The class NP

Xiaofeng Gu¹

¹Department of Mathematics West Virginia University

NP-completeness

<ロ> <同> < 回> < 回> < 回> < => < => <</p>

æ.

Outline

Outline

Variants of Satisfiability

- 3SAT
- 2SAT
- MAX2SAT
- NAESAT

Graph-Theoretic Problems
 INDEPENDENT SET
 MAX-CUT

(日) (문) (문) (문) (문)

Outline

Outline

2

Variants of Satisfiability

- 3SAT
- 2SAT
- MAX2SAT
- NAESAT

Graph-Theoretic Problems
 INDEPENDENT SET
 MAX-CUT

Xiaofeng Gu NP-Complete Problems

(日) (문) (문) (문) (문)

Outline

Outline

Problems in NP

Variants of Satisfiability

- 3SAT
- 2SAT
- MAX2SAT
- NAESAT

æ.

<ロ> <同> <同> < 同> < 同> < 同> < 同> <

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in polynomial time.

Definition

Let $R \subseteq \Sigma^* \times \Sigma^*$ be a binary relation on strings. *R* is called **polynomially decidable** if the language $\{x; y : (x, y) \in R\}$ is decided by a deterministic Turing machine in polynomial time.

Definition

R is **polynomial balanced** if $(x, y) \in R$ implies $|y| \le |x|^k$ for some $k \ge 1$. That is, the length of the second component is always bounded by a polynomial in the length of the first.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in polynomial time.

Definition

Let $R \subseteq \Sigma^* \times \Sigma^*$ be a binary relation on strings. *R* is called **polynomially decidable** if the language $\{x; y : (x, y) \in R\}$ is decided by a deterministic Turing machine in polynomial time.

Definition

R is **polynomial balanced** if $(x, y) \in R$ implies $|y| \le |x|^{\kappa}$ for some $k \ge 1$. That is, the length of the second component is always bounded by a polynomial in the length of the first.

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in polynomial time.

Definition

Let $R \subseteq \Sigma^* \times \Sigma^*$ be a binary relation on strings. *R* is called **polynomially decidable** if the language $\{x; y : (x, y) \in R\}$ is decided by a deterministic Turing machine in polynomial time.

Definition

R is **polynomial balanced** if $(x, y) \in R$ implies $|y| \le |x|^k$ for some $k \ge 1$. That is, the length of the second component is always bounded by a polynomial in the length of the first.

Class NP (contd.)

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

(I) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^{*k*}, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.

(ii) **"Only if"** part: Suppose that $L \in \mathbf{NP}$, that is, there is a nondeterministic Turing machine *N* that decides *L* in time $|x|^k$ for some *k*. Define a relation *R* as follows: $(x, y) \in R$ if and only if y encodes an accepting computation of *N* on input *x*. Clearly *R* is polynomial decidable and polynomial bounded. Now we show $L = \{x : \exists y, (x, y) \in R\}$. Since *N* decides *L*, $\forall x \in L$, there must be a *y* such that $(x, y) \in R$, and hence $L \subseteq \{x : \exists y, (x, y) \in R\}$; Conversely, $\forall x \in \{x : \exists y, (x, y) \in R\}$, it must be the cast that *N* accepts *x*. It means $x \in L$, and hence $\{x : \exists y, (x, y) \in R\} \subseteq L$. Thus $L = \{x : \exists y, (x, y) \in R\}$.

Class NP (contd.)

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

(i) **"If"** part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows:

On input *x*, *M* guesses a *y* of length at most $|x|^{\kappa}$, and then verify whether $(x, y) \in R$ (This can be done in polynomial time because *R* is polynomial decidable.). If $(x, y) \in R$, *M* accepts, otherwise it rejects.

(ii) **"Only if"** part: Suppose that $L \in \mathbb{NP}$, that is, there is a nondeterministic Turing machine *N* that decides *L* in time $|x|^k$ for some *k*. Define a relation *R* as follows: $(x, y) \in R$ if and only if y encodes an accepting computation of *N* on input *x*. Clearly *R* is polynomial decidable and polynomial bounded. Now we show $L = \{x : \exists y, (x, y) \in R\}$. Since *N* decides *L*, $\forall x \in L$, there must be a *y* such that $(x, y) \in R$, and hence $L \subseteq \{x : \exists y, (x, y) \in R\}$; Conversely, $\forall x \in \{x : \exists y, (x, y) \in R\}$, it must be the cast that *N* accepts *x*. It means $x \in L$, and hence $\{x : \exists y, (x, y) \in R\} \subseteq L$. Thus $L = \{x : \exists y, (x, y) \in R\}$.

Class NP (contd.)

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

(i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.

(ii) **"Only if"** part: Suppose that $L \in NP$, that is, there is a nondeterministic Turing machine *N* that decides *L* in time $|x|^k$ for some *k*. Define a relation *R* as follows: $(x, y) \in R$ if and only if y encodes an accepting computation of *N* on input *x*. Clearly *R* is polynomial decidable and polynomial bounded. Now we show $L = \{x : \exists y, (x, y) \in R\}$. Since *N* decides *L*, $\forall x \in L$, there must be a *y* such that $(x, y) \in R$, and hence $L \subseteq \{x : \exists y, (x, y) \in R\}$; Conversely, $\forall x \in \{x : \exists y, (x, y) \in R\}$, it must be the cast that *N* accepts *x*. It means $x \in L$, and hence $\{x : \exists y, (x, y) \in R\} \subseteq L$. Thus $L = \{x : \exists y, (x, y) \in R\}$.

Class NP (contd.)

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

- (i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.
- (ii) **"Only if"** part: Suppose that $L \in \mathbf{NP}$, that is, there is a nondeterministic Turing machine *N* that decides *L* in time $|x|^k$ for some *k*. Define a relation *R* as follows: $(x, y) \in R$ if and only if y encodes an accepting computation of *N* on input *x*. Clearly *R* is polynomial decidable and polynomial bounded. Now we show $L = \{x : \exists y, (x, y) \in R\}$. Since *N* decides *L*, there must be a y such that $(x, y) \in R$ and hence $L \subseteq \{x, \exists y, (x, y) \in R\}$. Conversely, $\forall x \in \{x, \exists y, (x, y) \in R\}$, it must be the cast that *N* accepts *x*. It means *x* \in *L*, and hence $\{x, \exists y, (x, y) \in R\}$.

Class NP (contd.)

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

(i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.

(ii) "Only if" part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing machine N that decides L in time |x|^k for some k. Define a relation R as follows:
 (x, y) ∈ R if and only if y encodes an accepting computation of N on input x. Clearly R is polynomial decidable and polynomial bounded.

Now we show $L = \{x : \exists y, (x, y) \in R\}$. Since *N* decides *L*, $\forall x \in L$, there must be a *y* such that $(x, y) \in R$, and hence $L \subseteq \{x : \exists y, (x, y) \in R\}$; Conversely, $\forall x \in \{x : \exists y, (x, y) \in R\}$, it must be the cast that *N* accepts *x*. It means $x \in L$, and hence $\{x : \exists y, (x, y) \in R\}$.

Class NP (contd.)

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

- (i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.
- (ii) **"Only if"** part: Suppose that $L \in NP$, that is, there is a nondeterministic Turing machine *N* that decides *L* in time $|x|^k$ for some *k*. Define a relation *R* as follows: $(x, y) \in R$ if and only if y encodes an accepting computation of *N* on input *x*. Clearly *R* is polynomial decidable and polynomial bounded. Now we show $L = \{x : \exists y, (x, y) \in R\}$. Since *N* decides *L*, $\forall x \in L$, there must be a y such that $(x, y) \in R$, and hence $L \subseteq \{x : \exists y, (x, y) \in R\}$. Conversely,

 $\forall x \in \{x : \exists y, (x, y) \in R\}$, it must be the cast that *N* accepts *x*. It means $x \in L$, and hence $\{x : \exists y, (x, y) \in R\} \subseteq L$. Thus $L = \{x : \exists y, (x, y) \in R\}$.

Class NP (contd.)

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

(i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.

(ii) **"Only if"** part: Suppose that $L \in NP$, that is, there is a nondeterministic Turing machine *N* that decides *L* in time $|x|^k$ for some *k*. Define a relation *R* as follows: $(x, y) \in R$ if and only if y encodes an accepting computation of *N* on input *x*. Clearly *R* is polynomial decidable and polynomial bounded. Now we show $L = \{x : \exists y, (x, y) \in R\}$. Since *N* decides *L*, $\forall x \in L$, there must be a *y* such that $(x, y) \in R$, and hence $L \subseteq \{x : \exists y, (x, y) \in R\}$; Conversely, $\forall x \in [x : \exists y, (x, y) \in R]$, it must be the cast that *N* accepts *x*. It means $x \in L$, and hence $\{x : \exists y, (x, y) \in R\} \in L$. Thus $L = \{x : \exists y, (x, y) \in R\}$.

Class NP (contd.)

Proposition

Let $L \subseteq \Sigma^*$ be a language. $L \in NP$ if and only if there is a polynomial decidable and polynomial balanced relation R, such that $L = \{x : \exists y, (x, y) \in R\}$.

Proof.

- (i) "If" part: Suppose that such an *R* exists, we need to show *L* is decided by a nondeterministic Turing machine *M* in polynomial time. We construct *M* as follows: On input *x*, *M* guesses a *y* of length at most |*x*|^k, and then verify whether (*x*, *y*) ∈ *R* (This can be done in polynomial time because *R* is polynomial decidable.). If (*x*, *y*) ∈ *R*, *M* accepts, otherwise it rejects.
- (ii) "Only if" part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing machine N that decides L in time |x|^k for some k. Define a relation R as follows: (x, y) ∈ R if and only if y encodes an accepting computation of N on input x. Clearly R is polynomial decidable and polynomial bounded. Now we show L = {x : ∃y, (x, y) ∈ R}. Since N decides L, ∀x ∈ L, there must be a y such that (x, y) ∈ R, and hence L ⊆ {x : ∃y, (x, y) ∈ R}; Conversely, ∀x ∈ {x : ∃y, (x, y) ∈ R}, it must be the cast that N accepts x. It means x ∈ L, and hence {x : ∃y, (x, y) ∈ R} ⊆ L. Thus L = {x : ∃y, (x, y) ∈ R}.

What does the proposition tell us?

Note

- Any "yes" instance x of the problem in NP has at least one polynomial certificate y of its being a "yes" instance.
- (ii) We may not know how to discover this certificate in polynomial time, but we are sure it exists if the instance is a "yes" instance.
- (iii) Naturally, "no" instance may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression. HAMILTON PATH: the certificate is precisely a Hamilton path in the graph.

What does the proposition tell us?

Note

 (i) Any "yes" instance x of the problem in NP has at least one polynomial certificate y of its being a "yes" instance.

- (ii) We may not know how to discover this certificate in polynomial time, but we are sure it exists if the instance is a "yes" instance.
- (iii) Naturally, "no" instance may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression. HAMILTON PATH: the certificate is precisely a Hamilton path in the graph.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What does the proposition tell us?

Note

- (i) Any "yes" instance x of the problem in NP has at least one polynomial certificate y of its being a "yes" instance.
- (ii) We may not know how to discover this certificate in polynomial time, but we are sure it exists if the instance is a "yes" instance.
- iii) Naturally, "no" instance may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression. HAMILTON PATH: the certificate is precisely a Hamilton path in the graph.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What does the proposition tell us?

Note

- (i) Any "yes" instance x of the problem in NP has at least one polynomial certificate y of its being a "yes" instance.
- (ii) We may not know how to discover this certificate in polynomial time, but we are sure it exists if the instance is a "yes" instance.
- (iii) Naturally, "no" instance may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression. HAMILTON PATH: the certificate is precisely a Hamilton path in the graph.

What does the proposition tell us?

Note

- (i) Any "yes" instance x of the problem in NP has at least one polynomial certificate y of its being a "yes" instance.
- (ii) We may not know how to discover this certificate in polynomial time, but we are sure it exists if the instance is a "yes" instance.
- (iii) Naturally, "no" instance may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression. HAMILTON PATH: the certificate is precisely a Hamilton path in the graph.

Outline

Variants of Satisfiability • 3SAT

- 35AI
- 2SAT
- MAX2SAT
- NAESAT

æ.

SAT

Recall

(Cook's Theorem) SAT is NP-complete.

<ロ> <同> < 回> < 回> < 回> < => < => <</p>

æ.

Recall

(Cook's Theorem) SAT is NP-complete.

Definition

kSAT, where $k \ge 1$ is an integer, is the special case of SAT in which the formula is in CNF, and all clauses have k literals.

<ロ> <同> <同> < 同> < 同> < 同> <

E

3SAT 2SAT MAX2SAT NAESAT

3SAT

Proposition

3SAT is NP-complete.

Proof.

First, it is easy to see that $3SAT \in NP$. We can construct a nondeterministic Turing machine to guess a truth assignment for the variables and check in polynomial time whether the assignment satisfies all the three-literal clauses.

Then, we can reduce SAT to 3SAT. Suppose *c* is a k-literal clause in the input CNF expression. If k = 1, c = (x), then c = (x, x, x); If k = 2, c = (x, y), then c = (x, y, y); If k = 3, c = (x, y, z); If k = 4, $c = (x_1, x_2, x_3, x_4)$, rewrite as $(x_1, x_2, u) \land (x_3, x_4, \bar{u})$. When $k \ge 4$, $c = (x_1, x_2, x_3, x_4, \dots, x_k)$, rewrite as $(x_1, x_2, u_1) \land (x_3, \bar{u}_1, u_2) \land (x_4, \bar{u}_2, u_3) \land \dots \land (x_{k-1}, x_k, u_{k-3})$.

3SAT 2SAT MAX2SAT NAESAT

Proposition

3SAT is NP-complete.

Proof.

First, it is easy to see that $3SAT \in NP$. We can construct a nondeterministic Turing machine to guess a truth assignment for the variables and check in polynomial time whether the assignment satisfies all the three-literal clauses.

```
Then, we can reduce SAT to 3SAT. Suppose c is a k-literal clause in the input CNF expression. If k = 1, c = (x), then c = (x, x, x);

If k = 2, c = (x, y), then c = (x, y, y);

If k = 3, c = (x, y, z);

If k = 4, c = (x_1, x_2, x_3, x_4), rewrite as (x_1, x_2, u) \land (x_3, x_4, \bar{u}).

When k \ge 4, c = (x_1, x_2, x_3, x_4, \dots, x_k), rewrite as

(x_1, x_2, u_1) \land (x_3, \bar{u_1}, u_2) \land (x_4, \bar{u_2}, u_3) \land \dots \land (x_{k-1}, x_k, u_{k-3}).
```

3SAT 2SAT MAX2SAT NAESAT

3SAT

Proposition

3SAT is NP-complete.

Proof.

First, it is easy to see that $3SAT \in NP$. We can construct a nondeterministic Turing machine to guess a truth assignment for the variables and check in polynomial time whether the assignment satisfies all the three-literal clauses.

Then, we can reduce SAT to 3SAT. Suppose *c* is a k-literal clause in the input CNF expression. If k = 1, c = (x), then c = (x, x, x);

If k = 2, c = (x, y), then c = (x, y, y); If k = 3, c = (x, y, z); If $k = 4, c = (x_1, x_2, x_3, x_4)$, rewrite as $(x_1, x_2, u) \land (x_3, x_4, \overline{u})$. When $k \ge 4, c = (x_1, x_2, x_3, x_4, \dots, x_k)$, rewrite as $(x_1, x_2, u_1) \land (x_3, \overline{u}_1, u_2) \land (x_4, \overline{u}_2, u_3) \land \dots \land (x_{k-1}, x_k, u_{k-3})$.

3SAT 2SAT MAX2SAT NAESAT

3SAT

Proposition

3SAT is NP-complete.

Proof.

First, it is easy to see that $3SAT \in NP$. We can construct a nondeterministic Turing machine to guess a truth assignment for the variables and check in polynomial time whether the assignment satisfies all the three-literal clauses.

Then, we can reduce SAT to 3SAT. Suppose *c* is a k-literal clause in the input CNF expression. If k = 1, c = (x), then c = (x, x, x); If k = 2, c = (x, y), then c = (x, y, y);

If k = 4, $c = (x_1, x_2, x_3, x_4)$, rewrite as $(x_1, x_2, u) \land (x_3, x_4, \overline{u})$. When $k \ge 4$, $c = (x_1, x_2, x_3, x_4, \dots, x_k)$, rewrite as

 $(x_1, x_2, u_1) \wedge (x_3, \bar{u_1}, u_2) \wedge (x_4, \bar{u_2}, u_3) \wedge \cdots \wedge (x_{k-1}, x_k, \bar{u_{k-3}}).$

3SAT 2SAT MAX2SAT NAESAT

3SAT

Proposition

3SAT is NP-complete.

Proof.

First, it is easy to see that $3SAT \in NP$. We can construct a nondeterministic Turing machine to guess a truth assignment for the variables and check in polynomial time whether the assignment satisfies all the three-literal clauses.

Then, we can reduce SAT to 3SAT. Suppose *c* is a k-literal clause in the input CNF expression. If k = 1, c = (x), then c = (x, x, x); If k = 2, c = (x, y), then c = (x, y, y); If k = 3, c = (x, y, z);

If k = 4, $c = (x_1, x_2, x_3, x_4)$, rewrite as $(x_1, x_2, u) \land (x_3, x_4, \bar{u})$. When $k \ge 4$, $c = (x_1, x_2, x_3, x_4, \dots, x_k)$, rewrite as $(x_1, x_2, u_1) \land (x_3, \bar{u}_1, u_2) \land (x_4, \bar{u}_2, u_3) \land \dots \land (x_{k-1}, x_k, \bar{u}_{k-3})$

3SAT 2SAT MAX2SAT NAESAT

3SAT

Proposition

3SAT is NP-complete.

Proof.

First, it is easy to see that $3SAT \in NP$. We can construct a nondeterministic Turing machine to guess a truth assignment for the variables and check in polynomial time whether the assignment satisfies all the three-literal clauses.

Then, we can reduce SAT to 3SAT. Suppose *c* is a k-literal clause in the input CNF expression. If k = 1, c = (x), then c = (x, x, x); If k = 2, c = (x, y), then c = (x, y, y); If k = 3, c = (x, y, z); If k = 4, $c = (x_1, x_2, x_3, x_4)$, rewrite as $(x_1, x_2, u) \land (x_3, x_4, \bar{u})$. When $k \ge 4$, $c = (x_1, x_2, x_3, x_4)$, rewrite as $(x_1, x_2, u) \land (x_3, x_4, \bar{u})$.

3SAT 2SAT MAX2SAT NAESAT

3SAT

Proposition

3SAT is NP-complete.

Proof.

First, it is easy to see that $3SAT \in NP$. We can construct a nondeterministic Turing machine to guess a truth assignment for the variables and check in polynomial time whether the assignment satisfies all the three-literal clauses.

Then, we can reduce SAT to 3SAT. Suppose *c* is a k-literal clause in the input CNF expression. If k = 1, c = (x), then c = (x, x, x); If k = 2, c = (x, y), then c = (x, y, y); If k = 3, c = (x, y, z); If k = 4, $c = (x_1, x_2, x_3, x_4)$, rewrite as $(x_1, x_2, u) \land (x_3, x_4, \bar{u})$. When $k \ge 4$, $c = (x_1, x_2, x_3, x_4, \dots, x_k)$, rewrite as $(x_1, x_2, u_1) \land (x_3, \bar{u_1}, u_2) \land (x_4, \bar{u_2}, u_3) \land \dots \land (x_{k-1}, x_k, u_{k-3})$.

3

Note

In analyzing the complexity of a problem, we are trying to define the precise boundary between the polynomial and **NP**-complete cases.

For SAT, we already know that 3SAT is NP-complete, how about 2SAT?

<ロ> <同> <同> < 同> < 同> < 同> <

Ξ.

Note

In analyzing the complexity of a problem, we are trying to define the precise boundary between the polynomial and ${\sf NP}\text{-}complete cases.}$

For SAT, we already know that 3SAT is NP-complete, how about 2SAT?

E

Outline

Variants of Satisfiability

- 3SAT
- 2SAT
- MAX2SAT
- NAESAT

æ.

3SAT 2SAT MAX2SAT NAESAT

2SAT and Graph $G(\phi)$

Definition

Let ϕ be an instance of 2SAT. We define a graph $G(\phi)$ as follows:

a) The vertices of $m{G}$ are the variables of ϕ and their negation

b) There is an edge (lpha,eta) if and only if there is a clause $(\neg lpha \lor eta)$ (or $(eta \lor \neg lpha)$ in ϕ .

c) $G(\phi)$ has a weird symmetry: If (lpha,eta) is an edge, then so is (
egeta,
eglpha)

Examples

3SAT 2SAT MAX2SAT NAESAT

2SAT and Graph $G(\phi)$

Definition

Let ϕ be an instance of 2SAT. We define a graph $G(\phi)$ as follows: (a) The vertices of *G* are the variables of ϕ and their negations;

(b) There is an edge (α, β) if and only if there is a clause $(\neg \alpha \lor \beta)$ (or $(\beta \lor \neg \alpha)$ in ϕ . (c) $G(\phi)$ has a weird symmetry: If (α, β) is an edge, then so is $(\neg \beta, \neg \alpha)$.

Examples

イロト イ団ト イヨト イヨト

3SAT 2SAT MAX2SAT NAESAT

2SAT and Graph $G(\phi)$

Definition

Let ϕ be an instance of 2SAT. We define a graph $G(\phi)$ as follows: (a) The vertices of G are the variables of ϕ and their negations; (b) There is an edge (α, β) if and only if there is a clause $(\neg \alpha \lor \beta)$ (or $(\beta \lor \neg \alpha)$ in ϕ .

Examples

< ロ > < 団 > < 亘 > < 亘 > …
3SAT 2SAT MAX2SAT NAESAT

2SAT and Graph $G(\phi)$

Definition

Let ϕ be an instance of 2SAT. We define a graph $G(\phi)$ as follows: (a) The vertices of *G* are the variables of ϕ and their negations; (b) There is an edge (α, β) if and only if there is a clause $(\neg \alpha \lor \beta)$ (or $(\beta \lor \neg \alpha)$ in ϕ . (c) $G(\phi)$ has a weird symmetry: If (α, β) is an edge, then so is $(\neg \beta, \neg \alpha)$.

Examples

< ロ > < 団 > < 亘 > < 亘 > …

3SAT 2SAT MAX2SAT NAESAT

2SAT and Graph $G(\phi)$

Definition

Let ϕ be an instance of 2SAT. We define a graph $G(\phi)$ as follows: (a) The vertices of *G* are the variables of ϕ and their negations; (b) There is an edge (α, β) if and only if there is a clause $(\neg \alpha \lor \beta)$ (or $(\beta \lor \neg \alpha)$ in ϕ . (c) $G(\phi)$ has a weird symmetry: If (α, β) is an edge, then so is $(\neg \beta, \neg \alpha)$.

Examples

$$\phi = (x_1 \lor x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1 \lor x_2) \land (x_2 \lor x_3)$$

$$G(\phi) ?$$

< ロ > < 同 > < 三 > < 三 > -

3SAT 2SAT MAX2SAT NAESAT

2SAT and Graph $G(\phi)$ (contd.)

Example

$$\phi = (\mathbf{x}_1 \lor \mathbf{x}_2) \land (\mathbf{x}_1 \lor \neg \mathbf{x}_3) \land (\neg \mathbf{x}_1 \lor \mathbf{x}_2) \land (\mathbf{x}_2 \lor \mathbf{x}_3)$$

<ロ> <同> < 回> < 回> < 回> < => < => <</p>

æ.

3SAT 2SAT MAX2SAT NAESAT

2SAT and Graph $G(\phi)$ (contd.)

Theorem

 ϕ is unsatisfiable if and only if there is a variable x such that there are paths from x to $\neg x$ and from $\neg x$ to x in $G(\phi)$.

Proof.

"If" part: Suppose that such a x exists, we want to show ϕ is unsatisfiable. If ϕ is satisfied by an assignment T, we have two cases:

- (a) T(x) = true. There is a path from x to ¬x, and T(x) = true and T(¬x) = false, then there must be an edge (α, β) along this path such that T(α) = true and T(β) = false. Since (α, β) is an edge in G(φ), ¬α ∨ β is a clause in φ, which is not satisfied by T, a contradiction.
- (b) T(x) = **false**. Use path $\neg x$ to x, and the same argument as (a).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3SAT 2SAT MAX2SAT NAESAT

2SAT and Graph $G(\phi)$ (contd.)

Theorem

 ϕ is unsatisfiable if and only if there is a variable x such that there are paths from x to $\neg x$ and from $\neg x$ to x in $G(\phi)$.

Proof.

"If" part: Suppose that such a *x* exists, we want to show ϕ is unsatisfiable. If ϕ is satisfied by an assignment *T*, we have two cases:

- (a) T(x) = true. There is a path from x to ¬x, and T(x) = true and T(¬x) = false, then there must be an edge (α, β) along this path such that T(α) = true and T(β) = false. Since (α, β) is an edge in G(φ), ¬α ∨ β is a clause in φ, which is not satisfied by T, a contradiction.
- (b) T(x) = **false**. Use path $\neg x$ to x, and the same argument as (a).

3SAT 2SAT MAX2SAT NAESAT

2SAT and Graph $G(\phi)$ (contd.)

Theorem

 ϕ is unsatisfiable if and only if there is a variable x such that there are paths from x to $\neg x$ and from $\neg x$ to x in $G(\phi)$.

Proof.

"If" part: Suppose that such a *x* exists, we want to show ϕ is unsatisfiable. If ϕ is satisfied by an assignment *T*, we have two cases:

(a) *T*(*x*) = true. There is a path from *x* to ¬*x*, and *T*(*x*) = true and *T*(¬*x*) = false, then there must be an edge (α, β) along this path such that *T*(α) = true and *T*(β) = false. Since (α, β) is an edge in *G*(φ), ¬α ∨ β is a clause in φ, which is not satisfied by *T*, a contradiction.

(b) T(x) = **false**. Use path $\neg x$ to x, and the same argument as (a).

3SAT 2SAT MAX2SAT NAESAT

2SAT and Graph $G(\phi)$ (contd.)

Theorem

 ϕ is unsatisfiable if and only if there is a variable x such that there are paths from x to $\neg x$ and from $\neg x$ to x in $G(\phi)$.

Proof.

"If" part: Suppose that such a *x* exists, we want to show ϕ is unsatisfiable. If ϕ is satisfied by an assignment *T*, we have two cases:

- (a) *T*(*x*) = true. There is a path from *x* to ¬*x*, and *T*(*x*) = true and *T*(¬*x*) = false, then there must be an edge (α, β) along this path such that *T*(α) = true and *T*(β) = false. Since (α, β) is an edge in *G*(φ), ¬α ∨ β is a clause in φ, which is not satisfied by *T*, a contradiction.
- (b) T(x) = false. Use path $\neg x$ to x, and the same argument as (a).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3SAT 2SAT MAX2SAT NAESAT

Proof (contd.)

Proof.

"Only if" part: Suppose that ϕ is unsatisfiable, we want to show there is such a variable *x*. If there is no such an *x*, we are going to construct a satisfying assignment, and then by contradiction we prove it.

- (a) For a node α , if there is a path from α to $\neg \alpha$, then α must be assigned false.
- (b) If there's no path from α to ¬α, then all nodes that reachable from α are assigned true, and all nodes from which ¬α is reachable are assigned false.

Repeat the step until all nodes have assignments, we can get a satisfying assignment. We have two problems:

- (i) Is the step in (b) well-defined? Yes!
- (ii) Continue doing the steps, we will get an assignment. Why is it a satisfying assignment?

3SAT 2SAT MAX2SAT NAESAT

Proof (contd.)

Proof.

"Only if" part: Suppose that ϕ is unsatisfiable, we want to show there is such a variable *x*. If there is no such an *x*, we are going to construct a satisfying assignment, and then by contradiction we prove it.

- (a) For a node α , if there is a path from α to $\neg \alpha$, then α must be assigned false.
- (b) If there's no path from α to ¬α, then all nodes that reachable from α are assigned true, and all nodes from which ¬α is reachable are assigned false.

Repeat the step until all nodes have assignments, we can get a satisfying assignment. We have two problems:

- (i) Is the step in (b) well-defined? Yes!
- (ii) Continue doing the steps, we will get an assignment. Why is it a satisfying assignment?

3SAT 2SAT MAX2SAT NAESAT

Proof (contd.)

Proof.

"Only if" part: Suppose that ϕ is unsatisfiable, we want to show there is such a variable *x*. If there is no such an *x*, we are going to construct a satisfying assignment, and then by contradiction we prove it.

- (a) For a node α , if there is a path from α to $\neg \alpha$, then α must be assigned false.
- (b) If there's no path from α to $\neg \alpha$, then all nodes that reachable from α are assigned **true**, and all nodes from which $\neg \alpha$ is reachable are assigned **false**.

Repeat the step until all nodes have assignments, we can get a satisfying assignment. We have two problems:

- (i) Is the step in (b) well-defined? Yes!
- (ii) Continue doing the steps, we will get an assignment. Why is it a satisfying assignment?

Corollary

2SAT is in NL (and therefore in P).

<ロ> <四> <四> <三</p>

E

Corollary

2SAT is in NL (and therefore in P).

Proof.

NL is closed under complement.

We can recognize unsatisfiable expressions in NL: Guess a variable x, and paths from x to $\neg x$ and back in nondeterministic logarithmic space.

E

Xiaofeng Gu NP-Complete Problems

MAX2SAT

Outline

Variants of Satisfiability

- 3SAT
- 2SAT

NAESAT

NP-Complete Problems Xiaofeng Gu

æ.

3SAT 2SAT MAX2SAT NAESAT

MAXkSAT

Definition

We are given a set of clauses, each with two literals in it, and an integer K. MAX2SAT is the problem whether there is an assignment that satisfies at least K of the clauses.

Observation

When $k \ge 3$, MAXkSAT is obviously **NP**-complete.

<ロ> < 四> < 四> < 回> < 回> < 回> <

E

3SAT 2SAT MAX2SAT NAESAT

MAXkSAT

Definition

We are given a set of clauses, each with two literals in it, and an integer K. MAX2SAT is the problem whether there is an assignment that satisfies at least K of the clauses.

Observation

When $k \ge 3$, MAXkSAT is obviously **NP**-complete.

< ロ > < 同 > < 三 > < 三 > -

MAX2SAT

Theorem

MAX2SAT is NP-complete.

Proof.

Let us consider a small instance first: given ten clauses

$$(x), (y), (z), (w)$$
$$(\neg x \lor \neg y), (\neg y \lor \neg z), (\neg z \lor \neg x)$$
$$(x \lor \neg w), (y \lor \neg w), (z \lor \neg w)$$

How many clauses can be satisfied? If an assignment satisfy $(x \lor y \lor z)$, then it can be extended to satisfy seven of the clauses and no more. Then 3SAT can be reduced to MAX2SAT: given any instance ϕ of 3SAT, we can construct an instance $R(\phi)$ of MAX2SAT: for each clause $C_i = (\alpha \lor \beta \lor \gamma)$ of ϕ , we add to $R(\phi)$ the following ten clauses:

 $(lpha), (eta), (\gamma), (W_i) \ (\neg lpha \lor \neg eta), (\neg eta \lor \neg \gamma), (\neg \gamma \lor \neg lpha)$

・ロン ・四 ・ ・ ヨン ・ ヨン

MAX2SAT

MAX2SAT

Theorem

MAX2SAT is NP-complete.

Proof.

Let us consider a small instance first: given ten clauses

$$(x), (y), (z), (w)$$

 $(\neg x \lor \neg y), (\neg y \lor \neg z), (\neg z \lor \neg x)$
 $(x \lor \neg w), (y \lor \neg w), (z \lor \neg w)$

How many clauses can be satisfied? If an assignment satisfy $(x \lor y \lor z)$, then it can

Xiaofeng Gu NP-Complete Problems

MAX2SAT

Theorem

MAX2SAT is NP-complete.

Proof.

Let us consider a small instance first: given ten clauses

$$(x), (y), (z), (w) (\neg x \lor \neg y), (\neg y \lor \neg z), (\neg z \lor \neg x) (x \lor \neg w), (y \lor \neg w), (z \lor \neg w)$$

How many clauses can be satisfied? If an assignment satisfy $(x \lor y \lor z)$, then it can be extended to satisfy seven of the clauses and no more. Then 3SAT can be reduced to MAX2SAT: given any instance ϕ of 3SAT, we can construct an instance $R(\phi)$ of MAX2SAT: for each clause $C_i = (\alpha \lor \beta \lor \gamma)$ of ϕ , we add to $R(\phi)$ the following ten clauses:

 $(lpha), (eta), (\gamma), (W_i) \ (\neg lpha \lor \neg eta), (\neg eta \lor \neg \gamma), (\neg \gamma \lor \neg lpha)$

MAX2SAT

Theorem

MAX2SAT is NP-complete.

Proof.

Let us consider a small instance first: given ten clauses

$$(x), (y), (z), (w) \ (\neg x \lor \neg y), (\neg y \lor \neg z), (\neg z \lor \neg x) \ (x \lor \neg w), (y \lor \neg w), (z \lor \neg w)$$

How many clauses can be satisfied? If an assignment satisfy $(x \lor y \lor z)$, then it can be extended to satisfy seven of the clauses and no more. Then 3SAT can be reduced to MAX2SAT: given any instance ϕ of 3SAT, we can construct an instance $R(\phi)$ of MAX2SAT: for each clause $C_i = (\alpha \lor \beta \lor \gamma)$ of ϕ , we add to $R(\phi)$ the following ten clauses:

$$(\alpha), (\beta), (\gamma), (w_i) (\neg \alpha \lor \neg \beta), (\neg \beta \lor \neg \gamma), (\neg \gamma \lor \neg \alpha)$$

(日)

3SAT 2SAT MAX2SAT NAESAT

MAX2SAT (contd.)

Proof.

$(\alpha \lor \neg w_i), (\beta \lor \neg w_i), (\gamma \lor \neg w_i)$

If ϕ has *m* clauses, then $R(\phi)$ has 10*m*. Set K = 7m. We claim that: ϕ is satisfiable if and only there are at least *K* clauses can be satisfied in $R(\phi)$.

<ロ> <同> <同> < 同> < 同> < 同> <

Ξ.

Problems in NP Variants of Satisfiability Graph-Theoretic Problems	3SAT 2SAT MAX2SAT NAESAT
--	-----------------------------------

MAX2SAT (contd.)

Proof.

$$(\alpha \vee \neg w_i), (\beta \vee \neg w_i), (\gamma \vee \neg w_i)$$

If ϕ has *m* clauses, then $R(\phi)$ has 10*m*. Set K = 7m. We claim that: ϕ is satisfiable if and only there are at least *K* clauses can be satisfied in $R(\phi)$.

Problems in NP	3SAT
Variants of Satisfiability	2SAT
Graph-Theoretic Problems	MAX2SAT
Variants of Satisfiability	MAX2SAT
Graph-Theoretic Problems	NAESAT

Outline

Variants of Satisfiability

- 3SAT
- 2SAT
- MAX2SAT

Graph-Theoretic Problems
INDEPENDENT SET
MAX-CUT

æ.

NAESAT

Definition

NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at least one literal is **true** and at least one literal is **false**.

[heorem]

NAESAT is NP-complete.

Proof.

In Theorem 8.2, we have proved CIRCUIT SAT is **NP**-complete. Now we reduce CIRCUIT SAT to NAESAT, as Example 8.3 on how to reduce CIRCUIT SAT to SAT. We add to all one- or two-literal clauses the same literal, call it *z*. We claim that the resulting set of clauses are NAE-satisfiable if and only if the original circuit is satisfiable. Suppose that there is an assignment *T* that NAE-satisfies all clauses. Then \overline{T} also NAE-satisfies all clauses. In one of these assignments *z* takes the value **false**. This assignment then satisfies all original clauses (before the addition of *z*) and therefore there is a satisfying assignment for the circuit. Conversely, it there is an assignment that satisfies the circuit. Then there is an

assignment T that satisfies all clauses. We add z and set z false in T, then in no clause all literals are true under T. Hence, the resulting clauses are NAE-satisfied under T.

NAESAT

Definition

NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at least one literal is **true** and at least one literal is **false**.

Theorem

NAESAT is NP-complete.

Proof.

In Theorem 8.2, we have proved CIRCUIT SAT is **NP**-complete. Now we reduce CIRCUIT SAT to NAESAT, as Example 8.3 on how to reduce CIRCUIT SAT to SAT. We add to all one- or two-literal clauses the same literal, call it *z*. We claim that the resulting set of clauses are NAE-satisfiable if and only if the original circuit is satisfiable. Suppose that there is an assignment *T* that NAE-satisfies all clauses. Then \overline{T} also NAE-satisfies all clauses. In one of these assignments *z* takes the value **false**. This assignment then satisfies all original clauses (before the addition of *z*) and therefore there is a satisfying assignment for the circuit. Conversely, it there is an assignment that satisfies the circuit. Then there is an

assignment T that satisfies all clauses. We add z and set z false in T, then in no clause all literals are true under T. Hence, the resulting clauses are NAE-satisfied under T.

NAESAT

Definition

NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at least one literal is **true** and at least one literal is **false**.

Theorem

NAESAT is NP-complete.

Proof.

In Theorem 8.2, we have proved CIRCUIT SAT is **NP**-complete. Now we reduce CIRCUIT SAT to NAESAT, as Example 8.3 on how to reduce CIRCUIT SAT to SAT. We add to all one- or two-literal clauses the same literal, call it *z*. We claim that the resulting set of clauses are NAE-satisfiable if and only if the original circuit is satisfiable. Suppose that there is an assignment *T* that NAE-satisfies all clauses. Then *T* also NAE-satisfies all clauses. In one of these assignments *z* takes the value false. This assignment then satisfies all original clauses (before the addition of *z*) and therefore there is an assignment for the circuit. Conversely, it there is an assignment that satisfies the circuit. Then there is an assignment *T*. Hence, the resulting clauses are NAE-satisfied under *T*.

NAESAT

Definition

NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at least one literal is **true** and at least one literal is **false**.

Theorem

NAESAT is NP-complete.

Proof.

In Theorem 8.2, we have proved CIRCUIT SAT is **NP**-complete. Now we reduce CIRCUIT SAT to NAESAT, as Example 8.3 on how to reduce CIRCUIT SAT to SAT. We add to all one- or two-literal clauses the same literal, call it *z*. We claim that the resulting set of clauses are NAE-satisfiable if and only if the original circuit is satisfiable. Suppose that there is an assignment *T* that NAE-satisfies all clauses. Then *T* also NAE-satisfies all clauses. In one of these assignments *z* takes the value false. This assignment then satisfies all original clauses (before the addition of *z*) and therefore there is a satisfying assignment for the circuit. Conversely, it there is an assignment that satisfies the circuit. Then there is an assignment *T* that satisfies all clauses. We add *z* and set *z* false in *T*, then in no clause all literals are true under *T*. Hence, the resulting clauses are NAE-satisfied under *T*.

NAESAT

Definition

NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at least one literal is **true** and at least one literal is **false**.

Theorem

NAESAT is NP-complete.

Proof.

In Theorem 8.2, we have proved CIRCUIT SAT is **NP**-complete. Now we reduce CIRCUIT SAT to NAESAT, as Example 8.3 on how to reduce CIRCUIT SAT to SAT. We add to all one- or two-literal clauses the same literal, call it *z*. We claim that the resulting set of clauses are NAE-satisfiable if and only if the original circuit is satisfiable. Suppose that there is an assignment *T* that NAE-satisfies all clauses. Then \overline{T} also NAE-satisfies all clauses. In one of these assignments *z* takes the value **false**. This assignment then satisfies all original clauses (before the addition of *z*) and therefore there is a satisfying assignment for the circuit.

Conversely, it there is an assignment that satisfies the circuit. Then there is an assignment T that satisfies all clauses. We add z and set z false in T, then in no clause all literals are **true** under T. Hence, the resulting clauses are NAE-satisfied under T.

NAESAT

Definition

NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at least one literal is **true** and at least one literal is **false**.

Theorem

NAESAT is NP-complete.

Proof.

In Theorem 8.2, we have proved CIRCUIT SAT is **NP**-complete. Now we reduce CIRCUIT SAT to NAESAT, as Example 8.3 on how to reduce CIRCUIT SAT to SAT. We add to all one- or two-literal clauses the same literal, call it *z*. We claim that the resulting set of clauses are NAE-satisfiable if and only if the original circuit is satisfiable. Suppose that there is an assignment *T* that NAE-satisfies all clauses. Then \overline{T} also NAE-satisfies all clauses. In one of these assignments *z* takes the value **false**. This assignment then satisfies all original clauses (before the addition of *z*) and therefore there is a satisfying assignment for the circuit.

Conversely, it there is an assignment that satisfies the circuit. Then there is an assignment T that satisfies all clauses. We add z and set z **false** in T, then in no clause all literals are **true** under T. Hence, the resulting clauses are NAE-satisfied under T.

INDEPENDENT SET MAX-CUT

Outline

Variants of Satisfiabili

- 3SAT
- 2SAT
- MAX2SAT
- NAESAT

æ.

INDEPENDENT SET MAX-CUT

INDEPENDENT SET

Definition

Let G = (V, E) be an undirected graph, and $V' \subseteq V$. We say that V' is independent if $\forall i, j \in V', (i, j) \notin E$.

Definition

INDEPENDENT SET problem: Given an undirected graph and an integer K, is there an independent set V' with $|V'| \ge K$?

INDEPENDENT SET MAX-CUT

INDEPENDENT SET

Definition

Let G = (V, E) be an undirected graph, and $V' \subseteq V$. We say that V' is independent if $\forall i, j \in V', (i, j) \notin E$.

Definition

INDEPENDENT SET problem: Given an undirected graph and an integer K, is there an independent set V' with $|V'| \ge K$?

INDEPENDENT SET MAX-CUT

INDEPENDENT SET (contd.)

Example

In the graph below, $V' = \{v_2, v_4\}$ is an independent set.

<ロ> <同> <同> < 同> < 同> < 同> <

Ξ.

INDEPENDENT SET MAX-CUT

INDEPENDENT SET (contd.)

Theorem

INDEPENDENT SET is NP-complete.

Proof.

Reduce 3SAT to INDEPENDENT SET.

Given an instance ϕ of 3SAT with *m* clauses. We can construct a graph $R(\phi)$

(a) For each one of the *m* clauses, we create a separate triangle in the graph;

(b) Each node of the triangle corresponds to a literal in the clause

(c) There is an edge between two nodes u and v in different triangles if and only if $v = \neg u$.

< ロ > < 同 > < 三 > < 三 > -

INDEPENDENT SET MAX-CUT

INDEPENDENT SET (contd.)

Theorem

INDEPENDENT SET is NP-complete.

Proof.

Reduce 3SAT to INDEPENDENT SET.

Given an instance ϕ of 3SAT with *m* clauses. We can construct a graph $R(\phi)$:

(a) For each one of the *m* clauses, we create a separate triangle in the graph;

(b) Each node of the triangle corresponds to a literal in the clause;

(c) There is an edge between two nodes u and v in different triangles if and only if $v = \neg u$.

INDEPENDENT SET MAX-CUT

Proof (contd.)

Example

 $(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$

(日) (문) (문) (문) (문)

INDEPENDENT SET MAX-CUT

Proof (contd.)

Proof.

m clauses correspond *m* triangles. Set K = m. We claim that ϕ is satisfiable if and only if there is an independent set *V'* of *K* nodes in graph $R(\phi)$. To see this, if a satisfying assignment exists, then we identify a true literal in each clause, and pick the node in the triangle of this clause labeled by this literal. Conversely, if such a set *V'* exists, just set the vertices in *V'* to be true and then we can get a satisfying assignment.

Xiaofeng Gu NP-Complete Problems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
INDEPENDENT SET MAX-CUT

Proof (contd.)

Proof.

m clauses correspond *m* triangles. Set K = m. We claim that ϕ is satisfiable if and only if there is an independent set *V'* of *K* nodes in graph $R(\phi)$. To see this, if a satisfying assignment exists, then we identify a true literal in each clause, and pick the node in the triangle of this clause labeled by this literal; Conversely, if such a set *V'* exists, just set the vertices in *V'* to be true and then we can get a satisfying assignment.

Xiaofeng Gu NP-Complete Problems

INDEPENDENT SET MAX-CUT

Proof (contd.)

Proof.

m clauses correspond *m* triangles. Set K = m. We claim that ϕ is satisfiable if and only if there is an independent set *V'* of *K* nodes in graph $R(\phi)$. To see this, if a satisfying assignment exists, then we identify a true literal in each clause, and pick the node in the triangle of this clause labeled by this literal; Conversely, if such a set *V'* exists, just set the vertices in *V'* to be **true** and then we can get a satisfying assignment.

Application of INDEPENDENT SET: CLIQUE

Definition

A clique in an undirected graph is a set of pairwise adjacent vertices.

Definition

CLIQUE problem: Given an undirected graph G and an integer K, whether there is a set of K vertices that form a clique by having all possible edges between them?

Corollary

CLIQUE is NP-complete.

Proof.

Outline of proof: vertex subset C is a clique in a graph G if and only if it is an independent set in G^c , the complement of G.

INDEPENDENT SET MAX-CUT

Application of INDEPENDENT SET: CLIQUE

Definition

A clique in an undirected graph is a set of pairwise adjacent vertices.

Definition

CLIQUE problem: Given an undirected graph G and an integer K, whether there is a set of K vertices that form a clique by having all possible edges between them?

Corollary

CLIQUE is NP-complete.

Proof.

Outline of proof: vertex subset C is a clique in a graph G if and only if it is an independent set in G° , the complement of G.

INDEPENDENT SET MAX-CUT

Application of INDEPENDENT SET: CLIQUE

Definition

A clique in an undirected graph is a set of pairwise adjacent vertices.

Definition

CLIQUE problem: Given an undirected graph G and an integer K, whether there is a set of K vertices that form a clique by having all possible edges between them?

Corollary

CLIQUE is NP-complete.

Proof.

Outline of proof: vertex subset C is a clique in a graph G if and only if it is an independent set in G° , the complement of G.

< ロ > < 同 > < 三 > < 三 >

Application of INDEPENDENT SET: CLIQUE

Definition

A clique in an undirected graph is a set of pairwise adjacent vertices.

Definition

CLIQUE problem: Given an undirected graph G and an integer K, whether there is a set of K vertices that form a clique by having all possible edges between them?

Corollary

CLIQUE is NP-complete.

Proof.

Outline of proof: vertex subset C is a clique in a graph G if and only if it is an independent set in G^c , the complement of G.

INDEPENDENT SET MAX-CUT

CLIQUE (contd.)

Example

 $C = \{v_1, v_2, v_3\}$ is a clique in the first graph, and also it is a independent set in the second graph, which is the complement of the first graph.

E

Definition

A node cover of an undirected graph G = (V, E) is a set $C \subseteq V$ that contains at least one endpoint of every edge.

Definition

NODE COVER problem: Given a graph and an integer K, whether there is a node cover C with K or fewer vertices?

Corollary

NODE COVER is NP-complete.

Proof.

Outline of proof: Vertex subset C is a node cover of a graph G if and only if V - C is an independent set.

Definition

A node cover of an undirected graph G = (V, E) is a set $C \subseteq V$ that contains at least one endpoint of every edge.

Definition

NODE COVER problem: Given a graph and an integer K, whether there is a node cover C with K or fewer vertices?

Corollary

NODE COVER is NP-complete

Proof.

Outline of proof: Vertex subset C is a node cover of a graph G if and only if V - C is an independent set.

Definition

A node cover of an undirected graph G = (V, E) is a set $C \subseteq V$ that contains at least one endpoint of every edge.

Definition

NODE COVER problem: Given a graph and an integer K, whether there is a node cover C with K or fewer vertices?

Corollary

NODE COVER is NP-complete.

Proof.

Outline of proof: Vertex subset C is a node cover of a graph G if and only if V - C is an independent set.

Definition

A node cover of an undirected graph G = (V, E) is a set $C \subseteq V$ that contains at least one endpoint of every edge.

Definition

NODE COVER problem: Given a graph and an integer K, whether there is a node cover C with K or fewer vertices?

Corollary

NODE COVER is NP-complete.

Proof.

Outline of proof:

Vertex subset C is a node cover of a graph G if and only if V - C is an independent set.

INDEPENDENT SET MAX-CUT

NODE COVER (contd.)

Example

 $C = \{v_1, v_3\}$ is a node cover in the graph, $V - C = \{v_2, v_4\}$ is an independent set.

- 문

INDEPENDENT SET MAX-CUT

Outline

Variants of Satisfiabil

- 3SAT
- 2SAT
- MAX2SAT
- NAESAT

Xiaofeng Gu NP-Complete Problems

æ.

INDEPENDENT SET MAX-CUT

cut

Definition

A cut in an undirected graph G = (V, E) is a partition of vertices into two non-empty sets *S* and V - S. And the size of a cut (S, V - S) is the number of edges between *S* and V - S.

Definition

MIN-CUT problem: To find a cut with the smallest size in a graph. MAX-CUT problem: To find a cut with the largest size in a graph.

Observation

MIN-CUT is in P.

(a)

INDEPENDENT SET MAX-CUT

cut

Definition

A cut in an undirected graph G = (V, E) is a partition of vertices into two non-empty sets *S* and V - S. And the size of a cut (S, V - S) is the number of edges between *S* and V - S.

Definition

MIN-CUT problem: To find a cut with the smallest size in a graph. MAX-CUT problem: To find a cut with the largest size in a graph.

Observation

MIN-CUT is in P.

< 口 > < 同 > < 三 > < 三 > -

INDEPENDENT SET MAX-CUT

cut

Definition

A cut in an undirected graph G = (V, E) is a partition of vertices into two non-empty sets *S* and V - S. And the size of a cut (S, V - S) is the number of edges between *S* and V - S.

Definition

MIN-CUT problem: To find a cut with the smallest size in a graph. MAX-CUT problem: To find a cut with the largest size in a graph.

Observation

MIN-CUT is in P.

(a)

INDEPENDENT SET MAX-CUT

MAX-CUT

Theorem

MAX-CUT is NP-complete.

Proof.

We reduce NAE3SAT to MAX-CUT. Given *m* clauses with three literals each, C_1, C_2, \ldots, C_m , and the variables are x_1, x_2, \ldots, x_n . Then we construct a graph *G*: Vertex set $\{x_1, x_2, \ldots, x_n\}$; Edge: Each clause C_i corresponds to a triangle in *G*; n_i multiple edges between x_i ar $\neg x_i$, where n_i is the number of occurrences of x_i or $\neg x_i$.

<ロ> <同> <同> < 同> < 同> < 同> < 同> <

INDEPENDENT SET MAX-CUT

MAX-CUT

Theorem

MAX-CUT is NP-complete.

Proof.

We reduce NAE3SAT to MAX-CUT. Given *m* clauses with three literals each, C_1, C_2, \ldots, C_m , and the variables are x_1, x_2, \ldots, x_n . Then we construct a graph *G*: Vertex set $\{x_1, x_2, \ldots, x_n\}$; Edge: Each clause C_i corresponds to a triangle in *G*; n_i multiple edges between x_i and $\neg x_i$, where n_i is the number of occurrences of x_i or $\neg x_i$.

INDEPENDENT SET MAX-CUT

Proof (contd.)

Example

$$\begin{array}{l} (x_1 \lor x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \equiv \\ (x_1 \lor x_2 \lor x_2) \land (x_1 \lor \neg x_3 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \end{array}$$

<ロ> <同> < 回> < 回> < 回> < => < => <</p>

æ.

INDEPENDENT SET MAX-CUT

Proof (contd.)

Proof.

Let K = 5m. We claim that there is an assignment NAE-satisfying *m* clauses if and only if there is a cut (S, V - S) with at least *K* edges in the graph. To see this, if there is an assignment NAE-satisfying all clauses, it is easy to get a cut of size 5m (true literals form a set *S*). Conversely, if there is a such a cut, then set the literals in *S* true and literals in *V* - *S* false and we can get a NAE-satisfying assignment.

Xiaofeng Gu NP-Complete Problems

INDEPENDENT SET MAX-CUT

Proof (contd.)

Proof.

Let K = 5m. We claim that there is an assignment NAE-satisfying *m* clauses if and only if there is a cut (S, V - S) with at least *K* edges in the graph. To see this, if there is an assignment NAE-satisfying all clauses, it is easy to get a cut of size 5m (true literals form a set *S*). Conversely, if there is a such a cut, then set the literals in *S* true and literals in *V* - *S* false and we can get a NAE-satisfying assignment.

Xiaofeng Gu NP-Complete Problems

INDEPENDENT SET MAX-CUT

Proof (contd.)

Proof.

Let K = 5m. We claim that there is an assignment NAE-satisfying *m* clauses if and only if there is a cut (S, V - S) with at least *K* edges in the graph. To see this, if there is an assignment NAE-satisfying all clauses, it is easy to get a cut of size 5m (true literals form a set *S*). Conversely, if there is a such a cut, then set the literals in *S* true and literals in V - S false and we can get a NAE-satisfying assignment.