z ∈ K iff ∃w such that (z,w) ∈ S.
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cont.

Let x ∈ L thus one computation of MK (x) halts on an accepting configuration. Thus we
define R as follows, (x, y) ∈ R iff y records an accepting computation of MK on input x
together with a certificate wi for each zi where zi was a ”yes” query to K and
(zi ,wi) ∈ S.
This can be done in Πi−1P. The verification that each step of MK is legal can be done
in polynomial time. Each of the polynomially many ”yes” queries can ,by induction, be
done in Πi−2P. And for each of the ”no” queries we need to verify if zi 6∈ K . But as
K ∈ Σi−1P this can also be done in Πi−1P. As each of these computations is in Πi−1P
the entire verification of (x, y) ∈ R can be computed in Πi−1P.
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Corollaries

Corollary

Let L be a Language, and i ≥ 1. L ∈ ΠiP iff there is a polynomially balanced relation R
such that the language {(x, y) : (x, y) ∈ R} is in Σi−1P and L = {x: for all y with
|y | < |x|k , (x, y) ∈ R}.

Proof.

Πi P = coΣiP.

Corollary

Let L be a Language, and i ≥ 1. L ∈ ΣiP iff there is a polynomially balanced
polynomial-time decidable (i + 1)-ary relation R such that L = {x: ∃y1∀y2∃y3 . . .Qyi
such that (x, y1, . . . , yi ) ∈ R} Where the ith quantifier is ∃ if i is odd ∀ otherwise.

Proof.

Starting with L, reduce each language in Πj P or ΣjP with its certificate form and do so
for the resulting language of certificates.
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Theorem

If for some i ≥ 1, ΣiP = Πi P then for all j > i Σj P = ΠjP = ∆j P = ΣiP.

Proof.

It suffices to show that ΣiP = Πi P implies Σi P = Σi+1P. Let L ∈ Σi+1P, by the previous
theorem there is a relation R in ΠiP with L = {x : there is a y such that (x, y) ∈ R}. But
by the assumption R ∈ ΣiP. Thus there is a relation S in Πi−1P with R = {(x, y): there
is a z such that (x, y , z) ∈ S}. Thus L = {x : there is a (y , z) such that (x, y , z) ∈ S}
meaning that L ∈ ΣiP.

Corollary

If P = NP or, NP = coNP, then the polynomial hierarchy collapses to the first level.
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Definition (QSATi )

Let φ be a boolean expression with its boolean variables partitioned into i sets
X1,X2, . . . ,Xi we have that the expression ∃X1∀X2∃X3 . . .QXiφ where the quantifies
alternate is in QSATi .

Theorem

QSATi is Σi P-complete.

Proof.

By the second corollary QSATi ∈ Σi P.
Let L ∈ Σi P. We convert L to the form from the second corollary. Since the resulting
relation R can be decided in polynomial time there is a polynomial time Turing Machine
M which accepts precisely the strings x; y1; . . . ; yi such that(x, y1, . . . , yi) ∈ R.
Suppose that i is odd. By Cook’s theorem we can write a boolean formula φ which
captures the computation of M. We can divide the variables of φ into i + 2 groups
X ,Y1, . . . ,Yi ,the input variables, which contain the variables representing the symbols
in the x, y1, . . . , yi substrings of the input. And a group Z which incorporates the
remaining variables.
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cont.

If the variables in X ,Y1, . . . ,Yi are fixed then the resulting expression is satisfiable iff
the input variables spell out a string accepted by M. Let x ′ be any string, and substitute
into φ the corresponding boolean variables X ′ for X . We know that x ′ ∈ L iff there is a
y1, such that for all y2, . . . , there is a yi such that (x ′, y1, y2, . . . , yi ) ∈ R however this is
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Theorem

If there is a PH-complete problem then the polynomial hierarchy collapses to some
finite level.

Proof.

Suppose that L is PH-complete. Since L ∈ PH, there is an i ≥ 0 for which L ∈ ΣiP.
However any language L′ in Σi+1P reduces to L. since the levels of the polynomial
hierarchy are closed under reductions L′ ∈ ΣiP and so ΣiP = Σi+1P.

proposition

PH ⊆ PSPACE.
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Other problems in PH

Examples

1 MINIMUM EQUIVALENT CIRCUIT ∈ Σ2P
Given a boolean circuit C and integer k is there a boolean circuit C′ of size less
than or equal to k such that for all possible inputs C = C′.
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1 The complexity class DP
Definition of DP
Problems in DP

2 The classes PNP and FPNP

The definition of PNP and FPNP

3 The polynomial Hierarchy
The definition of the Polynomial Hierarchy
Examining the Polynomial Hierarchy
Diagram of the complexity classes

4 A look a PSPACE
QSAT is PSPACE complete
PSPACE=AP
Geography is PSPACE-complete
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P

NPcoNP

DP

∆2P Σ2PΠ2P

...

PH
PSPACE = AP
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Definition (QSAT)

Let φ be a boolean expression with n variables then the expression ∃x1∀x2 . . .Qnxn
where the quantifiers alternate is a QSAT expression.

Theorem

QSAT is PSPACE complete

Proof.

Part 1, QSAT ∈ PSPACE
The QSAT expression be converted into a boolean circuit as follows. We construct a
full binary tree with the i th level branching to represent the possible assignments for xi
and the leaves representing the result os substituting the corresponding assignment int
φ. The interior nodes are then converted to and gates at even levels and or gates at
odd levels. The resulting circuit can be evaluated in O(n) space. The entire circuit
cannot be stored as it is exponential in size, however space bounded algorithms can be
combined.
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cont.

The proof of this relies on reachability and essentially a restatement of Savitch’s
Theorem. Suppose that M decides L in polynomial space. Let xL be an input to M of
size n and consider the configuration graph of M on input x . We know that for some

integer k it has at most 2nk
configurations. So each configuration can be encoded as a

nk bit vector. For each integer i we will now compute a boolean expression ψi with free
variables in the set A ∪ B = {a1, . . . , ank , b1, . . . , bnk } such that ψi is true iff for a truth
assignment that corresponds to two states a = a1 . . . ank and b = b1 . . . bnk if there is
a path between a and b in the configuration graph of length at most 2i .
ψ0(a, b) simply states that the configurations a and b are equal or that a follows from b
in one step. ψ0 can be written as the disjunction of O(nk ) implicants each containing
O(nk ) literals. When computing ψi+1 from ψi setting ψi+1 = ∃z[ψi(a, z) ∧ ψi(z, b)] is
unfeasible as it produces exponentially large expressions.
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cont.

Instead we want to use only one copy of ψi so instead we have this expression
ψi+1 = ∃z∀x∀y [((x = a ∧ y = z) ∨ (x = z ∧ y = b)) → ψi(a, y)] where x, y , z are
blocks of nk variables. Now that we have a valid definition of each φi we now need to
get them into a from recognizable by QSAT. First we need to get it into prenex normal
form however the quantifiers of ψi can simply be migrated to the front behind those of
ψi+1. However the expression still needs to be converted to CNF form, however the
space requirements are large so instead a conversion to DNF will be made. This can
be done using the DNF of ψi followed by 16n2k implicants. For integers 1 ≤ i , j ≤ nk

there are 16 implicants of the form (xi ∧ ai ∧ xj ∧ zj) each corresponding to a way to
make ((x = a ∧ y = z) ∨ (x = z ∧ y = b)) false. To obtain ψnk we add to ψ0, nk sets
of implicants and prefix the result with nk layers of quantifiers. Thus any problem in
PSPACE can be reduced to coQSAT and so ant problem in coPSPACE = PSPACE can
be reduced to QSAT.
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Theorem

QSAT is AP-complete

Proof.

It is clear that QSAT is in AP.
To show that it is AP-complete a variation of Cook’s theorem is used to capture the
computation of a machine which accepts L ∈ AP. The only difference is that the
nondeterministic state is universal if the current state is in KAND and existential
otherwise. The alternating Turing Machine can be standardized so that successors of
states in KAND are in KOR and vice versa. By the addition of padding variables to
ensure strict quantifier alternation the resultant expression is a QSAT expression
satisfied iff the corresponding input is accepted by M.

Theorem

AP = PSPACE

Proof.

As both AP and PSPACE are closed under reductions and as they share a complete
problem they are equivalent.
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What is Geography

Geography is a 2-player game in which players take turns naming cities, with a
pre-specified starting city. Each city named has to start with the last letter in the name
of the previous cities, and cities cannot be named twice. Any player who is unable to
name a valid city looses.

Example

A valid chain of named cities is as follows.
Athens, Syracuse, El Paso, ...

Geography as a decision problem

For a given set C of cities does player 1 have a winning strategy. IE, is there a city
player 1 can pick such that no matter what city player 2 picks, there is a city player 1
can pick such that ... player 1 wins.
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Geography as a graph

For each city c ∈ C there is a node vc in the graph G. Given nodes vc1 and vc2 in G,
there is an edge from vc1 to vc2 if city c2 begins with the last letter of c2.

Generalization

Thus a generalized version of the problem can be considered as follows, given a
directed graph G(V ,E) and a starting node v0 if players take turns selecting edges to
form a simple path can player 1 force player 2 to select an edge that forms a cycle.
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Theorem

Geography is PSPACE complete.

Proof.

Part 1: Geography∈PSPACE. Construct from an instance of Geography a ”game tree”
where each node in the tree represents a possible state of the game and two nodes
are connected if there is a move which gets you from one state to the other. Each leaf
node in the tree is then given a value of 1 or 0 depending on whether player 1 wins or
loses. And each remaining node is treated as an and gate if it’s player 2’s move or an
or gate if it’s player 1’s move. As this tree has depth |V | it can be evaluated in
polynomial space one branch at a time.
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Proof.

Part 2: Geography if PSPACE complete. We will show this by reducing QSAT to
Geography. A QSAT formula ψ = ∃x1∀x2 . . .Qxnφ(x1, x2, . . . , xn) is converted to a
graph G as follows. Each variable xi is converted to a choice widget, these ar then
chained such that player 1 makes a choice for x1, player 2 makes a choice for x2, and
so on. The last widget is then connected to a set of nodes, one for each clause, and
each of these is connected to some of the other widgets such that if that clause is not
satisfied by the choices for x1, x2, . . . xn then any path from that node leads to an
already chosen node. Thus if φ ∈ QSAT then there exists a choice for x1 such that for
all choices of x2 such that ... for all clauses l in φ, l is satisfied. Meaning that, by
construction, G ∈ Geography . Similarly if ψ 6∈ QSAT , G 6∈ Geography .
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