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Problems in NP

Class NP

NP is the class of languages decided by nondeterministic Turing machines in
polynomial time.
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Problems in NP

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in
polynomial time.

Definition

| \

Let R C ¥* x X* be a binary relation on strings. R is called polynomially decidable if
the language {x;y : (x,y) € R} is decided by a deterministic Turing machine in
polynomial time.
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Problems in NP

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in
polynomial time.

Definition

| \

Let R C ¥* x X* be a binary relation on strings. R is called polynomially decidable if
the language {x;y : (x,y) € R} is decided by a deterministic Turing machine in
polynomial time.

\

Definition

R is polynomial balanced if (x,y) € R implies |y| < [x|¥ for some k > 1.
That is, the length of the second component is always bounded by a polynomial in the
length of the first.

Xiaofeng Gu NP-Complete Problems



Problems in NP

Class NP (contd.)

Proposition

LetL C ¥* be alanguage. L € NP if and only if there is a polynomial decidable and
polynomial balanced relation R, such that L = {x : Jy, (x,y) € R}.
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Problems in NP

Class NP (contd.)

Proposition

LetL C ¥* be alanguage. L € NP if and only if there is a polynomial decidable and
polynomial balanced relation R, such that L = {x : Jy, (x,y) € R}.

Proof.

(i) “If" part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time.

J
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Class NP (contd.)

Proposition

LetL C ¥* be alanguage. L € NP if and only if there is a polynomial decidable and
polynomial balanced relation R, such that L = {x : Jy, (x,y) € R}.

Proof.
(i) “If" part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows:
On input x, M guesses a y of length at most |x\k, and then verify whether
(x,Y) € R (This can be done in polynomial time because R is polynomial
decidable.). If (x,y) € R, M accepts, otherwise it rejects.

J
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Class NP (contd.)

Proposition

LetL C ¥* be alanguage. L € NP if and only if there is a polynomial decidable and
polynomial balanced relation R, such that L = {x : Jy, (x,y) € R}.

Proof.

(i) “If" part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows:
On input x, M guesses a y of length at most |x\k, and then verify whether
(x,Y) € R (This can be done in polynomial time because R is polynomial
decidable.). If (x,y) € R, M accepts, otherwise it rejects.

(i) “Only if” part: Suppose that L € NP, that is, there is a nondeterministic Turing
machine N that decides L in time |x|* for some k.

J
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Class NP (contd.)

Proposition

LetL C ¥* be alanguage. L € NP if and only if there is a polynomial decidable and
polynomial balanced relation R, such that L = {x : Jy, (x,y) € R}.

Proof.

(i) “If" part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows:
On input x, M guesses a y of length at most |x\k, and then verify whether
(x,Y) € R (This can be done in polynomial time because R is polynomial
decidable.). If (x,y) € R, M accepts, otherwise it rejects.

(i) “Only if” part: Suppose that L € NP, that is, there is a nondeterministic Turing
machine N that decides L in time [x|* for some k. Define a relation R as follows:

(x,y) € R if and only if y encodes an accepting computation of N on input x.
Clearly R is polynomial decidable and polynomial bounded.

J
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Class NP (contd.)

Proposition

LetL C ¥* be alanguage. L € NP if and only if there is a polynomial decidable and
polynomial balanced relation R, such that L = {x : Jy, (x,y) € R}.

Proof.

(i) “If" part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows:
On input x, M guesses a y of length at most |x\k, and then verify whether
(x,Y) € R (This can be done in polynomial time because R is polynomial
decidable.). If (x,y) € R, M accepts, otherwise it rejects.

(i) “Only if” part: Suppose that L € NP, that is, there is a nondeterministic Turing
machine N that decides L in time [x|* for some k. Define a relation R as follows:
(x,y) € R if and only if y encodes an accepting computation of N on input x.
Clearly R is polynomial decidable and polynomial bounded.

Now we show L = {x : 3y, (x,y) € R}.

J
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Class NP (contd.)

Proposition

LetL C ¥* be alanguage. L € NP if and only if there is a polynomial decidable and
polynomial balanced relation R, such that L = {x : Jy, (x,y) € R}.

Proof.

(i) “If" part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows:
On input x, M guesses a y of length at most |x\k, and then verify whether
(x,Y) € R (This can be done in polynomial time because R is polynomial
decidable.). If (x,y) € R, M accepts, otherwise it rejects.

(i) “Only if” part: Suppose that L € NP, that is, there is a nondeterministic Turing
machine N that decides L in time [x|* for some k. Define a relation R as follows:
(x,y) € R if and only if y encodes an accepting computation of N on input x.
Clearly R is polynomial decidable and polynomial bounded.

Now we show L = {x : 3y, (x,y) € R}. Since N decides L, Vx € L, there must be
ay such that (x,y) € R, and hence L C {x : 3y, (x,y) € R};

J
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Class NP (contd.)

LetL C ¥* be alanguage. L € NP if and only if there is a polynomial decidable and
polynomial balanced relation R, such that L = {x : Jy, (x,y) € R}.

o

(i) “If" part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows:
On input x, M guesses a y of length at most |x\k, and then verify whether
(x,Y) € R (This can be done in polynomial time because R is polynomial
decidable.). If (x,y) € R, M accepts, otherwise it rejects.

“Only if” part: Suppose that L € NP, that is, there is a nondeterministic Turing
machine N that decides L in time [x|* for some k. Define a relation R as follows:
(x,y) € R if and only if y encodes an accepting computation of N on input x.
Clearly R is polynomial decidable and polynomial bounded.

Now we show L = {x : 3y, (x,y) € R}. Since N decides L, Vx € L, there must be
ay such that (x,y) € R, and hence L C {x : 3y, (x,y) € R}; Conversely,

vx € {x : 3y, (X,y) € R}, it must be the cast that N accepts x. It means x € L,
and hence {x : 3y, (x,y) € R} C L. ThusL = {x : 3y, (x,y) € R}.

—~
=

O
<
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Problems in NP

What does the proposition tell us?
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Problems in NP

What does the proposition tell us?

(i) Any “yes” instance x of the problem in NP has at least one polynomial certificate y
of its being a “yes” instance.
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Problems in NP

What does the proposition tell us?

(i) Any “yes” instance x of the problem in NP has at least one polynomial certificate y
of its being a “yes” instance.

(i) We may not know how to discover this certificate in polynomial time, but we are
sure it exists if the instance is a “yes” instance.
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Problems in NP

What does the proposition tell us?

(i) Any “yes” instance x of the problem in NP has at least one polynomial certificate y
of its being a “yes” instance.

(i) We may not know how to discover this certificate in polynomial time, but we are
sure it exists if the instance is a “yes” instance.

(iii) Naturally, “no” instance may not have such certificate.
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Problems in NP

What does the proposition tell us?

(i) Any “yes” instance x of the problem in NP has at least one polynomial certificate y
of its being a “yes” instance.

(i) We may not know how to discover this certificate in polynomial time, but we are
sure it exists if the instance is a “yes” instance.

(iii) Naturally, “no” instance may not have such certificate.

| \

Examples
SAT: The certificate is just an assignment that satisfies the Boolean expression.
HAMILTON PATH: the certificate is precisely a Hamilton path in the graph.

V.
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Variants of Satisfiability
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9 Variants of Satisfiability
9@ 3SAT
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Variants of Satisfiability

(Cook’s Theorem ) SAT is NP-complete.
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Variants of Satisfiability

(Cook’s Theorem ) SAT is NP-complete.

Definition

kSAT, where k > 1 is an integer, is the special case of SAT in which the formula is in
CNF, and all clauses have k literals.
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Variants of Satisfiability

Proposition

3SAT is NP-complete.
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3SAT
2SAT
MAX2SAT
NAESAT

Variants of Satisfiability

Proposition
3SAT is NP-complete.

Proof.

First, it is easy to see that 3SAT € NP. We can construct a nondeterministic Turing
machine to guess a truth assignment for the variables and check in polynomial time
whether the assignment satisfies all the three-literal clauses.
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3SAT
2SAT
MAX2SAT
NAESAT

Variants of Satisfiability

Proposition
3SAT is NP-complete.

Proof.

First, it is easy to see that 3SAT € NP. We can construct a nondeterministic Turing
machine to guess a truth assignment for the variables and check in polynomial time
whether the assignment satisfies all the three-literal clauses.

Then, we can reduce SAT to 3SAT. Suppose c is a k-literal clause in the input CNF
expression. If k = 1, ¢ = (x),then ¢ = (X, X, X);
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3SAT
2SAT
MAX2SAT
NAESAT

Variants of Satisfiability

Proposition
3SAT is NP-complete.

Proof.

First, it is easy to see that 3SAT € NP. We can construct a nondeterministic Turing
machine to guess a truth assignment for the variables and check in polynomial time
whether the assignment satisfies all the three-literal clauses.

Then, we can reduce SAT to 3SAT. Suppose c is a k-literal clause in the input CNF
expression. If k = 1, ¢ = (x),then ¢ = (X, X, X);

Ifk =2,c=(x,y) thenc = (x,y,y);
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3SAT
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MAX2SAT
NAESAT

Variants of Satisfiability

Proposition
3SAT is NP-complete.

Proof.

First, it is easy to see that 3SAT € NP. We can construct a nondeterministic Turing
machine to guess a truth assignment for the variables and check in polynomial time
whether the assignment satisfies all the three-literal clauses.

Then, we can reduce SAT to 3SAT. Suppose c is a k-literal clause in the input CNF
expression. If k = 1, ¢ = (x),then ¢ = (X, X, X);

Ifk =2,c=(x,y) thenc = (x,y,y);

Ifk=3,c=(x,y,2);
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3SAT
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Variants of Satisfiability

Proposition
3SAT is NP-complete.

Proof.

First, it is easy to see that 3SAT € NP. We can construct a nondeterministic Turing
machine to guess a truth assignment for the variables and check in polynomial time
whether the assignment satisfies all the three-literal clauses.

Then, we can reduce SAT to 3SAT. Suppose c is a k-literal clause in the input CNF
expression. If k = 1, ¢ = (x),then ¢ = (X, X, X);

Ifk =2,c=(x,y) thenc = (x,y,y);

Ifk=3,c=(x,y,2);

Ifk =4, c = (xg, X2, X3, X4), rewrite as (xg, Xz, u) A (X3, X4, U).
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3SAT
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MAX2SAT
NAESAT

Variants of Satisfiability

Proposition
3SAT is NP-complete.

Proof

First, it is easy to see that 3SAT € NP. We can construct a nondeterministic Turing
machine to guess a truth assignment for the variables and check in polynomial time
whether the assignment satisfies all the three-literal clauses.

Then, we can reduce SAT to 3SAT. Suppose c is a k-literal clause in the input CNF
expression. If k = 1, ¢ = (x),then ¢ = (X, X, X);

Ifk =2,c=(x,y) thenc = (x,y,y);

Ifk=3,c=(x,y,2);

Ifk =4, c = (xg, X2, X3, X4), rewrite as (xg, Xz, u) A (X3, X4, U).

When k > 4, ¢ = (X1, X2, X3, X4, - - - , Xk ), rewrite as

(X1,X2,U1) A (X3,Uz,U2) A (Xa,U2,U3) A -+ A (X—1, Xk, Uk—3)-
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Variants of Satisfiability

In analyzing the complexity of a problem, we are trying to define the precise boundary
between the polynomial and NP-complete cases.
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Variants of Satisfiability

In analyzing the complexity of a problem, we are trying to define the precise boundary
between the polynomial and NP-complete cases.
For SAT, we already know that 3SAT is NP-complete, how about 2SAT?
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3SAT
2SAT

Variants of Satisfiability MAX2SAT

NAESAT

Outline

9 Variants of Satisfiability

@ 2SAT

Xiaofeng Gu NP-Complete Problems



3SAT
2SAT
MAX2SAT
NAESAT

Variants of Satisfiability

2SAT and Graph G(¢)

Let ¢ be an instance of 2SAT. We define a graph G(¢) as follows:
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3SAT
2SAT
MAX2SAT
NAESAT

Variants of Satisfiability

2SAT and Graph G(¢)

Let ¢ be an instance of 2SAT. We define a graph G(¢) as follows:
(a) The vertices of G are the variables of ¢ and their negations;
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SAT
2SAT
MAX2SAT
NAESAT

Variants of Satisfiability

2SAT and Graph G(¢)

Definition

Let ¢ be an instance of 2SAT. We define a graph G(¢) as follows:
(a) The vertices of G are the variables of ¢ and their negations;
(b) There is an edge («, B) if and only if there is a clause (—a Vv 8) (or (8 V —a)in ¢.
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SAT
2SAT
MAX2SAT
NAESAT

Variants of Satisfiability

2SAT and Graph G(¢)

Definition

Let ¢ be an instance of 2SAT. We define a graph G(¢) as follows:

(a) The vertices of G are the variables of ¢ and their negations;

(b) There is an edge («, B) if and only if there is a clause (—a Vv 8) (or (8 V —a)in ¢.
(c) G(¢) has a weird symmetry: If («, 3) is an edge, then so is (=3, —a).
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Variants of Satisfiability

2SAT and Graph G(¢)

Definition

Let ¢ be an instance of 2SAT. We define a graph G(¢) as follows:

(a) The vertices of G are the variables of ¢ and their negations;

(b) There is an edge («, B) if and only if there is a clause (—a Vv 8) (or (8 V —a)in ¢.
(c) G(¢) has a weird symmetry: If («, 3) is an edge, then so is (=3, —a).

Examples

¢ = (X1 VX2) A (Xg V =X3) A (X1 V X2) A (X2 V X3)
G(o) ?

~—
\
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Variants of Satisfiability

NAESAT

2SAT and Graph G(¢) (contd.)

¢ = (X1 VX2) A (X1 V =X3) A (=X V X2) A (X2 V X3)

—X3
X1 40 X3
X2
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Variants of Satisfiability

2SAT and Graph G(¢) (contd.)

¢ is unsatisfiable if and only if there is a variable x such that there are paths from x to
—x and from —x to x in G(¢).
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3SAT
2SAT
MAX2SAT
NAESAT

Variants of Satisfiability

2SAT and Graph G(¢) (contd.)

¢ is unsatisfiable if and only if there is a variable x such that there are paths from x to
—x and from —x to x in G(¢).

Proof.

“If" part: Suppose that such a x exists, we want to show ¢ is unsatisfiable. If ¢ is
satisfied by an assignment T, we have two cases:
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2SAT
MAX2SAT
NAESAT

Variants of Satisfiability

2SAT and Graph G(¢) (contd.)

¢ is unsatisfiable if and only if there is a variable x such that there are paths from x to
—x and from —x to x in G(¢).

Proof.

“If" part: Suppose that such a x exists, we want to show ¢ is unsatisfiable. If ¢ is
satisfied by an assignment T, we have two cases:

(@) T(x) = true. There is a path from x to —x, and T (x) = true and T (—x) = false,
then there must be an edge («a, 3) along this path such that T («) = true and
T (B) = false. Since («, 3) is an edge in G(¢), ~a V 3 is a clause in ¢, which is
not satisfied by T, a contradiction.

Xiaofeng Gu NP-Complete Problems
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MAX2SAT
NAESAT

Variants of Satisfiability

2SAT and Graph G(¢) (contd.)

¢ is unsatisfiable if and only if there is a variable x such that there are paths from x to
—x and from —x to x in G(¢).

Proof.

“If" part: Suppose that such a x exists, we want to show ¢ is unsatisfiable. If ¢ is

satisfied by an assignment T, we have two cases:

(@) T(x) = true. There is a path from x to —x, and T (x) = true and T (—x) = false,
then there must be an edge («a, 3) along this path such that T («) = true and
T (B) = false. Since («, 3) is an edge in G(¢), ~a V 3 is a clause in ¢, which is
not satisfied by T, a contradiction.

(b) T(x) = false . Use path —x to x, and the same argument as (a).
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Variants of Satisfiability

Proof (contd.)

“Only if” part: Suppose that ¢ is unsatisfiable, we want to show there is such a
variable x. If there is no such an x, we are going to construct a satisfying assignment,
and then by contradiction we prove it.
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3SAT
2SAT
MAX2SAT
NAESAT

Variants of Satisfiability

Proof (contd.)

“Only if” part: Suppose that ¢ is unsatisfiable, we want to show there is such a
variable x. If there is no such an x, we are going to construct a satisfying assignment,
and then by contradiction we prove it.

(a) For anode q, if there is a path from a to —«, then a must be assigned false .

(b) If there’s no path from a to —«, then all nodes that reachable from « are assigned
true, and all nodes from which —« is reachable are assigned false .

Repeat the step until all nodes have assignments, we can get a satisfying assignment.

Xiaofeng Gu NP-Complete Problems



3SAT
2SAT
MAX2SAT
NAESAT

Variants of Satisfiability

Proof (contd.)

“Only if” part: Suppose that ¢ is unsatisfiable, we want to show there is such a
variable x. If there is no such an x, we are going to construct a satisfying assignment,
and then by contradiction we prove it.

(a) For anode q, if there is a path from a to —«, then a must be assigned false .

(b) If there’s no path from a to —«, then all nodes that reachable from « are assigned
true, and all nodes from which —« is reachable are assigned false .

Repeat the step until all nodes have assignments, we can get a satisfying assignment.
We have two problems:

(i) Is the step in (b) well-defined? Yes!

(i) Continue doing the steps, we will get an assignment. Why is it a satisfying
assignment?
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Variants of Satisfiability

2SAT is in NL (and therefore in P).
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Variants of Satisfiability

2SAT is in NL (and therefore in P).

NL is closed under complement.
We can recognize unsatisfiable expressions in NL: Guess a variable x, and paths from
x to —x and back in nondeterministic logarithmic space.

O
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Variants of Satisfiability

Outline

9 Variants of Satisfiability

9@ MAX2SAT
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Variants of Satisfiability

MAXKSAT

Definition

We are given a set of clauses, each with two literals in it, and an integer K. MAX2SAT
is the problem whether there is an assignment that satisfies at least K of the clauses.
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MAX2SAT
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Variants of Satisfiability

MAXKSAT

Definition

We are given a set of clauses, each with two literals in it, and an integer K. MAX2SAT
is the problem whether there is an assignment that satisfies at least K of the clauses.

Observation

When k > 3, MAXKSAT is obviously NP-complete.
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Variants of Satisfiability MAX2SAT

NAESAT

MAX2SAT

MAX2SAT is NP-complete.
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Variants of Satisfiability

MAX2SAT

MAX2SAT is NP-complete.

Proof.

Let us consider a small instance first: given ten clauses
(x), (¥): (2), (w)
(=% V=), (7y V =2), (-2 V ~X)
(x V=w), (y V-w), (zV-w)

How many clauses can be satisfied?

o
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Problems in NP
Variants of Satisfiability
Graph-Theoretic Problems

MAX2SAT

MAX2SAT is NP-complete.

Proof.

Let us consider a small instance first: given ten clauses

(%), (¥). (2), (W)
(X V y), (7Y V-2), (-Z V ~x)
(xV=w), (yV-w),(zV-w)

How many clauses can be satisfied? If an assignment satisfy (x V'y V z), then it can
be extended to satisfy seven of the clauses and no more.

J
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Problems in NP
Variants of Satisfiability
Graph-Theoretic Problems

MAX2SAT

MAX2SAT is NP-complete.

Proof.

Let us consider a small instance first: given ten clauses

(%), (¥). (2), (W)
(X V y), (7Y V-2), (-Z V ~x)
(xV=w), (yV-w),(zV-w)

How many clauses can be satisfied? If an assignment satisfy (x V'y V z), then it can
be extended to satisfy seven of the clauses and no more. Then 3SAT can be reduced
to MAX2SAT: given any instance ¢ of 3SAT, we can construct an instance R(¢) of
MAX2SAT: for each clause C; = (a V 3 V v) of ¢, we add to R(¢) the following ten
clauses:

(@), (8), (7). (W)
(ma Vv =B), (7Y =), (v V —a)

O
<
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Variants of Satisfiability MAX2SAT

NAESAT

MAX2SAT (contd.)

(@ V-w;), (BV—w), (vV —w;)

Xiaofeng Gu NP-Complete Problems



Variants of Satisfiability MAX2SAT

NAESAT

MAX2SAT (contd.)

(@ V-w;), (BV—w), (vV —w;)

If ¢ has m clauses, then R(¢) has 10m. Set K = 7m. We claim that: ¢ is satisfiable if
and only there are at least K clauses can be satisfied in R(¢). O
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9 Variants of Satisfiability

9 NAESAT
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Variants of Satisfiability

NAESAT

Definition

NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at
least one literal is true and at least one literal is false .
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Variants of Satisfiability

MAX2SAT
NAESAT

NAESAT

Definition

NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at
least one literal is true and at least one literal is false .

NAESAT is NP-complete.
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NAESAT

Definition

NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at
least one literal is true and at least one literal is false .

NAESAT is NP-complete.

Proof.

In Theorem 8.2, we have proved CIRCUIT SAT is NP-complete. Now we reduce
CIRCUIT SAT to NAESAT, as Example 8.3 on how to reduce CIRCUIT SAT to SAT.
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NAESAT

Definition

NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at
least one literal is true and at least one literal is false .

NAESAT is NP-complete.

Proof.

In Theorem 8.2, we have proved CIRCUIT SAT is NP-complete. Now we reduce
CIRCUIT SAT to NAESAT, as Example 8.3 on how to reduce CIRCUIT SAT to SAT.
We add to all one- or two-literal clauses the same literal, call it z. We claim that the
resulting set of clauses are NAE-satisfiable if and only if the original circuit is satisfiable.
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NAESAT

Definition
NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at
least one literal is true and at least one literal is false .

NAESAT is NP-complete.

Proof.

In Theorem 8.2, we have proved CIRCUIT SAT is NP-complete. Now we reduce
CIRCUIT SAT to NAESAT, as Example 8.3 on how to reduce CIRCUIT SAT to SAT.
We add to all one- or two-literal clauses the same literal, call it z. We claim that the
resulting set of clauses are NAE-satisfiable if and only if the original circuit is satisfiable.
Suppose that there is an assignment T that NAE-satisfies all clauses. Then T also
NAE-satisfies all clauses. In one of these assignments z takes the value false . This
assignment then satisfies all original clauses (before the addition of z) and therefore
there is a satisfying assignment for the circuit.
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NAESAT

Definition
NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at
least one literal is true and at least one literal is false .

NAESAT is NP-complete.

Proof.

In Theorem 8.2, we have proved CIRCUIT SAT is NP-complete. Now we reduce
CIRCUIT SAT to NAESAT, as Example 8.3 on how to reduce CIRCUIT SAT to SAT.
We add to all one- or two-literal clauses the same literal, call it z. We claim that the
resulting set of clauses are NAE-satisfiable if and only if the original circuit is satisfiable.
Suppose that there is an assignment T that NAE-satisfies all clauses. Then T also
NAE-satisfies all clauses. In one of these assignments z takes the value false . This
assignment then satisfies all original clauses (before the addition of z) and therefore
there is a satisfying assignment for the circuit.

Conversely, it there is an assignment that satisfies the circuit. Then there is an
assignment T that satisfies all clauses. We add z and set z false in T, then in no
clause all literals are true under T. Hence, the resulting clauses are NAE-satisfied
under T.
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9 INDEPENDENT SET
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INDEPENDENT SET

Definition

Let G = (V, E) be an undirected graph, and V/ C V. We say that V'’ is independent if
vi,j e V/, (i,j) ¢ E.
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INDEPENDENT SET

Let G = (V, E) be an undirected graph, and V/ C V. We say that V'’ is independent if
vi,j e V/, (i,j) ¢ E.

Definition

INDEPENDENT SET problem: Given an undirected graph and an integer K, is there
an independent set V/ with |V/| > K?
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INDEPENDENT SET (contd.)

In the graph below, V/ = {v,,v,4} is an independent set.

Vi Vg

V2 V3

Xiaofeng Gu NP-Complete Problems



INDEPENDENT SET
MAX-CUT

Graph-Theoretic Problems

INDEPENDENT SET (contd.)

INDEPENDENT SET is NP-complete.
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INDEPENDENT SET (contd.)

INDEPENDENT SET is NP-complete.

Reduce 3SAT to INDEPENDENT SET.

Given an instance ¢ of 3SAT with m clauses. We can construct a graph R(¢):

(a) For each one of the m clauses, we create a separate triangle in the graph;

(b) Each node of the triangle corresponds to a literal in the clause;

(c) There is an edge between two nodes u and v in different triangles if and only if
vV = -u.
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Proof (contd.)

(Xl V X2 V X3) A (—|X1 V =Xy V —\X3) A (—|X1 V X V X3)

X1 X1

X2 X3
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Proof (contd.)

m clauses correspond m triangles. Set K = m. We claim that ¢ is satisfiable if and only
if there is an independent set V’ of K nodes in graph R(¢).
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Proof (contd.)

m clauses correspond m triangles. Set K = m. We claim that ¢ is satisfiable if and only
if there is an independent set V’ of K nodes in graph R(¢). To see this, if a satisfying
assignment exists, then we identify a true literal in each clause, and pick the node in
the triangle of this clause labeled by this literal;
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Proof (contd.)

m clauses correspond m triangles. Set K = m. We claim that ¢ is satisfiable if and only
if there is an independent set V’ of K nodes in graph R(¢). To see this, if a satisfying
assignment exists, then we identify a true literal in each clause, and pick the node in
the triangle of this clause labeled by this literal; Conversely, if sucha set V'’ exists, just

set the vertices in V' to be true and then we can get a satisfying assignment.
O
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Application of INDEPENDENT SET: CLIQUE

Definition

A clique in an undirected graph is a set of pairwise adjacent vertices.
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Application of INDEPENDENT SET: CLIQUE

Definition

A clique in an undirected graph is a set of pairwise adjacent vertices.

Definition

CLIQUE problem: Given an undirected graph G and an integer K, whether there is a
set of K vertices that form a clique by having all possible edges between them?
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Application of INDEPENDENT SET: CLIQUE

Definition

A clique in an undirected graph is a set of pairwise adjacent vertices.

Definition

CLIQUE problem: Given an undirected graph G and an integer K, whether there is a
set of K vertices that form a clique by having all possible edges between them?

CLIQUE is NP-complete.

Xiaofeng Gu NP-Complete Problems



INDEPENDENT SET
MAX-CUT

Graph-Theoretic Problems

Application of INDEPENDENT SET: CLIQUE

Definition

A clique in an undirected graph is a set of pairwise adjacent vertices.

Definition

CLIQUE problem: Given an undirected graph G and an integer K, whether there is a
set of K vertices that form a clique by having all possible edges between them?

CLIQUE is NP-complete.

Outline of proof:
vertex subset C is a clique in a graph G if and only if it is an independent set in G¢, the
complement of G.

O

Xiaofeng Gu NP-Complete Problems



INDEPENDENT SET

. MAX-CUT
Graph-Theoretic Problems ev

CLIQUE (contd.)

C = {v1,V2,Vv3} is aclique in the first graph, and also it is a independent set in the
second graph, which is the complement of the first graph.

Vi Vs Vi @ \

V2 V%! V2 (A%
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Application of INDEPENDENT SET: NODE COVER

Definition

A node cover of an undirected graph G = (V,E) isa set C C V that contains at least
one endpoint of every edge.
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Application of INDEPENDENT SET: NODE COVER

Definition

A node cover of an undirected graph G = (V,E) isa set C C V that contains at least
one endpoint of every edge.

Definition

NODE COVER problem: Given a graph and an integer K, whether there is a node
cover C with K or fewer vertices?

Xiaofeng Gu NP-Complete Problems



INDEPENDENT SET
MAX-CUT

Graph-Theoretic Problems

Application of INDEPENDENT SET: NODE COVER

Definition

A node cover of an undirected graph G = (V,E) isa set C C V that contains at least
one endpoint of every edge.

Definition

NODE COVER problem: Given a graph and an integer K, whether there is a node
cover C with K or fewer vertices?

NODE COVER is NP-complete.

Xiaofeng Gu NP-Complete Problems



INDEPENDENT SET
MAX-CUT

Graph-Theoretic Problems

Application of INDEPENDENT SET: NODE COVER

Definition

A node cover of an undirected graph G = (V,E) isa set C C V that contains at least
one endpoint of every edge.

Definition

NODE COVER problem: Given a graph and an integer K, whether there is a node
cover C with K or fewer vertices?

NODE COVER is NP-complete.

Outline of proof:
Vertex subset C is a node cover of a graph G if and only if V — C is an independent set.
O
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NODE COVER (contd.)

C = {v1,Vv3} is a node cover in the graph, V — C = {v,, V4 } is an independent set.

Vi Vg

V2 V3
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@ MAX-CUT
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Definition

A cut in an undirected graph G = (V, E) is a partition of vertices into two non-empty
sets S and V — S. And the size of a cut (S,V — S) is the number of edges between S

andV —S.
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Definition

A cut in an undirected graph G = (V, E) is a partition of vertices into two non-empty
sets S and V — S. And the size of a cut (S,V — S) is the number of edges between S
andV —S.

Definition

MIN-CUT problem: To find a cut with the smallest size in a graph.
MAX-CUT problem: To find a cut with the largest size in a graph.
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A cut in an undirected graph G = (V, E) is a partition of vertices into two non-empty

sets S and V — S. And the size of a cut (S,V — S) is the number of edges between S
andV —S.

MIN-CUT problem: To find a cut with the smallest size in a graph.
MAX-CUT problem: To find a cut with the largest size in a graph.

Observation
MIN-CUT is in P.
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MAX-CUT is NP-complete.
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MAX-CUT

MAX-CUT is NP-complete.

We reduce NAE3SAT to MAX-CUT.

Given m clauses with three literals each, C;,C,, ..., Cm, and the variables are

X1, X2, ..., Xn. Then we construct a graph G:

Vertex set {Xq, Xz, ...,Xn};

Edge: Each clause C; corresponds to a triangle in G; n; multiple edges between x; and
—Xj, where n; is the number of occurrences of x; or —x;.

O
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Proof (contd.)

(X]_ V Xz) A (Xl V —|X3) N (_‘Xl V =X V X3) =
(X]_ V X2 V X2) AN (X]_ V —X3 V ﬁX3) A ("X]_ V —Xo V X3)

X1 X1
X2 X —X2
X3 —X3
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Proof (contd.)

Let K = 5m. We claim that there is an assignment NAE-satisfying m clauses if and
only if there is a cut (S,V — S) with at least K edges in the graph.
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Proof (contd.)

Let K = 5m. We claim that there is an assignment NAE-satisfying m clauses if and
only if there is a cut (S,V — S) with at least K edges in the graph. To see this, if there
is an assignment NAE-satisfying all clauses, it is easy to get a cut of size 5m (true
literals form a set S).
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Proof (contd.)

Let K = 5m. We claim that there is an assignment NAE-satisfying m clauses if and
only if there is a cut (S,V — S) with at least K edges in the graph. To see this, if there
is an assignment NAE-satisfying all clauses, it is easy to get a cut of size 5m (true
literals form a set S). Conversely, if there is a such a cut, then set the literals in S true
and literals in V — S false and we can get a NAE-satisfying assignment.

O
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