
Outline

A Randomized Algorithm for Primality

Piotr Wojciechowski1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

Wojciechowski Primality

Outline

Outline

1 Looking at Primality
An attempt at a simple algorithm
Properties of square roots modulo a prime
Gauss’s Lemma
Legendre’s Law of Quadratic Reciprocity

2 Computing (M|N) and a Randomized Primality Algorithm
(M|N) can be computed in polynomial time
(M|N) is useful when determining Primality
Randomized Algorithm for Primality

Wojciechowski Primality

Outline

Outline

1 Looking at Primality
An attempt at a simple algorithm
Properties of square roots modulo a prime
Gauss’s Lemma
Legendre’s Law of Quadratic Reciprocity

2 Computing (M|N) and a Randomized Primality Algorithm
(M|N) can be computed in polynomial time
(M|N) is useful when determining Primality
Randomized Algorithm for Primality

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Outline

1 Looking at Primality
An attempt at a simple algorithm
Properties of square roots modulo a prime
Gauss’s Lemma
Legendre’s Law of Quadratic Reciprocity

2 Computing (M|N) and a Randomized Primality Algorithm
(M|N) can be computed in polynomial time
(M|N) is useful when determining Primality
Randomized Algorithm for Primality

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that there is a polynomial time algorithm for testing Primality

Attempt at a simple algorithm

1 Pick a random residue a mod N
2 If aN−1 6≡ 1modN answer N is composite
3 Otherwise answer N is probably prime.

Cases of Algorithm failure

However this algorithm fails due to numbers like N = 561 which have the property that
for all residues r ∈ Φ(N), rN−1 ≡ 1 mod N. Such numbers are referred to as
Carmichael Numbers. The Carmichael numbers have this property is because for all
primes p|N, p − 1|N − 1.

Example

For N = 591 we have that 561 = 3 · 11 · 17 and 560 = 2 · 280, 560 = 10 · 56, and
560 = 16 · 35.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that there is a polynomial time algorithm for testing Primality

Attempt at a simple algorithm

1 Pick a random residue a mod N
2 If aN−1 6≡ 1modN answer N is composite
3 Otherwise answer N is probably prime.

Cases of Algorithm failure

However this algorithm fails due to numbers like N = 561 which have the property that
for all residues r ∈ Φ(N), rN−1 ≡ 1 mod N. Such numbers are referred to as
Carmichael Numbers. The Carmichael numbers have this property is because for all
primes p|N, p − 1|N − 1.

Example

For N = 591 we have that 561 = 3 · 11 · 17 and 560 = 2 · 280, 560 = 10 · 56, and
560 = 16 · 35.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that there is a polynomial time algorithm for testing Primality

Attempt at a simple algorithm

1 Pick a random residue a mod N
2 If aN−1 6≡ 1modN answer N is composite
3 Otherwise answer N is probably prime.

Cases of Algorithm failure

However this algorithm fails due to numbers like N = 561 which have the property that
for all residues r ∈ Φ(N), rN−1 ≡ 1 mod N. Such numbers are referred to as
Carmichael Numbers. The Carmichael numbers have this property is because for all
primes p|N, p − 1|N − 1.

Example

For N = 591 we have that 561 = 3 · 11 · 17 and 560 = 2 · 280, 560 = 10 · 56, and
560 = 16 · 35.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that there is a polynomial time algorithm for testing Primality

Attempt at a simple algorithm

1 Pick a random residue a mod N
2 If aN−1 6≡ 1modN answer N is composite
3 Otherwise answer N is probably prime.

Cases of Algorithm failure

However this algorithm fails due to numbers like N = 561 which have the property that
for all residues r ∈ Φ(N), rN−1 ≡ 1 mod N. Such numbers are referred to as
Carmichael Numbers. The Carmichael numbers have this property is because for all
primes p|N, p − 1|N − 1.

Example

For N = 591 we have that 561 = 3 · 11 · 17 and 560 = 2 · 280, 560 = 10 · 56, and
560 = 16 · 35.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that there is a polynomial time algorithm for testing Primality

Attempt at a simple algorithm

1 Pick a random residue a mod N
2 If aN−1 6≡ 1modN answer N is composite
3 Otherwise answer N is probably prime.

Cases of Algorithm failure

However this algorithm fails due to numbers like N = 561 which have the property that
for all residues r ∈ Φ(N), rN−1 ≡ 1 mod N. Such numbers are referred to as
Carmichael Numbers. The Carmichael numbers have this property is because for all
primes p|N, p − 1|N − 1.

Example

For N = 591 we have that 561 = 3 · 11 · 17 and 560 = 2 · 280, 560 = 10 · 56, and
560 = 16 · 35.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that there is a polynomial time algorithm for testing Primality

Attempt at a simple algorithm

1 Pick a random residue a mod N
2 If aN−1 6≡ 1modN answer N is composite
3 Otherwise answer N is probably prime.

Cases of Algorithm failure

However this algorithm fails due to numbers like N = 561 which have the property that
for all residues r ∈ Φ(N), rN−1 ≡ 1 mod N. Such numbers are referred to as
Carmichael Numbers. The Carmichael numbers have this property is because for all
primes p|N, p − 1|N − 1.

Example

For N = 591 we have that 561 = 3 · 11 · 17 and 560 = 2 · 280, 560 = 10 · 56, and
560 = 16 · 35.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that there is a polynomial time algorithm for testing Primality

Attempt at a simple algorithm

1 Pick a random residue a mod N
2 If aN−1 6≡ 1modN answer N is composite
3 Otherwise answer N is probably prime.

Cases of Algorithm failure

However this algorithm fails due to numbers like N = 561 which have the property that
for all residues r ∈ Φ(N), rN−1 ≡ 1 mod N. Such numbers are referred to as
Carmichael Numbers. The Carmichael numbers have this property is because for all
primes p|N, p − 1|N − 1.

Example

For N = 591 we have that 561 = 3 · 11 · 17 and 560 = 2 · 280, 560 = 10 · 56, and
560 = 16 · 35.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Outline

1 Looking at Primality
An attempt at a simple algorithm
Properties of square roots modulo a prime
Gauss’s Lemma
Legendre’s Law of Quadratic Reciprocity

2 Computing (M|N) and a Randomized Primality Algorithm
(M|N) can be computed in polynomial time
(M|N) is useful when determining Primality
Randomized Algorithm for Primality

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that the equation x2 ≡ a mod p where p is a prime and a 6≡ 0 mod p
has 0 or 2 solutions.

Theorem

Let p be a prime, if a
p−1

2 ≡ 1 mod p then the equation x2 ≡ a mod p has two roots.

If a
p−1

2 6≡ 1 mod p (and a 6≡ 0 mod p) then a
p−1

2 ≡ −1 mod p and the equation
x2 ≡ a mod p has no roots.

Proof.

As p is prime then it has a primitive root r . Thus a ≡ r i mod p for some i < p − 1.
There are two cases.
If, i = 2 ∗ j is even, then a

p−1
2 ≡ r j(p−1) ≡ 1 mod p and a has two square roots, r j and

r j+ p−1
2 .

This accounts for half of the residues mod p and since each already has two square
roots none of the remaining residues have any. So, if i = 2j + 1 is odd then then r i has

no square roots p, and a
p−1

2 ≡ r
p−1

2 mod p. We have that the latter number is a

square root of 1 mod p and is not 1 mod p thus a
p−1

2 ≡ −1 mod p.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that the equation x2 ≡ a mod p where p is a prime and a 6≡ 0 mod p
has 0 or 2 solutions.

Theorem

Let p be a prime, if a
p−1

2 ≡ 1 mod p then the equation x2 ≡ a mod p has two roots.

If a
p−1

2 6≡ 1 mod p (and a 6≡ 0 mod p) then a
p−1

2 ≡ −1 mod p and the equation
x2 ≡ a mod p has no roots.

Proof.

As p is prime then it has a primitive root r . Thus a ≡ r i mod p for some i < p − 1.
There are two cases.
If, i = 2 ∗ j is even, then a

p−1
2 ≡ r j(p−1) ≡ 1 mod p and a has two square roots, r j and

r j+ p−1
2 .

This accounts for half of the residues mod p and since each already has two square
roots none of the remaining residues have any. So, if i = 2j + 1 is odd then then r i has

no square roots p, and a
p−1

2 ≡ r
p−1

2 mod p. We have that the latter number is a

square root of 1 mod p and is not 1 mod p thus a
p−1

2 ≡ −1 mod p.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that the equation x2 ≡ a mod p where p is a prime and a 6≡ 0 mod p
has 0 or 2 solutions.

Theorem

Let p be a prime, if a
p−1

2 ≡ 1 mod p then the equation x2 ≡ a mod p has two roots.

If a
p−1

2 6≡ 1 mod p (and a 6≡ 0 mod p) then a
p−1

2 ≡ −1 mod p and the equation
x2 ≡ a mod p has no roots.

Proof.

As p is prime then it has a primitive root r . Thus a ≡ r i mod p for some i < p − 1.
There are two cases.
If, i = 2 ∗ j is even, then a

p−1
2 ≡ r j(p−1) ≡ 1 mod p and a has two square roots, r j and

r j+ p−1
2 .

This accounts for half of the residues mod p and since each already has two square
roots none of the remaining residues have any. So, if i = 2j + 1 is odd then then r i has

no square roots p, and a
p−1

2 ≡ r
p−1

2 mod p. We have that the latter number is a

square root of 1 mod p and is not 1 mod p thus a
p−1

2 ≡ −1 mod p.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that the equation x2 ≡ a mod p where p is a prime and a 6≡ 0 mod p
has 0 or 2 solutions.

Theorem

Let p be a prime, if a
p−1

2 ≡ 1 mod p then the equation x2 ≡ a mod p has two roots.

If a
p−1

2 6≡ 1 mod p (and a 6≡ 0 mod p) then a
p−1

2 ≡ −1 mod p and the equation
x2 ≡ a mod p has no roots.

Proof.

As p is prime then it has a primitive root r . Thus a ≡ r i mod p for some i < p − 1.
There are two cases.
If, i = 2 ∗ j is even, then a

p−1
2 ≡ r j(p−1) ≡ 1 mod p and a has two square roots, r j and

r j+ p−1
2 .

This accounts for half of the residues mod p and since each already has two square
roots none of the remaining residues have any. So, if i = 2j + 1 is odd then then r i has

no square roots p, and a
p−1

2 ≡ r
p−1

2 mod p. We have that the latter number is a

square root of 1 mod p and is not 1 mod p thus a
p−1

2 ≡ −1 mod p.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that the equation x2 ≡ a mod p where p is a prime and a 6≡ 0 mod p
has 0 or 2 solutions.

Theorem

Let p be a prime, if a
p−1

2 ≡ 1 mod p then the equation x2 ≡ a mod p has two roots.

If a
p−1

2 6≡ 1 mod p (and a 6≡ 0 mod p) then a
p−1

2 ≡ −1 mod p and the equation
x2 ≡ a mod p has no roots.

Proof.

As p is prime then it has a primitive root r . Thus a ≡ r i mod p for some i < p − 1.
There are two cases.
If, i = 2 ∗ j is even, then a

p−1
2 ≡ r j(p−1) ≡ 1 mod p and a has two square roots, r j and

r j+ p−1
2 .

This accounts for half of the residues mod p and since each already has two square
roots none of the remaining residues have any. So, if i = 2j + 1 is odd then then r i has

no square roots p, and a
p−1

2 ≡ r
p−1

2 mod p. We have that the latter number is a

square root of 1 mod p and is not 1 mod p thus a
p−1

2 ≡ −1 mod p.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that the equation x2 ≡ a mod p where p is a prime and a 6≡ 0 mod p
has 0 or 2 solutions.

Theorem

Let p be a prime, if a
p−1

2 ≡ 1 mod p then the equation x2 ≡ a mod p has two roots.

If a
p−1

2 6≡ 1 mod p (and a 6≡ 0 mod p) then a
p−1

2 ≡ −1 mod p and the equation
x2 ≡ a mod p has no roots.

Proof.

As p is prime then it has a primitive root r . Thus a ≡ r i mod p for some i < p − 1.
There are two cases.
If, i = 2 ∗ j is even, then a

p−1
2 ≡ r j(p−1) ≡ 1 mod p and a has two square roots, r j and

r j+ p−1
2 .

This accounts for half of the residues mod p and since each already has two square
roots none of the remaining residues have any. So, if i = 2j + 1 is odd then then r i has

no square roots p, and a
p−1

2 ≡ r
p−1

2 mod p. We have that the latter number is a

square root of 1 mod p and is not 1 mod p thus a
p−1

2 ≡ −1 mod p.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that the equation x2 ≡ a mod p where p is a prime and a 6≡ 0 mod p
has 0 or 2 solutions.

Theorem

Let p be a prime, if a
p−1

2 ≡ 1 mod p then the equation x2 ≡ a mod p has two roots.

If a
p−1

2 6≡ 1 mod p (and a 6≡ 0 mod p) then a
p−1

2 ≡ −1 mod p and the equation
x2 ≡ a mod p has no roots.

Proof.

As p is prime then it has a primitive root r . Thus a ≡ r i mod p for some i < p − 1.
There are two cases.
If, i = 2 ∗ j is even, then a

p−1
2 ≡ r j(p−1) ≡ 1 mod p and a has two square roots, r j and

r j+ p−1
2 .

This accounts for half of the residues mod p and since each already has two square
roots none of the remaining residues have any. So, if i = 2j + 1 is odd then then r i has

no square roots p, and a
p−1

2 ≡ r
p−1

2 mod p. We have that the latter number is a

square root of 1 mod p and is not 1 mod p thus a
p−1

2 ≡ −1 mod p.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

Want to show that the equation x2 ≡ a mod p where p is a prime and a 6≡ 0 mod p
has 0 or 2 solutions.

Theorem

Let p be a prime, if a
p−1

2 ≡ 1 mod p then the equation x2 ≡ a mod p has two roots.

If a
p−1

2 6≡ 1 mod p (and a 6≡ 0 mod p) then a
p−1

2 ≡ −1 mod p and the equation
x2 ≡ a mod p has no roots.

Proof.

As p is prime then it has a primitive root r . Thus a ≡ r i mod p for some i < p − 1.
There are two cases.
If, i = 2 ∗ j is even, then a

p−1
2 ≡ r j(p−1) ≡ 1 mod p and a has two square roots, r j and

r j+ p−1
2 .

This accounts for half of the residues mod p and since each already has two square
roots none of the remaining residues have any. So, if i = 2j + 1 is odd then then r i has

no square roots p, and a
p−1

2 ≡ r
p−1

2 mod p. We have that the latter number is a

square root of 1 mod p and is not 1 mod p thus a
p−1

2 ≡ −1 mod p.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Example

Let p = 5 and r = 2, as 3 ≡ 23 mod 5 we have that 32 ≡ −1 mod 5 and 3 has no
square roots mod 5.
As 4 ≡ 22 mod 5 we have that 42 ≡ 1 mod 5 and 4 has two square roots, 2 and 3,
mod 5.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Outline

1 Looking at Primality
An attempt at a simple algorithm
Properties of square roots modulo a prime
Gauss’s Lemma
Legendre’s Law of Quadratic Reciprocity

2 Computing (M|N) and a Randomized Primality Algorithm
(M|N) can be computed in polynomial time
(M|N) is useful when determining Primality
Randomized Algorithm for Primality

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Definition (Legendre Symbol)

Let p 6= 2 be a prime and a 6≡ 0 mod p, the Legendre Symbol of a and p, denoted

(a|p) is simply the value, 1 or −1, of a
p−1

2 mod p

Theorem (Gauss’s Lemma)

Let p be a prime, (p|q) = (−1)m where m is the number of residues in the set R = {q
mod p, 2q mod p, . . . ,

p−1
2 q mod p} that are greater than p−1

2 .

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p. Let R′

be the set of residues that result from R if each of the m elements a ∈ R such that
a ≥ p−1

2 are replaced by p − a. So all elements in R′ are no more than p−1
2 , and,

actually, R′ = {1, 2, . . . ,
p−1

2 }. We also have that R′ = {±q mod p,±2q

mod p, . . . ,± p−1
2 q mod p} where exactly m elements are negated. Taking the

product of all the elements in each of these two sets yields that
p−1

2 ! ≡ (−1)mq
p−1

2
p−1

2 ! mod p and the lemma follows.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Definition (Legendre Symbol)

Let p 6= 2 be a prime and a 6≡ 0 mod p, the Legendre Symbol of a and p, denoted

(a|p) is simply the value, 1 or −1, of a
p−1

2 mod p

Theorem (Gauss’s Lemma)

Let p be a prime, (p|q) = (−1)m where m is the number of residues in the set R = {q
mod p, 2q mod p, . . . ,

p−1
2 q mod p} that are greater than p−1

2 .

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p. Let R′

be the set of residues that result from R if each of the m elements a ∈ R such that
a ≥ p−1

2 are replaced by p − a. So all elements in R′ are no more than p−1
2 , and,

actually, R′ = {1, 2, . . . ,
p−1

2 }. We also have that R′ = {±q mod p,±2q

mod p, . . . ,± p−1
2 q mod p} where exactly m elements are negated. Taking the

product of all the elements in each of these two sets yields that
p−1

2 ! ≡ (−1)mq
p−1

2
p−1

2 ! mod p and the lemma follows.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Definition (Legendre Symbol)

Let p 6= 2 be a prime and a 6≡ 0 mod p, the Legendre Symbol of a and p, denoted

(a|p) is simply the value, 1 or −1, of a
p−1

2 mod p

Theorem (Gauss’s Lemma)

Let p be a prime, (p|q) = (−1)m where m is the number of residues in the set R = {q
mod p, 2q mod p, . . . ,

p−1
2 q mod p} that are greater than p−1

2 .

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p. Let R′

be the set of residues that result from R if each of the m elements a ∈ R such that
a ≥ p−1

2 are replaced by p − a. So all elements in R′ are no more than p−1
2 , and,

actually, R′ = {1, 2, . . . ,
p−1

2 }. We also have that R′ = {±q mod p,±2q

mod p, . . . ,± p−1
2 q mod p} where exactly m elements are negated. Taking the

product of all the elements in each of these two sets yields that
p−1

2 ! ≡ (−1)mq
p−1

2
p−1

2 ! mod p and the lemma follows.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Definition (Legendre Symbol)

Let p 6= 2 be a prime and a 6≡ 0 mod p, the Legendre Symbol of a and p, denoted

(a|p) is simply the value, 1 or −1, of a
p−1

2 mod p

Theorem (Gauss’s Lemma)

Let p be a prime, (p|q) = (−1)m where m is the number of residues in the set R = {q
mod p, 2q mod p, . . . ,

p−1
2 q mod p} that are greater than p−1

2 .

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p. Let R′

be the set of residues that result from R if each of the m elements a ∈ R such that
a ≥ p−1

2 are replaced by p − a. So all elements in R′ are no more than p−1
2 , and,

actually, R′ = {1, 2, . . . ,
p−1

2 }. We also have that R′ = {±q mod p,±2q

mod p, . . . ,± p−1
2 q mod p} where exactly m elements are negated. Taking the

product of all the elements in each of these two sets yields that
p−1

2 ! ≡ (−1)mq
p−1

2
p−1

2 ! mod p and the lemma follows.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Definition (Legendre Symbol)

Let p 6= 2 be a prime and a 6≡ 0 mod p, the Legendre Symbol of a and p, denoted

(a|p) is simply the value, 1 or −1, of a
p−1

2 mod p

Theorem (Gauss’s Lemma)

Let p be a prime, (p|q) = (−1)m where m is the number of residues in the set R = {q
mod p, 2q mod p, . . . ,

p−1
2 q mod p} that are greater than p−1

2 .

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p. Let R′

be the set of residues that result from R if each of the m elements a ∈ R such that
a ≥ p−1

2 are replaced by p − a. So all elements in R′ are no more than p−1
2 , and,

actually, R′ = {1, 2, . . . ,
p−1

2 }. We also have that R′ = {±q mod p,±2q

mod p, . . . ,± p−1
2 q mod p} where exactly m elements are negated. Taking the

product of all the elements in each of these two sets yields that
p−1

2 ! ≡ (−1)mq
p−1

2
p−1

2 ! mod p and the lemma follows.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Definition (Legendre Symbol)

Let p 6= 2 be a prime and a 6≡ 0 mod p, the Legendre Symbol of a and p, denoted

(a|p) is simply the value, 1 or −1, of a
p−1

2 mod p

Theorem (Gauss’s Lemma)

Let p be a prime, (p|q) = (−1)m where m is the number of residues in the set R = {q
mod p, 2q mod p, . . . ,

p−1
2 q mod p} that are greater than p−1

2 .

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p. Let R′

be the set of residues that result from R if each of the m elements a ∈ R such that
a ≥ p−1

2 are replaced by p − a. So all elements in R′ are no more than p−1
2 , and,

actually, R′ = {1, 2, . . . ,
p−1

2 }. We also have that R′ = {±q mod p,±2q

mod p, . . . ,± p−1
2 q mod p} where exactly m elements are negated. Taking the

product of all the elements in each of these two sets yields that
p−1

2 ! ≡ (−1)mq
p−1

2
p−1

2 ! mod p and the lemma follows.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Definition (Legendre Symbol)

Let p 6= 2 be a prime and a 6≡ 0 mod p, the Legendre Symbol of a and p, denoted

(a|p) is simply the value, 1 or −1, of a
p−1

2 mod p

Theorem (Gauss’s Lemma)

Let p be a prime, (p|q) = (−1)m where m is the number of residues in the set R = {q
mod p, 2q mod p, . . . ,

p−1
2 q mod p} that are greater than p−1

2 .

Gauss’s Lemma.

First all residues in R are distinct and no two elements in R add up to 0 mod p. Let R′

be the set of residues that result from R if each of the m elements a ∈ R such that
a ≥ p−1

2 are replaced by p − a. So all elements in R′ are no more than p−1
2 , and,

actually, R′ = {1, 2, . . . ,
p−1

2 }. We also have that R′ = {±q mod p,±2q

mod p, . . . ,± p−1
2 q mod p} where exactly m elements are negated. Taking the

product of all the elements in each of these two sets yields that
p−1

2 ! ≡ (−1)mq
p−1

2
p−1

2 ! mod p and the lemma follows.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Example

(4, 5) = 1 = 12 and R = {4 mod 5, 2 ∗ 4 mod 5} = {4, 3} which has two elements
greater than 2.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Outline

1 Looking at Primality
An attempt at a simple algorithm
Properties of square roots modulo a prime
Gauss’s Lemma
Legendre’s Law of Quadratic Reciprocity

2 Computing (M|N) and a Randomized Primality Algorithm
(M|N) can be computed in polynomial time
(M|N) is useful when determining Primality
Randomized Algorithm for Primality

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem (Legendre’s Law of Quadratic Reciprocity)

Let p 6= 2 and q 6= 2 be primes, then (p|q) · (q|p) = (−1)
p−1

2
q−1

2 .

Legendre’s Law of Quadratic Reciprocity.

First we calculate (q|p). Let us look at the set R′ from the previous proof, and consider

the sum of its elements mod 2. As R′ = 1, 2, . . . ,
p−1

2 then this sum is simply
P

p−1
2

i=1 i
mod 2. But if we look at how R′ was derived we get that the sum is

q
P

p−1
2

i=1 i − p
P

p−1
2

i=1 ⌊ iq
p ⌋ + mpp mod 2. The first term is simply sum of the original

{q, 2q, . . . ,
p−1

2 q}. The second term accounts for taking the residues mod p. The
third term accounts for replacing mp elements a with p − a. Thus equating these two

sums and simplifying we get that mp =
P

p−1
2

i=1 ⌊ iq
p ⌋. Similarly mq =

P

q−1
2

i=1 ⌊ ip
q ⌋.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem (Legendre’s Law of Quadratic Reciprocity)

Let p 6= 2 and q 6= 2 be primes, then (p|q) · (q|p) = (−1)
p−1

2
q−1

2 .

Legendre’s Law of Quadratic Reciprocity.

First we calculate (q|p). Let us look at the set R′ from the previous proof, and consider

the sum of its elements mod 2. As R′ = 1, 2, . . . ,
p−1

2 then this sum is simply
P

p−1
2

i=1 i
mod 2. But if we look at how R′ was derived we get that the sum is

q
P

p−1
2

i=1 i − p
P

p−1
2

i=1 ⌊ iq
p ⌋ + mpp mod 2. The first term is simply sum of the original

{q, 2q, . . . ,
p−1

2 q}. The second term accounts for taking the residues mod p. The
third term accounts for replacing mp elements a with p − a. Thus equating these two

sums and simplifying we get that mp =
P

p−1
2

i=1 ⌊ iq
p ⌋. Similarly mq =

P

q−1
2

i=1 ⌊ ip
q ⌋.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem (Legendre’s Law of Quadratic Reciprocity)

Let p 6= 2 and q 6= 2 be primes, then (p|q) · (q|p) = (−1)
p−1

2
q−1

2 .

Legendre’s Law of Quadratic Reciprocity.

First we calculate (q|p). Let us look at the set R′ from the previous proof, and consider

the sum of its elements mod 2. As R′ = 1, 2, . . . ,
p−1

2 then this sum is simply
P

p−1
2

i=1 i
mod 2. But if we look at how R′ was derived we get that the sum is

q
P

p−1
2

i=1 i − p
P

p−1
2

i=1 ⌊ iq
p ⌋ + mpp mod 2. The first term is simply sum of the original

{q, 2q, . . . ,
p−1

2 q}. The second term accounts for taking the residues mod p. The
third term accounts for replacing mp elements a with p − a. Thus equating these two

sums and simplifying we get that mp =
P

p−1
2

i=1 ⌊ iq
p ⌋. Similarly mq =

P

q−1
2

i=1 ⌊ ip
q ⌋.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem (Legendre’s Law of Quadratic Reciprocity)

Let p 6= 2 and q 6= 2 be primes, then (p|q) · (q|p) = (−1)
p−1

2
q−1

2 .

Legendre’s Law of Quadratic Reciprocity.

First we calculate (q|p). Let us look at the set R′ from the previous proof, and consider

the sum of its elements mod 2. As R′ = 1, 2, . . . ,
p−1

2 then this sum is simply
P

p−1
2

i=1 i
mod 2. But if we look at how R′ was derived we get that the sum is

q
P

p−1
2

i=1 i − p
P

p−1
2

i=1 ⌊ iq
p ⌋ + mpp mod 2. The first term is simply sum of the original

{q, 2q, . . . ,
p−1

2 q}. The second term accounts for taking the residues mod p. The
third term accounts for replacing mp elements a with p − a. Thus equating these two

sums and simplifying we get that mp =
P

p−1
2

i=1 ⌊ iq
p ⌋. Similarly mq =

P

q−1
2

i=1 ⌊ ip
q ⌋.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem (Legendre’s Law of Quadratic Reciprocity)

Let p 6= 2 and q 6= 2 be primes, then (p|q) · (q|p) = (−1)
p−1

2
q−1

2 .

Legendre’s Law of Quadratic Reciprocity.

First we calculate (q|p). Let us look at the set R′ from the previous proof, and consider

the sum of its elements mod 2. As R′ = 1, 2, . . . ,
p−1

2 then this sum is simply
P

p−1
2

i=1 i
mod 2. But if we look at how R′ was derived we get that the sum is

q
P

p−1
2

i=1 i − p
P

p−1
2

i=1 ⌊ iq
p ⌋ + mpp mod 2. The first term is simply sum of the original

{q, 2q, . . . ,
p−1

2 q}. The second term accounts for taking the residues mod p. The
third term accounts for replacing mp elements a with p − a. Thus equating these two

sums and simplifying we get that mp =
P

p−1
2

i=1 ⌊ iq
p ⌋. Similarly mq =

P

q−1
2

i=1 ⌊ ip
q ⌋.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem (Legendre’s Law of Quadratic Reciprocity)

Let p 6= 2 and q 6= 2 be primes, then (p|q) · (q|p) = (−1)
p−1

2
q−1

2 .

Legendre’s Law of Quadratic Reciprocity.

First we calculate (q|p). Let us look at the set R′ from the previous proof, and consider

the sum of its elements mod 2. As R′ = 1, 2, . . . ,
p−1

2 then this sum is simply
P

p−1
2

i=1 i
mod 2. But if we look at how R′ was derived we get that the sum is

q
P

p−1
2

i=1 i − p
P

p−1
2

i=1 ⌊ iq
p ⌋ + mpp mod 2. The first term is simply sum of the original

{q, 2q, . . . ,
p−1

2 q}. The second term accounts for taking the residues mod p. The
third term accounts for replacing mp elements a with p − a. Thus equating these two

sums and simplifying we get that mp =
P

p−1
2

i=1 ⌊ iq
p ⌋. Similarly mq =

P

q−1
2

i=1 ⌊ ip
q ⌋.

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Proof (cont.)

It we look at the values of mp and mq geometrically we see that mp is the number of
positive integer points in the p−1

2 × q−1
2 rectangle bellow the line py = qx and mq is

the number of these points above that line.

py = qx

(q−1
2 , p−1

2)

Proof.

Thus (p|q) · (q|p) = (−1)mp+mq = (−1)
p−1

2
q−1

2 .

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

We will now extend the Legendre Symbol to cover non-prime numbers.

Definition (Legendre Symbol)

Let N = q1q2 . . . qn where the qis are odd primes. We define (M|N) =
Qn

i=1(M|qi)

Example

(4|15) = (4|3)(4|5) = (4 mod 3) · (42 mod 5) = 1

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

We will now extend the Legendre Symbol to cover non-prime numbers.

Definition (Legendre Symbol)

Let N = q1q2 . . . qn where the qis are odd primes. We define (M|N) =
Qn

i=1(M|qi)

Example

(4|15) = (4|3)(4|5) = (4 mod 3) · (42 mod 5) = 1

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Goal

We will now extend the Legendre Symbol to cover non-prime numbers.

Definition (Legendre Symbol)

Let N = q1q2 . . . qn where the qis are odd primes. We define (M|N) =
Qn

i=1(M|qi)

Example

(4|15) = (4|3)(4|5) = (4 mod 3) · (42 mod 5) = 1

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem

1 (M1M2|N) = (M1|N)(M2|N)

2 (M + N|N) = (M|N)

3 (M|N)(N|M) = (−1)
M−1

2
N−1

2

Proof.

Let N = q1 . . . qn be the prime factorization of N and M = p1 . . . pm be the prime
factorization of M.

1 (M1M2|N) =
Qn

i=1(M1M2|qi) =
Qn

i=1(M1|qi)(M2|qi) = (M1|N)(M2|N)

2 (M + N|N) =
Qn

i=1(M + N|qi) =
Qn

i=1(M|qi) = (M|N)

3 (M|N)(N|M) =
Qn

i=1
Qm

j=1(pj |qi)(qi |pj) = (−1)
Pn

i=1
Pm

j=1
pj−1

2
qi−1

2 =

(−1)
Pn

i=1
qi−1

2
Pm

j=1
pj−1

2 = (−1)
M−1

2
N−1

2

The final step for the third part holds because if a and b are odd then
a−1

2 + b−1
2 ≡ ab−1

2 mod 2

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem

1 (M1M2|N) = (M1|N)(M2|N)

2 (M + N|N) = (M|N)

3 (M|N)(N|M) = (−1)
M−1

2
N−1

2

Proof.

Let N = q1 . . . qn be the prime factorization of N and M = p1 . . . pm be the prime
factorization of M.

1 (M1M2|N) =
Qn

i=1(M1M2|qi) =
Qn

i=1(M1|qi)(M2|qi) = (M1|N)(M2|N)

2 (M + N|N) =
Qn

i=1(M + N|qi) =
Qn

i=1(M|qi) = (M|N)

3 (M|N)(N|M) =
Qn

i=1
Qm

j=1(pj |qi)(qi |pj) = (−1)
Pn

i=1
Pm

j=1
pj−1

2
qi−1

2 =

(−1)
Pn

i=1
qi−1

2
Pm

j=1
pj−1

2 = (−1)
M−1

2
N−1

2

The final step for the third part holds because if a and b are odd then
a−1

2 + b−1
2 ≡ ab−1

2 mod 2

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem

1 (M1M2|N) = (M1|N)(M2|N)

2 (M + N|N) = (M|N)

3 (M|N)(N|M) = (−1)
M−1

2
N−1

2

Proof.

Let N = q1 . . . qn be the prime factorization of N and M = p1 . . . pm be the prime
factorization of M.

1 (M1M2|N) =
Qn

i=1(M1M2|qi) =
Qn

i=1(M1|qi)(M2|qi) = (M1|N)(M2|N)

2 (M + N|N) =
Qn

i=1(M + N|qi) =
Qn

i=1(M|qi) = (M|N)

3 (M|N)(N|M) =
Qn

i=1
Qm

j=1(pj |qi)(qi |pj) = (−1)
Pn

i=1
Pm

j=1
pj−1

2
qi−1

2 =

(−1)
Pn

i=1
qi−1

2
Pm

j=1
pj−1

2 = (−1)
M−1

2
N−1

2

The final step for the third part holds because if a and b are odd then
a−1

2 + b−1
2 ≡ ab−1

2 mod 2

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem

1 (M1M2|N) = (M1|N)(M2|N)

2 (M + N|N) = (M|N)

3 (M|N)(N|M) = (−1)
M−1

2
N−1

2

Proof.

Let N = q1 . . . qn be the prime factorization of N and M = p1 . . . pm be the prime
factorization of M.

1 (M1M2|N) =
Qn

i=1(M1M2|qi) =
Qn

i=1(M1|qi)(M2|qi) = (M1|N)(M2|N)

2 (M + N|N) =
Qn

i=1(M + N|qi) =
Qn

i=1(M|qi) = (M|N)

3 (M|N)(N|M) =
Qn

i=1
Qm

j=1(pj |qi)(qi |pj) = (−1)
Pn

i=1
Pm

j=1
pj−1

2
qi−1

2 =

(−1)
Pn

i=1
qi−1

2
Pm

j=1
pj−1

2 = (−1)
M−1

2
N−1

2

The final step for the third part holds because if a and b are odd then
a−1

2 + b−1
2 ≡ ab−1

2 mod 2

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem

1 (M1M2|N) = (M1|N)(M2|N)

2 (M + N|N) = (M|N)

3 (M|N)(N|M) = (−1)
M−1

2
N−1

2

Proof.

Let N = q1 . . . qn be the prime factorization of N and M = p1 . . . pm be the prime
factorization of M.

1 (M1M2|N) =
Qn

i=1(M1M2|qi) =
Qn

i=1(M1|qi)(M2|qi) = (M1|N)(M2|N)

2 (M + N|N) =
Qn

i=1(M + N|qi) =
Qn

i=1(M|qi) = (M|N)

3 (M|N)(N|M) =
Qn

i=1
Qm

j=1(pj |qi)(qi |pj) = (−1)
Pn

i=1
Pm

j=1
pj−1

2
qi−1

2 =

(−1)
Pn

i=1
qi−1

2
Pm

j=1
pj−1

2 = (−1)
M−1

2
N−1

2

The final step for the third part holds because if a and b are odd then
a−1

2 + b−1
2 ≡ ab−1

2 mod 2

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem

1 (M1M2|N) = (M1|N)(M2|N)

2 (M + N|N) = (M|N)

3 (M|N)(N|M) = (−1)
M−1

2
N−1

2

Proof.

Let N = q1 . . . qn be the prime factorization of N and M = p1 . . . pm be the prime
factorization of M.

1 (M1M2|N) =
Qn

i=1(M1M2|qi) =
Qn

i=1(M1|qi)(M2|qi) = (M1|N)(M2|N)

2 (M + N|N) =
Qn

i=1(M + N|qi) =
Qn

i=1(M|qi) = (M|N)

3 (M|N)(N|M) =
Qn

i=1
Qm

j=1(pj |qi)(qi |pj) = (−1)
Pn

i=1
Pm

j=1
pj−1

2
qi−1

2 =

(−1)
Pn

i=1
qi−1

2
Pm

j=1
pj−1

2 = (−1)
M−1

2
N−1

2

The final step for the third part holds because if a and b are odd then
a−1

2 + b−1
2 ≡ ab−1

2 mod 2

Wojciechowski Primality

Primality
Algorithm

A simple Algorithm
Square Roots mod p
Gauss
Legendre

Theorem

1 (M1M2|N) = (M1|N)(M2|N)

2 (M + N|N) = (M|N)

3 (M|N)(N|M) = (−1)
M−1

2
N−1

2

Proof.

Let N = q1 . . . qn be the prime factorization of N and M = p1 . . . pm be the prime
factorization of M.

1 (M1M2|N) =
Qn

i=1(M1M2|qi) =
Qn

i=1(M1|qi)(M2|qi) = (M1|N)(M2|N)

2 (M + N|N) =
Qn

i=1(M + N|qi) =
Qn

i=1(M|qi) = (M|N)

3 (M|N)(N|M) =
Qn

i=1
Qm

j=1(pj |qi)(qi |pj) = (−1)
Pn

i=1
Pm

j=1
pj−1

2
qi−1

2 =

(−1)
Pn

i=1
qi−1

2
Pm

j=1
pj−1

2 = (−1)
M−1

2
N−1

2

The final step for the third part holds because if a and b are odd then
a−1

2 + b−1
2 ≡ ab−1

2 mod 2

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Outline

1 Looking at Primality
An attempt at a simple algorithm
Properties of square roots modulo a prime
Gauss’s Lemma
Legendre’s Law of Quadratic Reciprocity

2 Computing (M|N) and a Randomized Primality Algorithm
(M|N) can be computed in polynomial time
(M|N) is useful when determining Primality
Randomized Algorithm for Primality

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Goal

We now want to show that (M|N) can be computed without knowing the factorization of
M or N

Computing (M|N)

1 If M = 2 compute (M|N) = (2|N) = (−1)
N2

−1
8

2 If M = 2K is even compute (M|N) = (2|N)(K |N)

3 If M < N compute (M|N) = (−1)
M−1

2
N−1

2 · (N|M)

4 If M > N compute (M|N) = (M mod N|N)

Example

(21|55) = (−1)10∗27 ∗ (55|21) = (13|21) = (−1)6∗10(21|13) = (8|13) = (2|13)3 =
(−1)3∗21 = −1

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Goal

We now want to show that (M|N) can be computed without knowing the factorization of
M or N

Computing (M|N)

1 If M = 2 compute (M|N) = (2|N) = (−1)
N2

−1
8

2 If M = 2K is even compute (M|N) = (2|N)(K |N)

3 If M < N compute (M|N) = (−1)
M−1

2
N−1

2 · (N|M)

4 If M > N compute (M|N) = (M mod N|N)

Example

(21|55) = (−1)10∗27 ∗ (55|21) = (13|21) = (−1)6∗10(21|13) = (8|13) = (2|13)3 =
(−1)3∗21 = −1

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Goal

We now want to show that (M|N) can be computed without knowing the factorization of
M or N

Computing (M|N)

1 If M = 2 compute (M|N) = (2|N) = (−1)
N2

−1
8

2 If M = 2K is even compute (M|N) = (2|N)(K |N)

3 If M < N compute (M|N) = (−1)
M−1

2
N−1

2 · (N|M)

4 If M > N compute (M|N) = (M mod N|N)

Example

(21|55) = (−1)10∗27 ∗ (55|21) = (13|21) = (−1)6∗10(21|13) = (8|13) = (2|13)3 =
(−1)3∗21 = −1

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Goal

We now want to show that (M|N) can be computed without knowing the factorization of
M or N

Computing (M|N)

1 If M = 2 compute (M|N) = (2|N) = (−1)
N2

−1
8

2 If M = 2K is even compute (M|N) = (2|N)(K |N)

3 If M < N compute (M|N) = (−1)
M−1

2
N−1

2 · (N|M)

4 If M > N compute (M|N) = (M mod N|N)

Example

(21|55) = (−1)10∗27 ∗ (55|21) = (13|21) = (−1)6∗10(21|13) = (8|13) = (2|13)3 =
(−1)3∗21 = −1

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Goal

We now want to show that (M|N) can be computed without knowing the factorization of
M or N

Computing (M|N)

1 If M = 2 compute (M|N) = (2|N) = (−1)
N2

−1
8

2 If M = 2K is even compute (M|N) = (2|N)(K |N)

3 If M < N compute (M|N) = (−1)
M−1

2
N−1

2 · (N|M)

4 If M > N compute (M|N) = (M mod N|N)

Example

(21|55) = (−1)10∗27 ∗ (55|21) = (13|21) = (−1)6∗10(21|13) = (8|13) = (2|13)3 =
(−1)3∗21 = −1

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Goal

We now want to show that (M|N) can be computed without knowing the factorization of
M or N

Computing (M|N)

1 If M = 2 compute (M|N) = (2|N) = (−1)
N2

−1
8

2 If M = 2K is even compute (M|N) = (2|N)(K |N)

3 If M < N compute (M|N) = (−1)
M−1

2
N−1

2 · (N|M)

4 If M > N compute (M|N) = (M mod N|N)

Example

(21|55) = (−1)10∗27 ∗ (55|21) = (13|21) = (−1)6∗10(21|13) = (8|13) = (2|13)3 =
(−1)3∗21 = −1

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

(M|N) and gcd(M, N) can be computed in O(log(l = MN)3) time.

Proof.

The computation of powers of -1 is trivial if given the binary expansion of the exponent.
The computation of the exponents is also doable within this time frame as such
computations involve only multiplications additions and divisions each reduction of
(M|N) takes O(l2) time. As the algorithm takes O(l) reductions the entire algorithm
runs in the desired time. A similar argument shows that Euclid’s algorithm for finding
the GCD runs in similar time as the algorithms are similar.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

(M|N) and gcd(M, N) can be computed in O(log(l = MN)3) time.

Proof.

The computation of powers of -1 is trivial if given the binary expansion of the exponent.
The computation of the exponents is also doable within this time frame as such
computations involve only multiplications additions and divisions each reduction of
(M|N) takes O(l2) time. As the algorithm takes O(l) reductions the entire algorithm
runs in the desired time. A similar argument shows that Euclid’s algorithm for finding
the GCD runs in similar time as the algorithms are similar.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

(M|N) and gcd(M, N) can be computed in O(log(l = MN)3) time.

Proof.

The computation of powers of -1 is trivial if given the binary expansion of the exponent.
The computation of the exponents is also doable within this time frame as such
computations involve only multiplications additions and divisions each reduction of
(M|N) takes O(l2) time. As the algorithm takes O(l) reductions the entire algorithm
runs in the desired time. A similar argument shows that Euclid’s algorithm for finding
the GCD runs in similar time as the algorithms are similar.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

(M|N) and gcd(M, N) can be computed in O(log(l = MN)3) time.

Proof.

The computation of powers of -1 is trivial if given the binary expansion of the exponent.
The computation of the exponents is also doable within this time frame as such
computations involve only multiplications additions and divisions each reduction of
(M|N) takes O(l2) time. As the algorithm takes O(l) reductions the entire algorithm
runs in the desired time. A similar argument shows that Euclid’s algorithm for finding
the GCD runs in similar time as the algorithms are similar.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

(M|N) and gcd(M, N) can be computed in O(log(l = MN)3) time.

Proof.

The computation of powers of -1 is trivial if given the binary expansion of the exponent.
The computation of the exponents is also doable within this time frame as such
computations involve only multiplications additions and divisions each reduction of
(M|N) takes O(l2) time. As the algorithm takes O(l) reductions the entire algorithm
runs in the desired time. A similar argument shows that Euclid’s algorithm for finding
the GCD runs in similar time as the algorithms are similar.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Outline

1 Looking at Primality
An attempt at a simple algorithm
Properties of square roots modulo a prime
Gauss’s Lemma
Legendre’s Law of Quadratic Reciprocity

2 Computing (M|N) and a Randomized Primality Algorithm
(M|N) can be computed in polynomial time
(M|N) is useful when determining Primality
Randomized Algorithm for Primality

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If (M|N) = M
N−1

2 mod N for all M ∈ Φ(N), then N is a prime.

Proof.

Assume that there is a contradiction. Let N be a composite number for which

(M|N) = M
N−1

2 mod N for all M ∈ Φ(N). First lets suppose that N = p1 . . . pn for
distinct odd primes p1, . . . , pn and let r ∈ Φ(p1) have (r |p1) = −1. Choose M such
that M ≡ r mod p1 and M ≡ 1 mod pi for 1 < i ≤ n. So we have that

M
N−1

2 ≡ (M|N) ≡ −1 mod N. However M
N−1

2 ≡ 1 mod p2 leading to a
contradiction. Thus there must be a prime p such that N = p2 ∗ m. Let r be a primitive
root of p2. As (r |N) is ±1 we have that rN−1 ≡ (r |N)2 ≡ 1 mod N. Thus rN−1 ≡ 1
mod p2 and so p | φ(p2) | N − 1 leading to a contradiction.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If (M|N) = M
N−1

2 mod N for all M ∈ Φ(N), then N is a prime.

Proof.

Assume that there is a contradiction. Let N be a composite number for which

(M|N) = M
N−1

2 mod N for all M ∈ Φ(N). First lets suppose that N = p1 . . . pn for
distinct odd primes p1, . . . , pn and let r ∈ Φ(p1) have (r |p1) = −1. Choose M such
that M ≡ r mod p1 and M ≡ 1 mod pi for 1 < i ≤ n. So we have that

M
N−1

2 ≡ (M|N) ≡ −1 mod N. However M
N−1

2 ≡ 1 mod p2 leading to a
contradiction. Thus there must be a prime p such that N = p2 ∗ m. Let r be a primitive
root of p2. As (r |N) is ±1 we have that rN−1 ≡ (r |N)2 ≡ 1 mod N. Thus rN−1 ≡ 1
mod p2 and so p | φ(p2) | N − 1 leading to a contradiction.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If (M|N) = M
N−1

2 mod N for all M ∈ Φ(N), then N is a prime.

Proof.

Assume that there is a contradiction. Let N be a composite number for which

(M|N) = M
N−1

2 mod N for all M ∈ Φ(N). First lets suppose that N = p1 . . . pn for
distinct odd primes p1, . . . , pn and let r ∈ Φ(p1) have (r |p1) = −1. Choose M such
that M ≡ r mod p1 and M ≡ 1 mod pi for 1 < i ≤ n. So we have that

M
N−1

2 ≡ (M|N) ≡ −1 mod N. However M
N−1

2 ≡ 1 mod p2 leading to a
contradiction. Thus there must be a prime p such that N = p2 ∗ m. Let r be a primitive
root of p2. As (r |N) is ±1 we have that rN−1 ≡ (r |N)2 ≡ 1 mod N. Thus rN−1 ≡ 1
mod p2 and so p | φ(p2) | N − 1 leading to a contradiction.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If (M|N) = M
N−1

2 mod N for all M ∈ Φ(N), then N is a prime.

Proof.

Assume that there is a contradiction. Let N be a composite number for which

(M|N) = M
N−1

2 mod N for all M ∈ Φ(N). First lets suppose that N = p1 . . . pn for
distinct odd primes p1, . . . , pn and let r ∈ Φ(p1) have (r |p1) = −1. Choose M such
that M ≡ r mod p1 and M ≡ 1 mod pi for 1 < i ≤ n. So we have that

M
N−1

2 ≡ (M|N) ≡ −1 mod N. However M
N−1

2 ≡ 1 mod p2 leading to a
contradiction. Thus there must be a prime p such that N = p2 ∗ m. Let r be a primitive
root of p2. As (r |N) is ±1 we have that rN−1 ≡ (r |N)2 ≡ 1 mod N. Thus rN−1 ≡ 1
mod p2 and so p | φ(p2) | N − 1 leading to a contradiction.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If (M|N) = M
N−1

2 mod N for all M ∈ Φ(N), then N is a prime.

Proof.

Assume that there is a contradiction. Let N be a composite number for which

(M|N) = M
N−1

2 mod N for all M ∈ Φ(N). First lets suppose that N = p1 . . . pn for
distinct odd primes p1, . . . , pn and let r ∈ Φ(p1) have (r |p1) = −1. Choose M such
that M ≡ r mod p1 and M ≡ 1 mod pi for 1 < i ≤ n. So we have that

M
N−1

2 ≡ (M|N) ≡ −1 mod N. However M
N−1

2 ≡ 1 mod p2 leading to a
contradiction. Thus there must be a prime p such that N = p2 ∗ m. Let r be a primitive
root of p2. As (r |N) is ±1 we have that rN−1 ≡ (r |N)2 ≡ 1 mod N. Thus rN−1 ≡ 1
mod p2 and so p | φ(p2) | N − 1 leading to a contradiction.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If (M|N) = M
N−1

2 mod N for all M ∈ Φ(N), then N is a prime.

Proof.

Assume that there is a contradiction. Let N be a composite number for which

(M|N) = M
N−1

2 mod N for all M ∈ Φ(N). First lets suppose that N = p1 . . . pn for
distinct odd primes p1, . . . , pn and let r ∈ Φ(p1) have (r |p1) = −1. Choose M such
that M ≡ r mod p1 and M ≡ 1 mod pi for 1 < i ≤ n. So we have that

M
N−1

2 ≡ (M|N) ≡ −1 mod N. However M
N−1

2 ≡ 1 mod p2 leading to a
contradiction. Thus there must be a prime p such that N = p2 ∗ m. Let r be a primitive
root of p2. As (r |N) is ±1 we have that rN−1 ≡ (r |N)2 ≡ 1 mod N. Thus rN−1 ≡ 1
mod p2 and so p | φ(p2) | N − 1 leading to a contradiction.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If N is an odd composite, then for at least half the M ∈ Φ(N), (M|N) 6≡ M
N−1

2 mod N.

Proof.

From the previous theorem there is at least one a ∈ Φ(N) for which (a|N) 6≡ a
N−1

2

mod N. Let B = {b1, b2, ..., bn} be the set of all distinct residues such that

(bi |N) ≡ b
N−1

2
i mod N and let a · B = {ab1 mod N, ab2 mod N, ..., abn mod N}.

We have that the elements of a · B are distinct because a ∈ Φ(N) and the residues in
B are distinct. Let ab be an arbitrary element of a · B. Thus

(ab)
N−1

2 = a
N−1

2 b
N−1

2 6≡ (a|N)(b|N) ≡ (ab|N) mod N. Thus there are at least |B|

elements, M of Φ(n) for which (M|N) 6≡ M
N−1

2 mod N.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If N is an odd composite, then for at least half the M ∈ Φ(N), (M|N) 6≡ M
N−1

2 mod N.

Proof.

From the previous theorem there is at least one a ∈ Φ(N) for which (a|N) 6≡ a
N−1

2

mod N. Let B = {b1, b2, ..., bn} be the set of all distinct residues such that

(bi |N) ≡ b
N−1

2
i mod N and let a · B = {ab1 mod N, ab2 mod N, ..., abn mod N}.

We have that the elements of a · B are distinct because a ∈ Φ(N) and the residues in
B are distinct. Let ab be an arbitrary element of a · B. Thus

(ab)
N−1

2 = a
N−1

2 b
N−1

2 6≡ (a|N)(b|N) ≡ (ab|N) mod N. Thus there are at least |B|

elements, M of Φ(n) for which (M|N) 6≡ M
N−1

2 mod N.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If N is an odd composite, then for at least half the M ∈ Φ(N), (M|N) 6≡ M
N−1

2 mod N.

Proof.

From the previous theorem there is at least one a ∈ Φ(N) for which (a|N) 6≡ a
N−1

2

mod N. Let B = {b1, b2, ..., bn} be the set of all distinct residues such that

(bi |N) ≡ b
N−1

2
i mod N and let a · B = {ab1 mod N, ab2 mod N, ..., abn mod N}.

We have that the elements of a · B are distinct because a ∈ Φ(N) and the residues in
B are distinct. Let ab be an arbitrary element of a · B. Thus

(ab)
N−1

2 = a
N−1

2 b
N−1

2 6≡ (a|N)(b|N) ≡ (ab|N) mod N. Thus there are at least |B|

elements, M of Φ(n) for which (M|N) 6≡ M
N−1

2 mod N.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If N is an odd composite, then for at least half the M ∈ Φ(N), (M|N) 6≡ M
N−1

2 mod N.

Proof.

From the previous theorem there is at least one a ∈ Φ(N) for which (a|N) 6≡ a
N−1

2

mod N. Let B = {b1, b2, ..., bn} be the set of all distinct residues such that

(bi |N) ≡ b
N−1

2
i mod N and let a · B = {ab1 mod N, ab2 mod N, ..., abn mod N}.

We have that the elements of a · B are distinct because a ∈ Φ(N) and the residues in
B are distinct. Let ab be an arbitrary element of a · B. Thus

(ab)
N−1

2 = a
N−1

2 b
N−1

2 6≡ (a|N)(b|N) ≡ (ab|N) mod N. Thus there are at least |B|

elements, M of Φ(n) for which (M|N) 6≡ M
N−1

2 mod N.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If N is an odd composite, then for at least half the M ∈ Φ(N), (M|N) 6≡ M
N−1

2 mod N.

Proof.

From the previous theorem there is at least one a ∈ Φ(N) for which (a|N) 6≡ a
N−1

2

mod N. Let B = {b1, b2, ..., bn} be the set of all distinct residues such that

(bi |N) ≡ b
N−1

2
i mod N and let a · B = {ab1 mod N, ab2 mod N, ..., abn mod N}.

We have that the elements of a · B are distinct because a ∈ Φ(N) and the residues in
B are distinct. Let ab be an arbitrary element of a · B. Thus

(ab)
N−1

2 = a
N−1

2 b
N−1

2 6≡ (a|N)(b|N) ≡ (ab|N) mod N. Thus there are at least |B|

elements, M of Φ(n) for which (M|N) 6≡ M
N−1

2 mod N.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Theorem

If N is an odd composite, then for at least half the M ∈ Φ(N), (M|N) 6≡ M
N−1

2 mod N.

Proof.

From the previous theorem there is at least one a ∈ Φ(N) for which (a|N) 6≡ a
N−1

2

mod N. Let B = {b1, b2, ..., bn} be the set of all distinct residues such that

(bi |N) ≡ b
N−1

2
i mod N and let a · B = {ab1 mod N, ab2 mod N, ..., abn mod N}.

We have that the elements of a · B are distinct because a ∈ Φ(N) and the residues in
B are distinct. Let ab be an arbitrary element of a · B. Thus

(ab)
N−1

2 = a
N−1

2 b
N−1

2 6≡ (a|N)(b|N) ≡ (ab|N) mod N. Thus there are at least |B|

elements, M of Φ(n) for which (M|N) 6≡ M
N−1

2 mod N.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Outline

1 Looking at Primality
An attempt at a simple algorithm
Properties of square roots modulo a prime
Gauss’s Lemma
Legendre’s Law of Quadratic Reciprocity

2 Computing (M|N) and a Randomized Primality Algorithm
(M|N) can be computed in polynomial time
(M|N) is useful when determining Primality
Randomized Algorithm for Primality

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Conclusion

From the previous theorem we can form a randomized algorithm for checking Primality

Algorithm

1 Generate a random integer, M, from 2 to N − 1.
2 If gcd(M, N) 6= 1 conclude that N is composite.

3 If (M|N) 6≡ M
N−1

2 mod N conclude that N is composite.
4 Otherwise conclude that N is probably a prime.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Conclusion

From the previous theorem we can form a randomized algorithm for checking Primality

Algorithm

1 Generate a random integer, M, from 2 to N − 1.
2 If gcd(M, N) 6= 1 conclude that N is composite.

3 If (M|N) 6≡ M
N−1

2 mod N conclude that N is composite.
4 Otherwise conclude that N is probably a prime.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Conclusion

From the previous theorem we can form a randomized algorithm for checking Primality

Algorithm

1 Generate a random integer, M, from 2 to N − 1.
2 If gcd(M, N) 6= 1 conclude that N is composite.

3 If (M|N) 6≡ M
N−1

2 mod N conclude that N is composite.
4 Otherwise conclude that N is probably a prime.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Conclusion

From the previous theorem we can form a randomized algorithm for checking Primality

Algorithm

1 Generate a random integer, M, from 2 to N − 1.
2 If gcd(M, N) 6= 1 conclude that N is composite.

3 If (M|N) 6≡ M
N−1

2 mod N conclude that N is composite.
4 Otherwise conclude that N is probably a prime.

Wojciechowski Primality

Primality
Algorithm

Computation
Usefulness
Algorithm

Conclusion

From the previous theorem we can form a randomized algorithm for checking Primality

Algorithm

1 Generate a random integer, M, from 2 to N − 1.
2 If gcd(M, N) 6= 1 conclude that N is composite.

3 If (M|N) 6≡ M
N−1

2 mod N conclude that N is composite.
4 Otherwise conclude that N is probably a prime.

Wojciechowski Primality

	Outline
	Main Talk
	Looking at Primality
	An attempt at a simple algorithm
	Properties of square roots modulo a prime
	Gauss's Lemma
	Legendre's Law of Quadratic Reciprocity

	Computing (M|N) and a Randomized Primality Algorithm
	(M|N) can be computed in polynomial time
	(M|N) is useful when determining Primality
	Randomized Algorithm for Primality

