## K. Subramani<sup>1</sup>

<sup>1</sup>Lane Department of Computer Science and Electrical Engineering West Virginia University

April 1, 2009

# Outline



- Circuits
- Circuit complexity of Reachability

2 The Probabilistic Method

3 The Chernoff Bound

Oircuits and BPP

# Outline



- Circuits
- Circuit complexity of Reachability

2 The Probabilistic Method

3 The Chernoff Bound

## Oircuits and BPP

# Outline



- Circuits
- Circuit complexity of Reachability

2 The Probabilistic Method

The Chernoff Bound

## Circuits and BPP

# Outline



- Circuits
- Circuit complexity of Reachability

2 The Probabilistic Method

The Chernoff Bound

## 4 Circuits and BPP

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

# Outline



Circuit complexity of Reachability

2 The Probabilistic Method

3 The Chernoff Bound

## Oircuits and BPP

Circuits Circuit complexity of Reachability

## **Circuit Refresher**

### Definition

A boolean circuit is a directed acyclic graph  $G = \langle V, E \rangle$ , where the nodes in  $V = \{1, 2, ..., n\}$  are called gates and the edges are of the form (i, j), i < j.

#### Observation

A circuit with n variable inputs can compute any boolean function with n variables.

#### Observation

Alternatively, a circuit accepts some subset of strings in  $x = x_1 x_2 \dots x_n \in \{0, 1\}^n$ , where the *i*<sup>th</sup> input is **true** if and only if  $x_i = 1$ .

Circuits Circuit complexity of Reachability

## **Circuit Refresher**

### Definition

A boolean circuit is a directed acyclic graph  $G = \langle V, E \rangle$ , where the nodes in  $V = \{1, 2, ..., n\}$  are called gates and the edges are of the form (i, j), i < j.

## Observation

A circuit with n variable inputs can compute any boolean function with n variables.

#### Observation

Alternatively, a circuit accepts some subset of strings in  $x = x_1 x_2 \dots x_n \in \{0, 1\}^n$ , where the *i*<sup>th</sup> input is **true** if and only if  $x_i = 1$ .

Circuits Circuit complexity of Reachability

## **Circuit Refresher**

### Definition

A boolean circuit is a directed acyclic graph  $G = \langle V, E \rangle$ , where the nodes in  $V = \{1, 2, ..., n\}$  are called gates and the edges are of the form (i, j), i < j.

### Observation

A circuit with n variable inputs can compute any boolean function with n variables.

### Observation

Alternatively, a circuit accepts some subset of strings in  $x = x_1 x_2 \dots x_n \in \{0, 1\}^n$ , where the *i*<sup>th</sup> input is **true** if and only if  $x_i = 1$ .

Circuits Circuit complexity of Reachability

# Circuits as Language acceptors

### Definition

The size of a circuit is the number of gates in it.

#### Definition

A family of circuits is an infinite sequence  $C = (C_0, C_1, \ldots)$  of boolean circuits, where  $C_n$  has *n* input variables. We say that language  $L \subseteq \{0, 1\}^*$  has polynomial circuits, if there exists a family of circuits  $C = (C_0, C_1, \ldots)$  such that

- (i)  $|C_n| \le p(n)$ , where *p* is some fixed polynomial, and
- (ii) ∀x ∈ {0,1}\* x ∈ L ↔ the output of C<sub>|x|</sub> is true under the assignment that forces the *i*<sup>th</sup> input variable to be true when x<sub>i</sub> = 1 and 0 otherwise.

Circuits Circuit complexity of Reachability

# Circuits as Language acceptors

### Definition

The size of a circuit is the number of gates in it.

### Definition

A family of circuits is an infinite sequence  $C = (C_0, C_1, \ldots)$  of boolean circuits, where  $C_n$  has *n* input variables. We say that language  $L \subseteq \{0, 1\}^*$  has polynomial circuits, if there exists a family of circuits  $C = (C_0, C_1, \ldots)$  such that

(i)  $|C_n| \le p(n)$ , where p is some fixed polynomial, and

(ii)  $\forall x \in \{0, 1\}^* \ x \in L \leftrightarrow$  the output of  $C_{|x|}$  is **true** under the assignment that forces the *i*<sup>th</sup> input variable to be **true** when x = 1 and 0 otherwise

Circuits Circuit complexity of Reachability

# Circuits as Language acceptors

### Definition

The size of a circuit is the number of gates in it.

### Definition

A family of circuits is an infinite sequence  $C = (C_0, C_1, \ldots)$  of boolean circuits, where  $C_n$  has *n* input variables. We say that language  $L \subseteq \{0, 1\}^*$  has polynomial circuits, if there exists a family of circuits  $C = (C_0, C_1, \ldots)$  such that

- (i)  $|C_n| \le p(n)$ , where *p* is some fixed polynomial, and
- (ii) ∀x ∈ {0,1}\* x ∈ L ↔ the output of C<sub>|x|</sub> is true under the assignment that forces the *i*<sup>th</sup> input variable to be true when x<sub>i</sub> = 1 and 0 otherwise.

Circuits Circuit complexity of Reachability

# Circuits as Language acceptors

### Definition

The size of a circuit is the number of gates in it.

#### Definition

A family of circuits is an infinite sequence  $C = (C_0, C_1, \ldots)$  of boolean circuits, where  $C_n$  has *n* input variables. We say that language  $L \subseteq \{0, 1\}^*$  has polynomial circuits, if there exists a family of circuits  $C = (C_0, C_1, \ldots)$  such that

- (i)  $|C_n| \le p(n)$ , where p is some fixed polynomial, and
- (ii)  $\forall x \in \{0, 1\}^* \ x \in L \leftrightarrow$  the output of  $C_{|x|}$  is **true** under the assignment that forces the *i*<sup>th</sup> input variable to be **true** when  $x_i = 1$  and 0 otherwise.

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

# Outline



- Oircuits
- Circuit complexity of Reachability

2 The Probabilistic Method

3 The Chernoff Bound

## Oircuits and BPP

Circuits Circuit complexity of Reachability

### Reduction

We reduce Reachability to the Circuit Value problem. Let G = (V, E) be a graph and let (1, n) denote the source and target of the reachability problem respectively.

#### Steps

- (i) Construct gates g<sub>ijk</sub> with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; intuitively, g<sub>ijk</sub> is true if and only if there is a path in G from i to j using all intermediate nodes in the set S<sub>k</sub> = {1, 2, ..., k}.
- (ii) Construct gates h<sub>ijk</sub> with 1 ≤ i, j, k ≤ n; intuitively, h<sub>ijk</sub> is true if and only if there is a path in G from i to j with all intermediate nodes in S<sub>k</sub> and k is an intermediate node.
- (iii)  $g_{ii0}$  (input gate) is true if i = j or there is an edge from i to j; it is false otherwise.
- (iv) For k = 1, 2, ..., n,  $h_{ijk}$  is an AND gate with predecessors  $g_{i,k,k-1}$  and  $g_{k,j,k-1}$ .
- (v) For k = 1, 2, ..., n,  $g_{ijk}$  is an **OR** gate with predecessors  $g_{i,j,k-1}$  and  $h_{ijk}$ .

#### Note

Circuits Circuit complexity of Reachability

## Reduction

We reduce Reachability to the Circuit Value problem. Let  $G = \langle V, E \rangle$  be a graph and let (1, n) denote the source and target of the reachability problem respectively.

## Steps

- (i) Construct gates g<sub>ijk</sub> with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; intuitively, g<sub>ijk</sub> is true if and only if there is a path in G from i to j using all intermediate nodes in the set S<sub>k</sub> = {1, 2, ..., k}.
- (ii) Construct gates h<sub>ijk</sub> with 1 ≤ i, j, k ≤ n; intuitively, h<sub>ijk</sub> is true if and only if there is a path in G from i to j with all intermediate nodes in S<sub>k</sub> and k is an intermediate node.
- (iii)  $g_{ij0}$  (input gate) is true if i = j or there is an edge from i to j; it is false otherwise.
- (iv) For k = 1, 2, ..., n,  $h_{ijk}$  is an AND gate with predecessors  $g_{i,k,k-1}$  and  $g_{k,j,k-1}$ .
- (v) For k = 1, 2, ..., n,  $g_{ijk}$  is an **OR** gate with predecessors  $g_{i,j,k-1}$  and  $h_{ijk}$ .

#### Note

Circuits Circuit complexity of Reachability

## Reduction

We reduce Reachability to the Circuit Value problem. Let  $G = \langle V, E \rangle$  be a graph and let (1, n) denote the source and target of the reachability problem respectively.

### Steps

- (i) Construct gates  $g_{ijk}$  with  $1 \le i, j \le n$  and  $0 \le k \le n$ ; intuitively,  $g_{ijk}$  is true if and only if there is a path in G from i to j using all intermediate nodes in the set  $S_k = \{1, 2, ..., k\}$ .
- (ii) Construct gates h<sub>ijk</sub> with 1 ≤ i, j, k ≤ n; intuitively, h<sub>ijk</sub> is true if and only if there is a path in G from i to j with all intermediate nodes in S<sub>k</sub> and k is an intermediate node.
- (iii)  $g_{ii0}$  (input gate) is true if i = j or there is an edge from i to j; it is false otherwise.
- (iv) For k = 1, 2, ..., n,  $h_{ijk}$  is an AND gate with predecessors  $g_{i,k,k-1}$  and  $g_{k,j,k-1}$ .
- (v) For k = 1, 2, ..., n,  $g_{ijk}$  is an **OR** gate with predecessors  $g_{i,j,k-1}$  and  $h_{ijk}$ .

#### Note

Circuits Circuit complexity of Reachability

### Reduction

We reduce Reachability to the Circuit Value problem. Let  $G = \langle V, E \rangle$  be a graph and let (1, n) denote the source and target of the reachability problem respectively.

### Steps

- (i) Construct gates g<sub>ijk</sub> with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; intuitively, g<sub>ijk</sub> is true if and only if there is a path in G from i to j using all intermediate nodes in the set S<sub>k</sub> = {1, 2, ..., k}.
- (ii) Construct gates h<sub>ijk</sub> with 1 ≤ i, j, k ≤ n; intuitively, h<sub>ijk</sub> is true if and only if there is a path in G from i to j with all intermediate nodes in S<sub>k</sub> and k is an intermediate node.
- (iii)  $g_{ii0}$  (input gate) is true if i = j or there is an edge from i to j; it is false otherwise.
- (iv) For k = 1, 2, ..., n,  $h_{ijk}$  is an **AND** gate with predecessors  $g_{i,k,k-1}$  and  $g_{k,j,k-1}$ .
- (v) For k = 1, 2, ..., n,  $g_{ijk}$  is an **OR** gate with predecessors  $g_{i,j,k-1}$  and  $h_{ijk}$ .

### Note

Circuits Circuit complexity of Reachability

### Reduction

We reduce Reachability to the Circuit Value problem. Let  $G = \langle V, E \rangle$  be a graph and let (1, n) denote the source and target of the reachability problem respectively.

### Steps

- (i) Construct gates g<sub>ijk</sub> with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; intuitively, g<sub>ijk</sub> is true if and only if there is a path in G from i to j using all intermediate nodes in the set S<sub>k</sub> = {1, 2, ..., k}.
- (ii) Construct gates  $h_{ijk}$  with  $1 \le i, j, k \le n$ ; intuitively,  $h_{ijk}$  is true if and only if there is a path in G from 1 to j with all intermediate nodes in  $S_k$  and k is an intermediate node.
- (iii)  $g_{ij0}$  (input gate) is **true** if i = j or there is an edge from i to j; it is **false** otherwise.
- (iv) For k = 1, 2, ..., n,  $h_{ijk}$  is an **AND** gate with predecessors  $g_{i,k,k-1}$  and  $g_{k,j,k-1}$ .
- (v) For k = 1, 2, ..., n,  $g_{ijk}$  is an **OR** gate with predecessors  $g_{i,j,k-1}$  and  $h_{ijk}$ .

### Note

Circuits Circuit complexity of Reachability

### Reduction

We reduce Reachability to the Circuit Value problem. Let  $G = \langle V, E \rangle$  be a graph and let (1, n) denote the source and target of the reachability problem respectively.

### Steps

- (i) Construct gates g<sub>ijk</sub> with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; intuitively, g<sub>ijk</sub> is true if and only if there is a path in G from i to j using all intermediate nodes in the set S<sub>k</sub> = {1, 2, ..., k}.
- (ii) Construct gates h<sub>ijk</sub> with 1 ≤ i, j, k ≤ n; intuitively, h<sub>ijk</sub> is true if and only if there is a path in G from i to j with all intermediate nodes in S<sub>k</sub> and k is an intermediate node.
- (iii)  $g_{ij0}$  (input gate) is **true** if i = j or there is an edge from i to j; it is **false** otherwise.
- (iv) For k = 1, 2, ..., n,  $h_{ijk}$  is an AND gate with predecessors  $g_{i,k,k-1}$  and  $g_{k,j,k-1}$ .
- (v) For k = 1, 2, ..., n,  $g_{ijk}$  is an **OR** gate with predecessors  $g_{i,j,k-1}$  and  $h_{ijk}$ .

### Note

Circuits Circuit complexity of Reachability

### Reduction

We reduce Reachability to the Circuit Value problem. Let  $G = \langle V, E \rangle$  be a graph and let (1, n) denote the source and target of the reachability problem respectively.

### Steps

- (i) Construct gates g<sub>ijk</sub> with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; intuitively, g<sub>ijk</sub> is true if and only if there is a path in G from i to j using all intermediate nodes in the set S<sub>k</sub> = {1, 2, ..., k}.
- (ii) Construct gates h<sub>ijk</sub> with 1 ≤ i, j, k ≤ n; intuitively, h<sub>ijk</sub> is true if and only if there is a path in G from i to j with all intermediate nodes in S<sub>k</sub> and k is an intermediate node.
- (iii)  $g_{ij0}$  (input gate) is **true** if i = j or there is an edge from *i* to *j*; it is **false** otherwise.
- (iv) For k = 1, 2, ..., n,  $h_{ijk}$  is an AND gate with predecessors  $g_{i,k,k-1}$  and  $g_{k,j,k-1}$ .
- (v) For k = 1, 2, ..., n,  $g_{ijk}$  is an **OR** gate with predecessors  $g_{i,j,k-1}$  and  $h_{ijk}$ .

### Note

Circuits Circuit complexity of Reachability

### Reduction

We reduce Reachability to the Circuit Value problem. Let  $G = \langle V, E \rangle$  be a graph and let (1, n) denote the source and target of the reachability problem respectively.

### Steps

- (i) Construct gates g<sub>ijk</sub> with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; intuitively, g<sub>ijk</sub> is true if and only if there is a path in G from i to j using all intermediate nodes in the set S<sub>k</sub> = {1, 2, ..., k}.
- (ii) Construct gates h<sub>ijk</sub> with 1 ≤ i, j, k ≤ n; intuitively, h<sub>ijk</sub> is true if and only if there is a path in G from i to j with all intermediate nodes in S<sub>k</sub> and k is an intermediate node.
- (iii)  $g_{ij0}$  (input gate) is **true** if i = j or there is an edge from *i* to *j*; it is **false** otherwise.
- (iv) For k = 1, 2, ..., n,  $h_{ijk}$  is an **AND** gate with predecessors  $g_{i,k,k-1}$  and  $g_{k,j,k-1}$ .
- (v) For k = 1, 2, ..., n,  $g_{ijk}$  is an **OR** gate with predecessors  $g_{i,j,k-1}$  and  $h_{ijk}$ .

### Note

Circuits Circuit complexity of Reachability

### Reduction

We reduce Reachability to the Circuit Value problem. Let  $G = \langle V, E \rangle$  be a graph and let (1, n) denote the source and target of the reachability problem respectively.

### Steps

- (i) Construct gates g<sub>ijk</sub> with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; intuitively, g<sub>ijk</sub> is true if and only if there is a path in G from i to j using all intermediate nodes in the set S<sub>k</sub> = {1, 2, ..., k}.
- (ii) Construct gates h<sub>ijk</sub> with 1 ≤ i, j, k ≤ n; intuitively, h<sub>ijk</sub> is true if and only if there is a path in G from i to j with all intermediate nodes in S<sub>k</sub> and k is an intermediate node.
- (iii)  $g_{ij0}$  (input gate) is **true** if i = j or there is an edge from *i* to *j*; it is **false** otherwise.
- (iv) For k = 1, 2, ..., n,  $h_{ijk}$  is an **AND** gate with predecessors  $g_{i,k,k-1}$  and  $g_{k,j,k-1}$ .
- (v) For k = 1, 2, ..., n,  $g_{ijk}$  is an **OR** gate with predecessors  $g_{i,j,k-1}$  and  $h_{ijk}$ .

### Note

Circuits Circuit complexity of Reachability

### Reduction

We reduce Reachability to the Circuit Value problem. Let  $G = \langle V, E \rangle$  be a graph and let (1, n) denote the source and target of the reachability problem respectively.

### Steps

- (i) Construct gates g<sub>ijk</sub> with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; intuitively, g<sub>ijk</sub> is true if and only if there is a path in G from i to j using all intermediate nodes in the set S<sub>k</sub> = {1, 2, ..., k}.
- (ii) Construct gates h<sub>ijk</sub> with 1 ≤ i, j, k ≤ n; intuitively, h<sub>ijk</sub> is true if and only if there is a path in G from i to j with all intermediate nodes in S<sub>k</sub> and k is an intermediate node.
- (iii)  $g_{ij0}$  (input gate) is **true** if i = j or there is an edge from *i* to *j*; it is **false** otherwise.
- (iv) For k = 1, 2, ..., n,  $h_{ijk}$  is an **AND** gate with predecessors  $g_{i,k,k-1}$  and  $g_{k,j,k-1}$ .
- (v) For k = 1, 2, ..., n,  $g_{ijk}$  is an **OR** gate with predecessors  $g_{i,j,k-1}$  and  $h_{ijk}$ .

### Note

Circuits Circuit complexity of Reachability

### Reduction

We reduce Reachability to the Circuit Value problem. Let  $G = \langle V, E \rangle$  be a graph and let (1, n) denote the source and target of the reachability problem respectively.

### Steps

- (i) Construct gates g<sub>ijk</sub> with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; intuitively, g<sub>ijk</sub> is true if and only if there is a path in G from i to j using all intermediate nodes in the set S<sub>k</sub> = {1, 2, ..., k}.
- (ii) Construct gates h<sub>ijk</sub> with 1 ≤ i, j, k ≤ n; intuitively, h<sub>ijk</sub> is true if and only if there is a path in G from i to j with all intermediate nodes in S<sub>k</sub> and k is an intermediate node.
- (iii)  $g_{ij0}$  (input gate) is **true** if i = j or there is an edge from *i* to *j*; it is **false** otherwise.
- (iv) For k = 1, 2, ..., n,  $h_{ijk}$  is an **AND** gate with predecessors  $g_{i,k,k-1}$  and  $g_{k,j,k-1}$ .
- (v) For k = 1, 2, ..., n,  $g_{ijk}$  is an **OR** gate with predecessors  $g_{i,j,k-1}$  and  $h_{ijk}$ .

### Note

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

# **Circuits and Complexity**

## Proposition

All languages in P have polynomial sized circuits.

#### Proof.

We actually reduced an arbitrary Turing Machine that halts in polynomial time to a variable-free circuit, when we showed that CIRCUIT-VALUE is **P-complete**.

#### Theorem

There are undecidable languages which have polynomial circuits.

### Proof.

Let  $L \subseteq \{0,1\}^*$  be any undecidable language in the alphabet  $\{0,1\}$  and let  $U \subseteq 1^*$  be the language  $\{1^n :$  the binary expansion of n is in L. Clearly U is undecidable (Why?) Now consider the following family of polynomial circuits  $C = (C_0, C_1, \ldots)$ . If  $1^n \in U$ , then  $C_n$  consists of (n-1) **AND** gates that compute the conjunction of all the inputs. If  $1^n \notin U$ , then  $C_n$  consists of its input gates and an output gate that is **false**. Thus, for all inputs,  $1^n \in U \leftrightarrow C_n$  outputs **true**.

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

# **Circuits and Complexity**

### Proposition

All languages in P have polynomial sized circuits.

### Proof.

We actually reduced an arbitrary Turing Machine that halts in polynomial time to a variable-free circuit, when we showed that CIRCUIT-VALUE is **P-complete**.

#### Theorem

There are undecidable languages which have polynomial circuits.

### Proof.

Let  $L \subseteq \{0,1\}^*$  be any undecidable language in the alphabet  $\{0,1\}$  and let  $U \subseteq 1^*$  be the language  $\{1^n :$  the binary expansion of n is in L. Clearly U is undecidable (Why?) Now consider the following family of polynomial circuits  $C = (C_0, C_1, \ldots)$ . If  $1^n \in U$ , then  $C_n$  consists of (n-1) **AND** gates that compute the conjunction of all the inputs. If  $1^n \notin U$ , then  $C_n$  consists of its input gates and an output gate that is **false**. Thus, for all inputs,  $1^n \in U \leftrightarrow C_n$  outputs **true**.

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

## **Circuits and Complexity**

### Proposition

All languages in P have polynomial sized circuits.

### Proof.

We actually reduced an arbitrary Turing Machine that halts in polynomial time to a variable-free circuit, when we showed that CIRCUIT-VALUE is **P-complete**.

### Theorem

There are undecidable languages which have polynomial circuits.

### Proof.

Let  $L \subseteq \{0,1\}^*$  be any undecidable language in the alphabet  $\{0,1\}$  and let  $U \subseteq 1^*$  be the language  $\{1^n :$  the binary expansion of n is in L. Clearly U is undecidable (Why?) Now consider the following family of polynomial circuits  $C = (C_0, C_1, \ldots)$ . If  $1^n \in U$ , then  $C_n$  consists of (n-1) **AND** gates that compute the conjunction of all the inputs. If  $1^n \notin U$ , then  $C_n$  consists of its input gates and an output gate that is **false**. Thus, for all inputs,  $1^n \in U \leftrightarrow C_n$  outputs **true**.

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

# **Circuits and Complexity**

### Proposition

All languages in P have polynomial sized circuits.

### Proof.

We actually reduced an arbitrary Turing Machine that halts in polynomial time to a variable-free circuit, when we showed that CIRCUIT-VALUE is **P-complete**.

### Theorem

There are undecidable languages which have polynomial circuits.

### Proof.

Let  $L \subseteq \{0, 1\}^*$  be any undecidable language in the alphabet  $\{0, 1\}$  and let  $U \subseteq 1^*$  be the language  $\{1^n :$  the binary expansion of n is in L. Clearly U is undecidable (Why?) Now consider the following family of polynomial circuits  $C = (C_0, C_1, ...)$ . If  $1^n \in U$ , then  $C_n$  consists of (n-1) AND gates that compute the conjunction of all the inputs. If  $1^n \notin U$ , then  $C_n$  consists of its input gates and an output gate that is **false**. Thus, for all inputs,  $1^n \in U \leftrightarrow C_n$  outputs **true**.

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

## **Circuits and Complexity**

### Proposition

All languages in P have polynomial sized circuits.

### Proof.

We actually reduced an arbitrary Turing Machine that halts in polynomial time to a variable-free circuit, when we showed that CIRCUIT-VALUE is **P-complete**.

### Theorem

There are undecidable languages which have polynomial circuits.

### Proof.

Let  $L \subseteq \{0, 1\}^*$  be any undecidable language in the alphabet  $\{0, 1\}$  and let  $U \subseteq 1^*$  be the language  $\{1^n :$  the binary expansion of n is in L. Clearly U is undecidable (Why?) Now consider the following family of polynomial circuits  $C = (C_0, C_1, ...)$ .

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

## **Circuits and Complexity**

### Proposition

All languages in P have polynomial sized circuits.

### Proof.

We actually reduced an arbitrary Turing Machine that halts in polynomial time to a variable-free circuit, when we showed that CIRCUIT-VALUE is **P-complete**.

### Theorem

There are undecidable languages which have polynomial circuits.

### Proof.

Let  $L \subseteq \{0,1\}^*$  be any undecidable language in the alphabet  $\{0,1\}$  and let  $U \subseteq 1^*$  be the language  $\{1^n :$  the binary expansion of n is in L. Clearly U is undecidable (Why?) Now consider the following family of polynomial circuits  $C = (C_0, C_1, ..., C_n)$  if  $1 \in U$ , then  $C_0$  consists of (n-1) AND gates that compute the conjunction of all the inputs.

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

## **Circuits and Complexity**

### Proposition

All languages in P have polynomial sized circuits.

### Proof.

We actually reduced an arbitrary Turing Machine that halts in polynomial time to a variable-free circuit, when we showed that CIRCUIT-VALUE is **P-complete**.

### Theorem

There are undecidable languages which have polynomial circuits.

### Proof.

Let  $L \subseteq \{0,1\}^*$  be any undecidable language in the alphabet  $\{0,1\}$  and let  $U \subseteq 1^*$  be the language  $\{1^n :$  the binary expansion of n is in L. Clearly U is undecidable (Why?) Now consider the following family of polynomial circuits  $C = (C_0, C_1, ...)$ . If  $T \in U$  then  $C_n$  consists of (n-1) AND gates that compute the conjunction of all the inputs of T = U.

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

## **Circuits and Complexity**

### Proposition

All languages in P have polynomial sized circuits.

### Proof.

We actually reduced an arbitrary Turing Machine that halts in polynomial time to a variable-free circuit, when we showed that CIRCUIT-VALUE is **P-complete**.

### Theorem

There are undecidable languages which have polynomial circuits.

### Proof.

Let  $L \subseteq \{0, 1\}^*$  be any undecidable language in the alphabet  $\{0, 1\}$  and let  $U \subseteq 1^*$  be the language  $\{1^n :$  the binary expansion of n is in L. Clearly U is undecidable (Why?) Now consider the following family of polynomial circuits  $C = (C_0, C_1, ...)$ . If  $1^n \in U$ , then  $C_n$  consists of (n - 1) **AND** gates that compute the conjunction of all the inputs. If  $1^n \in U$ , then  $C_n$  consists of its input gates and an output gate that is false. Thus, for all inputs,  $1^n \in U \rightarrow C_n$  outputs true.

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

## **Circuits and Complexity**

### Proposition

All languages in P have polynomial sized circuits.

### Proof.

We actually reduced an arbitrary Turing Machine that halts in polynomial time to a variable-free circuit, when we showed that CIRCUIT-VALUE is **P-complete**.

### Theorem

There are undecidable languages which have polynomial circuits.

### Proof.

Let  $L \subseteq \{0, 1\}^*$  be any undecidable language in the alphabet  $\{0, 1\}$  and let  $U \subseteq 1^*$  be the language  $\{1^n :$  the binary expansion of n is in L. Clearly U is undecidable (Why?) Now consider the following family of polynomial circuits  $C = (C_0, C_1, \ldots)$ . If  $1^n \in U$ , then  $C_n$  consists of (n - 1) **AND** gates that compute the conjunction of all the inputs. If  $1^n \notin U$ , then  $C_n$  consists of its input gates and an output gate that is **false**. Thus, for all inputs,  $1^n \in U \leftrightarrow C_n$  outputs true.

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

## **Circuits and Complexity**

### Proposition

All languages in P have polynomial sized circuits.

### Proof.

We actually reduced an arbitrary Turing Machine that halts in polynomial time to a variable-free circuit, when we showed that CIRCUIT-VALUE is **P-complete**.

### Theorem

There are undecidable languages which have polynomial circuits.

### Proof.

Let  $L \subseteq \{0,1\}^*$  be any undecidable language in the alphabet  $\{0,1\}$  and let  $U \subseteq 1^*$  be the language  $\{1^n :$  the binary expansion of n is in L. Clearly U is undecidable (Why?) Now consider the following family of polynomial circuits  $C = (C_0, C_1, \ldots)$ . If  $1^n \in U$ , then  $C_n$  consists of (n-1) **AND** gates that compute the conjunction of all the inputs. If  $1^n \notin U$ , then  $C_n$  consists of its input gates and an output gate that is **false**. Thus, for all inputs,  $1^n \in U \leftrightarrow C_n$  outputs **true**.

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

# **Uniform Circuits**

### Definition

A family of circuits  $C = (C_0, C_1, ...)$  is said to be uniform if there is a log *n*-space bounded Turing machine that on input 1<sup>*n*</sup>, outputs  $C_n$ .

#### Definition

A language *L* has uniformly polynomial circuits if there is a uniform family of polynomial circuits ( $C_0, C_1, \ldots$ ) which decides *L*.

#### Note

Reachability has uniformly polynomial circuits, while the circuit family for the undecidable language is **not** uniform.

#### Theorem

Circuits Circuit complexity of Reachability

# **Uniform Circuits**

### Definition

A family of circuits  $C = (C_0, C_1, ...)$  is said to be uniform if there is a log *n*-space bounded Turing machine that on input 1<sup>*n*</sup>, outputs  $C_n$ .

### Definition

A language *L* has uniformly polynomial circuits if there is a uniform family of polynomial circuits ( $C_0, C_1, \ldots$ ) which decides *L*.

#### Note

Reachability has uniformly polynomial circuits, while the circuit family for the undecidable language is **not** uniform.

#### Theorem

Circuits Circuit complexity of Reachability

# **Uniform Circuits**

### Definition

A family of circuits  $C = (C_0, C_1, ...)$  is said to be uniform if there is a log *n*-space bounded Turing machine that on input 1<sup>*n*</sup>, outputs  $C_n$ .

### Definition

A language *L* has uniformly polynomial circuits if there is a uniform family of polynomial circuits ( $C_0, C_1, \ldots$ ) which decides *L*.

### Note

Reachability has uniformly polynomial circuits, while the circuit family for the undecidable language is **not** uniform.

#### [heorem]

Circuits Circuit complexity of Reachability

# **Uniform Circuits**

### Definition

A family of circuits  $C = (C_0, C_1, ...)$  is said to be uniform if there is a log *n*-space bounded Turing machine that on input 1<sup>*n*</sup>, outputs  $C_n$ .

### Definition

A language *L* has uniformly polynomial circuits if there is a uniform family of polynomial circuits ( $C_0, C_1, \ldots$ ) which decides *L*.

### Note

Reachability has uniformly polynomial circuits, while the circuit family for the undecidable language is **not** uniform.

#### Theorem

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

# Uniform circuits (contd.)

### Proof.

The fact that if  $L \in \mathbf{P}$  then it has uniformly polynomial circuits was established by the reduction of any polynomial time Turing machine to a circuit.

For the converse, let *L* have a uniformly polynomial circuit. Given *x*, build  $C_{|x|}$  in  $\log |x|$  space and hence polynomial time. Evaluate  $C_{|x|}$  by setting the inputs so that they spel x!

#### Conjecture

NP-complete problems have no uniformly polynomial circuits.

#### Conjecture

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

# Uniform circuits (contd.)

### Proof.

The fact that if  $L \in \mathbf{P}$  then it has uniformly polynomial circuits was established by the reduction of any polynomial time Turing machine to a circuit. For the converse, let *L* have a uniformly polynomial circuit. Given *x*, build  $C_{|x|}$  in  $\log |x|$  space and hence polynomial time. Evaluate  $C_{|x|}$  by setting the inputs so that they spell x!

#### Conjecture

NP-complete problems have no uniformly polynomial circuits.

### Conjecture

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

# Uniform circuits (contd.)

### Proof.

The fact that if  $L \in \mathbf{P}$  then it has uniformly polynomial circuits was established by the reduction of any polynomial time Turing machine to a circuit. For the converse, let *L* have a uniformly polynomial circuit. Given *x*, build  $C_{|x|}$  in  $\log |x|$  space and hence polynomial time. Evaluate  $C_{|x|}$  by setting the inputs so that they spell x!

### Conjecture

NP-complete problems have no uniformly polynomial circuits.

#### Conjecture

The Probabilistic Method The Chernoff Bound Circuits and BPP Circuits Circuit complexity of Reachability

# Uniform circuits (contd.)

### Proof.

The fact that if  $L \in \mathbf{P}$  then it has uniformly polynomial circuits was established by the reduction of any polynomial time Turing machine to a circuit. For the converse, let *L* have a uniformly polynomial circuit. Given *x*, build  $C_{|x|}$  in  $\log |x|$  space and hence polynomial time. Evaluate  $C_{|x|}$  by setting the inputs so that they spell x!

### Conjecture

NP-complete problems have no uniformly polynomial circuits.

### Conjecture

## The Probabilistic Method

### Two themes

- (i) Every random variable assumes at least one value no less than its expected value and at least one value no more than its expected value.
- (ii) If an object chosen randomly from a universe satisfies a property with positive probability, then there must exist at least one object in the universe which satisfies the property.

#### Theorem

Every CNF formula on m clauses has an assignment that satisfies at least  $\frac{m}{2}$  clauses.

## The Probabilistic Method

### Two themes

- (i) Every random variable assumes at least one value no less than its expected value and at least one value no more than its expected value.
- (ii) If an object chosen randomly from a universe satisfies a property with positive probability, then there must exist at least one object in the universe which satisfies the property.

#### Theorem

Every CNF formula on m clauses has an assignment that satisfies at least  $\frac{m}{2}$  clauses.

## The Probabilistic Method

### Two themes

- (i) Every random variable assumes at least one value no less than its expected value and at least one value no more than its expected value.
- (ii) If an object chosen randomly from a universe satisfies a property with positive probability, then there must exist at least one object in the universe which satisfies the property.

### Theorem

Every CNF formula on m clauses has an assignment that satisfies at least  $\frac{m}{2}$  clauses.

## The Chernoff Bound

### Theorem

Let  $x_1, x_2, \ldots, x_n$  denote n independent 0/1 Bernoulli variables with  $\Pr[x_i = 1] = p$ , for each  $i = 1, 2, \ldots n$ . Let  $X = \sum_{i=1}^{n} x_i$ . Then for  $0 \le \theta \le 1$ ,

 $\Pr[X \ge (1+\theta)np] \le e^{-rac{\theta^2}{3}np}$ 

# Circuits and BPP

### Theorem

All languages in BPP have polynomial circuits.

#### Proof.

Let  $L \in \mathbf{BPP}$  be decided by a non-deterministic Turing machine *N* that decides by a clear majority and halts in time p(n), for all inputs x, |x| = n. We need to construct  $C_n$  for each *n*, but an explicit construction is unlikely! (Why?) Consider the sequence of bit strings  $\mathcal{A}_n = \{a_1, a_2, \ldots, a_m\}$  with each  $a_i \in \{0, 1\}^{p(n)}$  and  $m = 12 \cdot (n+1)$ . Each bit string simulates a computation of *N*.  $C_n$  on input x, |x| = n simulates *N* with each sequence of choices in  $\mathcal{A}_n$  and takes the majority. Clearly, given  $A_n$ ,  $C_n$  can be constructed with polynomially many gates. But is there such an  $\mathcal{A}_n$ ?

## Circuits and BPP

### Theorem

All languages in BPP have polynomial circuits.

### Proof.

Let  $L \in \mathbf{BPP}$  be decided by a non-deterministic Turing machine *N* that decides by a clear majority and halts in time p(n), for all inputs x, |x| = n.

We need to construct  $C_n$  for each n, but an explicit construction is unlikely! (Why?) Consider the sequence of bit strings  $A_n = \{a_1, a_2, \ldots, a_m\}$  with each  $a_i \in \{0, 1\}^{p(n)}$ and  $m = 12 \cdot (n + 1)$ . Each bit string simulates a computation of N.  $C_n$  on input x, |x| = n simulates N with each sequence of choices in  $A_n$  and takes the majority. Clearly, given  $A_n$ ,  $C_n$  can be constructed with polynomially many gates. But is there such an  $A_n$ ?

## Circuits and BPP

### Theorem

All languages in BPP have polynomial circuits.

### Proof.

Let  $L \in \mathbf{BPP}$  be decided by a non-deterministic Turing machine N that decides by a clear majority and halts in time p(n), for all inputs x, |x| = n. We need to construct  $C_n$  for each n, but an explicit construction is unlikely! (Why?) Consider the sequence of bit strings  $A_n = \{a_1, a_2, \ldots, a_m\}$  with each  $a_i \in \{0, 1\}^{p(n)}$  and  $m = 12 \cdot (n + 1)$ . Each bit string simulates a computation of N. Constructed with polynomially many gates. But is there such an  $A_n$ ?

## Circuits and BPP

### Theorem

All languages in BPP have polynomial circuits.

### Proof.

Let  $L \in \mathbf{BPP}$  be decided by a non-deterministic Turing machine *N* that decides by a clear majority and halts in time p(n), for all inputs x, |x| = n. We need to construct  $C_n$  for each *n*, but an explicit construction is unlikely! (Why?) Consider the sequence of bit strings  $\mathcal{A}_n = \{a_1, a_2, \ldots, a_m\}$  with each  $a_i \in \{0, 1\}^{p(n)}$  and  $m = 12 \cdot (n+1)$ . Each bit string simulates a computation of *N*.  $C_n$  on input  $x_i | x_i | = n$  simulates *N* with each sequence of choices in  $\mathcal{A}_n$  and takes the majority.

## Circuits and BPP

### Theorem

All languages in BPP have polynomial circuits.

### Proof.

Let  $L \in \mathbf{BPP}$  be decided by a non-deterministic Turing machine *N* that decides by a clear majority and halts in time p(n), for all inputs x, |x| = n. We need to construct  $C_n$  for each *n*, but an explicit construction is unlikely! (Why?) Consider the sequence of bit strings  $\mathcal{A}_n = \{a_1, a_2, \ldots, a_m\}$  with each  $a_i \in \{0, 1\}^{p(n)}$  and  $m = 12 \cdot (n+1)$ . Each bit string simulates a computation of *N*.  $C_n$  on input  $x_i = n$  simulates *N* with each sequence of choices in  $\mathcal{A}_n$  and takes the majority. Clearly, given  $\mathcal{A}_n$ ,  $C_n$  can be constructed with polynomially many gates.

## Circuits and BPP

### Theorem

All languages in BPP have polynomial circuits.

### Proof.

Let  $L \in \mathbf{BPP}$  be decided by a non-deterministic Turing machine *N* that decides by a clear majority and halts in time p(n), for all inputs x, |x| = n. We need to construct  $C_n$  for each *n*, but an explicit construction is unlikely! (Why?) Consider the sequence of bit strings  $\mathcal{A}_n = \{a_1, a_2, \ldots, a_m\}$  with each  $a_i \in \{0, 1\}^{p(n)}$  and  $m = 12 \cdot (n+1)$ . Each bit string simulates a computation of *N*.  $C_n$  on input x, |x| = n simulates *N* with each sequence of choices in  $\mathcal{A}_n$  and takes the majority. Clearly, given  $\mathcal{A}_n$ ,  $C_n$  can be constructed with polynomially many gates. But is there such an  $\mathcal{A}_n$ ?

## Circuits and BPP

### Theorem

All languages in BPP have polynomial circuits.

### Proof.

Let  $L \in \mathbf{BPP}$  be decided by a non-deterministic Turing machine *N* that decides by a clear majority and halts in time p(n), for all inputs x, |x| = n. We need to construct  $C_n$  for each *n*, but an explicit construction is unlikely! (Why?) Consider the sequence of bit strings  $\mathcal{A}_n = \{a_1, a_2, \ldots, a_m\}$  with each  $a_i \in \{0, 1\}^{p(n)}$  and  $m = 12 \cdot (n+1)$ . Each bit string simulates a computation of *N*.  $C_n$  on input x, |x| = n simulates *N* with each sequence of choices in  $\mathcal{A}_n$  and takes the majority. Clearly, given  $A_n$ ,  $C_n$  can be constructed with polynomially many gates. But is there such an  $\mathcal{A}_n$ ?

## Circuits and BPP

### Theorem

All languages in BPP have polynomial circuits.

### Proof.

Let  $L \in \mathbf{BPP}$  be decided by a non-deterministic Turing machine *N* that decides by a clear majority and halts in time p(n), for all inputs x, |x| = n. We need to construct  $C_n$  for each *n*, but an explicit construction is unlikely! (Why?) Consider the sequence of bit strings  $\mathcal{A}_n = \{a_1, a_2, \ldots, a_m\}$  with each  $a_i \in \{0, 1\}^{p(n)}$  and  $m = 12 \cdot (n+1)$ . Each bit string simulates a computation of *N*.  $C_n$  on input x, |x| = n simulates *N* with each sequence of choices in  $\mathcal{A}_n$  and takes the majority. Clearly, given  $A_n$ ,  $C_n$  can be constructed with polynomially many gates. But is there such an  $\mathcal{A}_n$ ?

# Circuits and BPP (contd.)

### Lemma

For all n > 0, there is a set  $A_n$  of  $m = 12 \cdot (n + 1)$  bit strings such that for all inputs x, with |x| = n, fewer than half the choices in  $A_n$  are bad, i.e., lead to either a false positive or a false negative.

### Proof.

Consider a sequence  $\mathcal{A}_n$  of *m* bit strings of length  $p_n$  selected at random by *m* independent samplings of  $\{0, 1\}^{p(n)}$ . What is the probability that more than half the choices in  $\mathcal{A}_n$  are correct? For each  $x \in \{0, 1\}^n$ , at most one-quarter of the computations are bad. (Why?) Since the sequences in  $\mathcal{A}_n$  were picked randomly and independently, the expected number of bad sequences is at most  $\frac{1}{2}m$ . By the Chernoff bound, the probability that the number of bad strings is  $\frac{1}{2}m$  or more is at most  $\frac{1}{2}m$ . The above inequality holds regardless of the choice of  $x \in \{0, 1\}^n$ . Thus, the probability that there exists an x with no accepting sequence in  $\mathcal{A}_n$  is at most  $2^n \frac{1}{2^{n-1}} = \frac{1}{2}$ . With probability at least one-half, the random selection of sequences has the desired property.

# Circuits and BPP (contd.)

### Lemma

For all n > 0, there is a set  $A_n$  of  $m = 12 \cdot (n + 1)$  bit strings such that for all inputs x, with |x| = n, fewer than half the choices in  $A_n$  are bad, i.e., lead to either a false positive or a false negative.

### Proof.

Consider a sequence  $A_n$  of *m* bit strings of length  $p_n$  selected at random by *m* independent samplings of  $\{0, 1\}^{p(n)}$ . What is the probability that more than half the choices in  $A_n$  are correct?

For each  $x \in \{0, 1\}^n$ , at most one-quarter of the computations are bad. (Why?) Since the sequences in  $A_n$  were picked randomly and independently, the expected number of bad sequences is at most  $\frac{1}{4}m$ . By the Chernoff bound, the probability that the number

of bad strings is  $\frac{1}{2}m$  or more is at most  $e^{\frac{-m}{12}} < \frac{1}{2^{n+1}}$ .

The above inequality holds regardless of the choice of  $x \in \{0, 1\}^n$ . Thus, the probability that there exists an x with no accepting sequence in  $A_n$  is at most  $2^n \frac{1}{2n^2} = \frac{1}{n}$ .

# Circuits and BPP (contd.)

### Lemma

For all n > 0, there is a set  $A_n$  of  $m = 12 \cdot (n + 1)$  bit strings such that for all inputs x, with |x| = n, fewer than half the choices in  $A_n$  are bad, i.e., lead to either a false positive or a false negative.

### Proof.

Consider a sequence  $\mathcal{A}_n$  of *m* bit strings of length  $p_n$  selected at random by *m* independent samplings of  $\{0, 1\}^{p(n)}$ . What is the probability that more than half the choices in  $\mathcal{A}_n$  are correct? For each  $x \in \{0, 1\}^n$ , at most one-quarter of the computations are bad. (Why?) Since the sequences in  $\mathcal{A}_n$  were picked randomly and independently, the expected number of bad sequences is at most  $\frac{1}{2}m$ . By the Chernoff bound, the probability that the number of bad strings is  $\frac{1}{2}m$  or more is at most  $e^{-\frac{1}{12}m} < \frac{1}{2^{n+1}}$ . The above inequality holds regardless of the choice of  $x \in \{0, 1\}^n$ . Thus, the probability that there exists an x with no accepting sequence in  $\mathcal{A}_n$  is at most  $2^n$  and  $2^n$  with probability at least one-half, the random selection of sequences has the desired property.

# Circuits and BPP (contd.)

### Lemma

For all n > 0, there is a set  $A_n$  of  $m = 12 \cdot (n + 1)$  bit strings such that for all inputs x, with |x| = n, fewer than half the choices in  $A_n$  are bad, i.e., lead to either a false positive or a false negative.

### Proof.

Consider a sequence  $A_n$  of *m* bit strings of length  $p_n$  selected at random by *m* independent samplings of  $\{0, 1\}^{p(n)}$ . What is the probability that more than half the choices in  $A_n$  are correct?

For each  $x \in \{0, 1\}^n$ , at most one-quarter of the computations are bad. (Why?) Since the sequences in  $A_n$  were picked randomly and independently, the expected number of bad sequences is at most  $\frac{1}{4}m$ .

of bad strings is  $\frac{1}{2}m$  or more is at most  $e^{\frac{-\pi m}{12}} < \frac{1}{2^{n+1}}$ . The above inequality holds regardless of the choice of  $x \in \{0, 1\}^n$ . Thus, the probability that there exists an *x* with no accepting sequence in  $A_n$  is at most  $2^n \frac{1}{2^{n+1}} = \frac{1}{2}$ . With probability at least one-half, the random selection of sequences has the desired

property.

## Circuits and **BPP** (contd.)

### Lemma

For all n > 0, there is a set  $A_n$  of  $m = 12 \cdot (n + 1)$  bit strings such that for all inputs x, with |x| = n, fewer than half the choices in  $A_n$  are bad, i.e., lead to either a false positive or a false negative.

### Proof.

Consider a sequence  $A_n$  of *m* bit strings of length  $p_n$  selected at random by *m* independent samplings of  $\{0, 1\}^{p(n)}$ . What is the probability that more than half the choices in  $A_n$  are correct?

For each  $x \in \{0, 1\}^n$ , at most one-quarter of the computations are bad. (Why?) Since the sequences in  $A_n$  were picked randomly and independently, the expected number of bad sequences is at most  $\frac{1}{4}m$ . By the Chernoff bound, the probability that the number

of bad strings is  $\frac{1}{2}m$  or more is at most  $e^{\frac{-m}{12}} < \frac{1}{2^{n+1}}$ .

The above inequality holds regardless of the choice of  $x \in \{0, 1\}^n$ . Thus, the probability that there exists an *x* with no accepting sequence in  $A_n$  is at most  $2^n \frac{1}{2n+1} = \frac{1}{2}$ .

## Circuits and **BPP** (contd.)

### Lemma

For all n > 0, there is a set  $A_n$  of  $m = 12 \cdot (n + 1)$  bit strings such that for all inputs x, with |x| = n, fewer than half the choices in  $A_n$  are bad, i.e., lead to either a false positive or a false negative.

### Proof.

Consider a sequence  $A_n$  of *m* bit strings of length  $p_n$  selected at random by *m* independent samplings of  $\{0, 1\}^{p(n)}$ . What is the probability that more than half the choices in  $A_n$  are correct?

For each  $x \in \{0, 1\}^n$ , at most one-quarter of the computations are bad. (Why?) Since the sequences in  $A_n$  were picked randomly and independently, the expected number of bad sequences is at most  $\frac{1}{4}m$ . By the Chernoff bound, the probability that the number

of bad strings is  $\frac{1}{2}m$  or more is at most  $e^{\frac{-m}{12}} < \frac{1}{2^{n+1}}$ .

The above inequality holds regardless of the choice of  $x \in \{0, 1\}^n$ . Thus, the

probability that there exists an x with no accepting sequence in  $A_n$  is at most  $2^n \frac{1}{2n+1} = \frac{1}{2}$ .

## Circuits and **BPP** (contd.)

### Lemma

For all n > 0, there is a set  $A_n$  of  $m = 12 \cdot (n + 1)$  bit strings such that for all inputs x, with |x| = n, fewer than half the choices in  $A_n$  are bad, i.e., lead to either a false positive or a false negative.

### Proof.

Consider a sequence  $A_n$  of *m* bit strings of length  $p_n$  selected at random by *m* independent samplings of  $\{0, 1\}^{p(n)}$ . What is the probability that more than half the choices in  $A_n$  are correct?

For each  $x \in \{0, 1\}^n$ , at most one-quarter of the computations are bad. (Why?) Since the sequences in  $A_n$  were picked randomly and independently, the expected number of bad sequences is at most  $\frac{1}{4}m$ . By the Chernoff bound, the probability that the number

of bad strings is  $\frac{1}{2}m$  or more is at most  $e^{\frac{-m}{12}} < \frac{1}{2^{n+1}}$ .

The above inequality holds regardless of the choice of  $x \in \{0, 1\}^n$ . Thus, the probability that there exists an *x* with no accepting sequence in  $A_n$  is at most  $2^n \frac{1}{2n+1} = \frac{1}{2}$ .

## Circuits and **BPP** (contd.)

### Lemma

For all n > 0, there is a set  $A_n$  of  $m = 12 \cdot (n + 1)$  bit strings such that for all inputs x, with |x| = n, fewer than half the choices in  $A_n$  are bad, i.e., lead to either a false positive or a false negative.

### Proof.

Consider a sequence  $A_n$  of *m* bit strings of length  $p_n$  selected at random by *m* independent samplings of  $\{0, 1\}^{p(n)}$ . What is the probability that more than half the choices in  $A_n$  are correct?

For each  $x \in \{0, 1\}^n$ , at most one-quarter of the computations are bad. (Why?) Since the sequences in  $A_n$  were picked randomly and independently, the expected number of bad sequences is at most  $\frac{1}{4}m$ . By the Chernoff bound, the probability that the number

of bad strings is  $\frac{1}{2}m$  or more is at most  $e^{\frac{-m}{12}} < \frac{1}{2^{n+1}}$ .

The above inequality holds regardless of the choice of  $x \in \{0, 1\}^n$ . Thus, the probability that there exists an *x* with no accepting sequence in  $A_n$  is at most  $2^n \frac{1}{2n+1} = \frac{1}{2}$ .

# Completing the Main theorem

## Proof of Main theorem (contd.)

Given a suitable  $A_n$ , construct  $C_n$  with  $O(n^2(p(n))^2)$  gates so that it simulates N with each of these sequences and then takes the majority of these outcomes. Based on the choice of  $A_n$ ,  $C_n$  outputs true if and only if the input is in  $L \cap \{0, 1\}^n$ , i.e., L has a polynomial family of circuits.

# Completing the Main theorem

### Proof of Main theorem (contd.)

Given a suitable  $A_n$ , construct  $C_n$  with  $O(n^2(p(n))^2)$  gates so that it simulates N with each of these sequences and then takes the majority of these outcomes. Based on the choice of  $A_n$ ,  $C_n$  outputs **true** if and only if the input is in  $L \cap \{0, 1\}^n$ , i.e., L has a polynomial family of circuits.