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Circuit Refresher

Definition

A boolean circuit is a directed acyclic graph G = 〈V ,E〉, where the nodes in
V = {1, 2, . . . , n} are called gates and the edges are of the form (i, j), i < j .

Observation

A circuit with n variable inputs can compute any boolean function with n variables.

Observation

Alternatively, a circuit accepts some subset of strings in x = x1x2 . . . xn ∈ {0, 1}n,
where the i th input is true if and only if xi = 1.
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Circuits as Language acceptors

Definition

The size of a circuit is the number of gates in it.

Definition

A family of circuits is an infinite sequence C = (C0,C1, . . .) of boolean circuits, where
Cn has n input variables. We say that language L ⊆ {0, 1}∗ has polynomial circuits, if
there exists a family of circuits C = (C0,C1, . . .) such that

(i) |Cn| ≤ p(n), where p is some fixed polynomial, and

(ii) ∀x ∈ {0, 1}∗ x ∈ L↔ the output of C|x| is true under the assignment that forces
the i th input variable to be true when xi = 1 and 0 otherwise.
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Reduction

We reduce Reachability to the Circuit Value problem. Let G = 〈V ,E〉 be a graph and
let (1, n) denote the source and target of the reachability problem respectively.

Steps

(i) Construct gates gijk with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; intuitively, gijk is true if and
only if there is a path in G from i to j using all intermediate nodes in the set
Sk = {1, 2, . . . , k}.

(ii) Construct gates hijk with 1 ≤ i, j, k ≤ n; intuitively, hijk is true if and only if there is
a path in G from i to j with all intermediate nodes in Sk and k is an intermediate
node.

(iii) gij0 (input gate) is true if i = j or there is an edge from i to j; it is false otherwise.

(iv) For k = 1, 2, . . . , n, hijk is an AND gate with predecessors gi,k,k−1 and gk,j,k−1.

(v) For k = 1, 2, . . . n, gijk is an OR gate with predecessors gi,j,k−1 and hijk .

Note

The circuit is merely a hardware representation of the Floyd-Warshall algorithm
discussed in Homework I!
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Circuits and Complexity

Proposition

All languages in P have polynomial sized circuits.

Proof.

We actually reduced an arbitrary Turing Machine that halts in polynomial time to a
variable-free circuit, when we showed that CIRCUIT-VALUE is P-complete.

Theorem

There are undecidable languages which have polynomial circuits.

Proof.

Let L ⊆ {0, 1}∗ be any undecidable language in the alphabet {0, 1} and let U ⊆ 1∗ be
the language {1n : the binary expansion of n is in L.} Clearly U is undecidable (Why?)
Now consider the following family of polynomial circuits C = (C0,C1, . . .). If 1n ∈ U,
then Cn consists of (n − 1) AND gates that compute the conjunction of all the inputs. If
1n 6∈ U, then Cn consists of its input gates and an output gate that is false. Thus, for all
inputs, 1n ∈ U ↔ Cn outputs true.
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Now consider the following family of polynomial circuits C = (C0,C1, . . .). If 1n ∈ U,
then Cn consists of (n − 1) AND gates that compute the conjunction of all the inputs. If
1n 6∈ U, then Cn consists of its input gates and an output gate that is false. Thus, for all
inputs, 1n ∈ U ↔ Cn outputs true.
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Uniform Circuits

Definition

A family of circuits C = (C0,C1, . . .) is said to be uniform if there is a log n-space
bounded Turing machine that on input 1n, outputs Cn.

Definition

A language L has uniformly polynomial circuits if there is a uniform family of polynomial
circuits (C0,C1, . . .) which decides L.

Note

Reachability has uniformly polynomial circuits, while the circuit family for the
undecidable language is not uniform.

Theorem

A language L has uniformly polynomial circuits if and only if it is in P.
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Uniform circuits (contd.)

Proof.

The fact that if L ∈ P then it has uniformly polynomial circuits was established by the
reduction of any polynomial time Turing machine to a circuit.
For the converse, let L have a uniformly polynomial circuit. Given x , build C|x| in log |x |
space and hence polynomial time. Evaluate C|x| by setting the inputs so that they spell
x !

Conjecture

NP-complete problems have no uniformly polynomial circuits.

Conjecture

NP-complete problems have no polynomial circuits, uniform or not!
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The Probabilistic Method

Two themes

(i) Every random variable assumes at least one value no less than its expected value
and at least one value no more than its expected value.

(ii) If an object chosen randomly from a universe satisfies a property with positive
probability, then there must exist at least one object in the universe which satisfies
the property.

Theorem

Every CNF formula on m clauses has an assignment that satisfies at least m
2 clauses.
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The Chernoff Bound

Theorem

Let x1, x2, . . . , xn denote n independent 0/1 Bernoulli variables with Pr[xi = 1] = p, for
each i = 1, 2, . . . n. Let X =

Pn
i=1 xi . Then for 0 ≤ θ ≤ 1,

Pr[X ≥ (1 + θ)np] ≤ e−
θ2
3 np
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Theorem

All languages in BPP have polynomial circuits.

Proof.

Let L ∈ BPP be decided by a non-deterministic Turing machine N that decides by a
clear majority and halts in time p(n), for all inputs x , |x | = n.
We need to construct Cn for each n, but an explicit construction is unlikely! (Why?)
Consider the sequence of bit strings An = {a1, a2, . . . , am} with each ai ∈ {0, 1}p(n)

and m = 12 · (n + 1). Each bit string simulates a computation of N. Cn on input x ,
|x | = n simulates N with each sequence of choices in An and takes the majority.
Clearly, given An, Cn can be constructed with polynomially many gates.
But is there such an An?
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Circuits and BPP (contd.)

Lemma

For all n > 0, there is a set An of m = 12 · (n + 1) bit strings such that for all inputs x,
with |x | = n, fewer than half the choices in An are bad, i.e., lead to either a false
positive or a false negative.

Proof.

Consider a sequence An of m bit strings of length pn selected at random by m
independent samplings of {0, 1}p(n). What is the probability that more than half the
choices in An are correct?
For each x ∈ {0, 1}n, at most one-quarter of the computations are bad. (Why?) Since
the sequences in An were picked randomly and independently, the expected number of
bad sequences is at most 1

4 m. By the Chernoff bound, the probability that the number

of bad strings is 1
2 m or more is at most e

−m
12 < 1

2n+1 .
The above inequality holds regardless of the choice of x ∈ {0, 1}n. Thus, the
probability that there exists an x with no accepting sequence in An is at most
2n 1

2n+1 = 1
2 .

With probability at least one-half, the random selection of sequences has the desired
property.
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Circuits and BPP (contd.)
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Completing the Main theorem

Proof of Main theorem (contd.)

Given a suitable An, construct Cn with O(n2(p(n))2) gates so that it simulates N with
each of these sequences and then takes the majority of these outcomes. Based on the
choice of An, Cn outputs true if and only if the input is in L ∩ {0, 1}n, i.e., L has a
polynomial family of circuits.
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