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Problems in NP
Variants of Satisfiability

Graph-Theoretic Problems

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in
polynomial time.

Definition

Let R ⊆ Σ∗ ×Σ∗ be a binary relation on strings. R is called polynomially decidable if
the language {x; y : (x, y) ∈ R} is decided by a deterministic Turing machine in
polynomial time.

Definition

R is polynomial balanced if (x, y) ∈ R implies |y | ≤ |x|k for some k ≥ 1.
That is, the length of the second component is always bounded by a polynomial in the
length of the first.

Xiaofeng Gu NP-Complete Problems



Problems in NP
Variants of Satisfiability

Graph-Theoretic Problems

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in
polynomial time.

Definition

Let R ⊆ Σ∗ ×Σ∗ be a binary relation on strings. R is called polynomially decidable if
the language {x; y : (x, y) ∈ R} is decided by a deterministic Turing machine in
polynomial time.

Definition

R is polynomial balanced if (x, y) ∈ R implies |y | ≤ |x|k for some k ≥ 1.
That is, the length of the second component is always bounded by a polynomial in the
length of the first.

Xiaofeng Gu NP-Complete Problems



Problems in NP
Variants of Satisfiability

Graph-Theoretic Problems

Class NP

Recall

NP is the class of languages decided by nondeterministic Turing machines in
polynomial time.

Definition

Let R ⊆ Σ∗ ×Σ∗ be a binary relation on strings. R is called polynomially decidable if
the language {x; y : (x, y) ∈ R} is decided by a deterministic Turing machine in
polynomial time.

Definition

R is polynomial balanced if (x, y) ∈ R implies |y | ≤ |x|k for some k ≥ 1.
That is, the length of the second component is always bounded by a polynomial in the
length of the first.

Xiaofeng Gu NP-Complete Problems



Problems in NP
Variants of Satisfiability

Graph-Theoretic Problems

Class NP (contd.)

Proposition

Let L ⊆ Σ∗ be a language. L ∈ NP if and only if there is a polynomial decidable and
polynomial balanced relation R, such that L = {x : ∃y , (x, y) ∈ R}.

Proof.

(i) “If” part: Suppose that such an R exists, we need to show L is decided by a
nondeterministic Turing machine M in polynomial time. We construct M as follows:
On input x , M guesses a y of length at most |x|k , and then verify whether
(x, y) ∈ R (This can be done in polynomial time because R is polynomial
decidable.). If (x, y) ∈ R, M accepts, otherwise it rejects.

(ii) “Only if” part: Suppose that L ∈ NP, that is, there is a nondeterministic Turing
machine N that decides L in time |x|k for some k . Define a relation R as follows:
(x, y) ∈ R if and only if y encodes an accepting computation of N on input x .
Clearly R is polynomial decidable and polynomial bounded.
Now we show L = {x : ∃y , (x, y) ∈ R}. Since N decides L, ∀x ∈ L, there must be
a y such that (x, y) ∈ R, and hence L ⊆ {x : ∃y , (x, y) ∈ R}; Conversely,
∀x ∈ {x : ∃y , (x, y) ∈ R}, it must be the cast that N accepts x . It means x ∈ L,
and hence {x : ∃y , (x, y) ∈ R} ⊆ L. Thus L = {x : ∃y , (x, y) ∈ R}.
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What does the proposition tell us?

Note

(i) Any “yes” instance x of the problem in NP has at least one polynomial certificate y
of its being a “yes” instance.

(ii) We may not know how to discover this certificate in polynomial time, but we are
sure it exists if the instance is a “yes” instance.

(iii) Naturally, “no” instance may not have such certificate.

Examples

SAT: The certificate is just an assignment that satisfies the Boolean expression.
HAMILTON PATH: the certificate is precisely a Hamilton path in the graph.
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SAT

Recall

(Cook’s Theorem ) SAT is NP-complete.

Definition

kSAT, where k ≥ 1 is an integer, is the special case of SAT in which the formula is in
CNF, and all clauses have k literals.
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3SAT

Proposition

3SAT is NP-complete.

Proof.

First, it is easy to see that 3SAT ∈ NP. We can construct a nondeterministic Turing
machine to guess a truth assignment for the variables and check in polynomial time
whether the assignment satisfies all the three-literal clauses.
Then, we can reduce SAT to 3SAT. Suppose c is a k-literal clause in the input CNF
expression. If k = 1, c = (x),then c = (x, x, x);
If k = 2, c = (x, y), then c = (x, y , y);
If k = 3, c = (x, y , z);
If k = 4, c = (x1, x2, x3, x4), rewrite as (x1, x2, u) ∧ (x3, x4, ū).
When k ≥ 4, c = (x1, x2, x3, x4, . . . , xk ), rewrite as
(x1, x2, u1) ∧ (x3, ū1, u2) ∧ (x4, ū2, u3) ∧ · · · ∧ (xk−1, xk , ¯uk−3).
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kSAT

Note

In analyzing the complexity of a problem, we are trying to define the precise boundary
between the polynomial and NP-complete cases.
For SAT, we already know that 3SAT is NP-complete, how about 2SAT?
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2SAT and Graph G(φ)

Definition

Let φ be an instance of 2SAT. We define a graph G(φ) as follows:
(a) The vertices of G are the variables of φ and their negations;
(b) There is an edge (α, β) if and only if there is a clause (¬α ∨ β) (or (β ∨ ¬α)in φ.
(c) G(φ) has a weird symmetry: If (α, β) is an edge, then so is (¬β,¬α).

Examples

φ = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x2 ∨ x3)
G(φ) ?
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2SAT and Graph G(φ) (contd.)

Example

φ = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x2 ∨ x3)

x3

¬x2

x1

¬x1

¬x3

x2
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2SAT and Graph G(φ) (contd.)

Theorem

φ is unsatisfiable if and only if there is a variable x such that there are paths from x to
¬x and from ¬x to x in G(φ).

Proof.

“If” part: Suppose that such a x exists, we want to show φ is unsatisfiable. If φ is
satisfied by an assignment T , we have two cases:

(a) T (x) = true . There is a path from x to ¬x , and T (x) = true and T (¬x) = false ,
then there must be an edge (α, β) along this path such that T (α) = true and
T (β) = false . Since (α, β) is an edge in G(φ), ¬α ∨ β is a clause in φ, which is
not satisfied by T , a contradiction.

(b) T (x) = false . Use path ¬x to x , and the same argument as (a).
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Proof (contd.)

Proof.

“Only if” part: Suppose that φ is unsatisfiable, we want to show there is such a
variable x . If there is no such an x , we are going to construct a satisfying assignment,
and then by contradiction we prove it.

(a) For a node α, if there is a path from α to ¬α, then α must be assigned false .

(b) If there’s no path from α to ¬α, then all nodes that reachable from α are assigned
true , and all nodes from which ¬α is reachable are assigned false .

Repeat the step until all nodes have assignments, we can get a satisfying assignment.
We have two problems:

(i) Is the step in (b) well-defined? Yes!

(ii) Continue doing the steps, we will get an assignment. Why is it a satisfying
assignment?
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Corollary

2SAT is in NL (and therefore in P).

Proof.

NL is closed under complement.
We can recognize unsatisfiable expressions in NL: Guess a variable x , and paths from
x to ¬x and back in nondeterministic logarithmic space.
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MAXkSAT

Definition

We are given a set of clauses, each with two literals in it, and an integer K . MAX2SAT
is the problem whether there is an assignment that satisfies at least K of the clauses.

Observation

When k ≥ 3, MAXkSAT is obviously NP-complete.
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MAX2SAT

Theorem

MAX2SAT is NP-complete.

Proof.

Let us consider a small instance first: given ten clauses

(x), (y), (z), (w)
(¬x ∨ ¬y), (¬y ∨ ¬z), (¬z ∨ ¬x)
(x ∨ ¬w), (y ∨ ¬w), (z ∨ ¬w)

How many clauses can be satisfied? If an assignment satisfy (x ∨ y ∨ z), then it can
be extended to satisfy seven of the clauses and no more. Then 3SAT can be reduced
to MAX2SAT: given any instance φ of 3SAT, we can construct an instance R(φ) of
MAX2SAT: for each clause Ci = (α ∨ β ∨ γ) of φ, we add to R(φ) the following ten
clauses:

(α), (β), (γ), (wi )
(¬α ∨ ¬β), (¬β ∨ ¬γ), (¬γ ∨ ¬α)
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MAX2SAT (contd.)

Proof.

(α ∨ ¬wi ), (β ∨ ¬wi), (γ ∨ ¬wi)

If φ has m clauses, then R(φ) has 10m. Set K = 7m. We claim that: φ is satisfiable if
and only there are at least K clauses can be satisfied in R(φ).
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NAESAT

Definition

NAESAT: A Boolean expression in CNF is said to be NAE-satisfied, if in each clause at
least one literal is true and at least one literal is false .

Theorem

NAESAT is NP-complete.

Proof.

In Theorem 8.2, we have proved CIRCUIT SAT is NP-complete. Now we reduce
CIRCUIT SAT to NAESAT, as Example 8.3 on how to reduce CIRCUIT SAT to SAT.
We add to all one- or two-literal clauses the same literal, call it z. We claim that the
resulting set of clauses are NAE-satisfiable if and only if the original circuit is satisfiable.
Suppose that there is an assignment T that NAE-satisfies all clauses. Then T̄ also
NAE-satisfies all clauses. In one of these assignments z takes the value false . This
assignment then satisfies all original clauses (before the addition of z) and therefore
there is a satisfying assignment for the circuit.
Conversely, it there is an assignment that satisfies the circuit. Then there is an
assignment T that satisfies all clauses. We add z and set z false in T , then in no
clause all literals are true under T . Hence, the resulting clauses are NAE-satisfied
under T .
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INDEPENDENT SET

Definition

Let G = (V , E) be an undirected graph, and V ′ ⊆ V . We say that V ′ is independent if
∀i , j ∈ V ′, (i , j) /∈ E .

Definition

INDEPENDENT SET problem: Given an undirected graph and an integer K , is there
an independent set V ′ with |V ′| ≥ K?
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INDEPENDENT SET (contd.)

Example

In the graph below, V ′ = {v2, v4} is an independent set.

v1

v2 v3

v4
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INDEPENDENT SET (contd.)

Theorem

INDEPENDENT SET is NP-complete.

Proof.

Reduce 3SAT to INDEPENDENT SET.
Given an instance φ of 3SAT with m clauses. We can construct a graph R(φ):
(a) For each one of the m clauses, we create a separate triangle in the graph;
(b) Each node of the triangle corresponds to a literal in the clause;
(c) There is an edge between two nodes u and v in different triangles if and only if
v = ¬u.
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Theorem

INDEPENDENT SET is NP-complete.
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Proof (contd.)

Example

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

x1

x2 x3

¬x1

¬x2 ¬x3

¬x1

x2 x3
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Proof (contd.)

Proof.

m clauses correspond m triangles. Set K = m. We claim that φ is satisfiable if and only
if there is an independent set V ′ of K nodes in graph R(φ). To see this, if a satisfying
assignment exists, then we identify a true literal in each clause, and pick the node in
the triangle of this clause labeled by this literal; Conversely, if sucha set V ′ exists, just
set the vertices in V ′ to be true and then we can get a satisfying assignment.
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Application of INDEPENDENT SET: CLIQUE

Definition

A clique in an undirected graph is a set of pairwise adjacent vertices.

Definition

CLIQUE problem: Given an undirected graph G and an integer K , whether there is a
set of K vertices that form a clique by having all possible edges between them?

Corollary

CLIQUE is NP-complete.

Proof.

Outline of proof:
vertex subset C is a clique in a graph G if and only if it is an independent set in Gc , the
complement of G.
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A clique in an undirected graph is a set of pairwise adjacent vertices.

Definition

CLIQUE problem: Given an undirected graph G and an integer K , whether there is a
set of K vertices that form a clique by having all possible edges between them?

Corollary

CLIQUE is NP-complete.

Proof.

Outline of proof:
vertex subset C is a clique in a graph G if and only if it is an independent set in Gc , the
complement of G.

Xiaofeng Gu NP-Complete Problems



Problems in NP
Variants of Satisfiability

Graph-Theoretic Problems

INDEPENDENT SET
MAX-CUT

CLIQUE (contd.)

Example

C = {v1, v2, v3} is a clique in the first graph, and also it is a independent set in the
second graph, which is the complement of the first graph.

v1

v2 v3

v4 v1

v2 v3

v4
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Application of INDEPENDENT SET: NODE COVER

Definition

A node cover of an undirected graph G = (V , E) is a set C ⊆ V that contains at least
one endpoint of every edge.

Definition

NODE COVER problem: Given a graph and an integer K , whether there is a node
cover C with K or fewer vertices?

Corollary

NODE COVER is NP-complete.

Proof.

Outline of proof:
Vertex subset C is a node cover of a graph G if and only if V −C is an independent set.
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NODE COVER (contd.)

Example

C = {v1, v3} is a node cover in the graph, V − C = {v2, v4} is an independent set.

v1

v2 v3

v4
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cut

Definition

A cut in an undirected graph G = (V , E) is a partition of vertices into two non-empty
sets S and V − S. And the size of a cut (S, V − S) is the number of edges between S
and V − S.

Definition

MIN-CUT problem: To find a cut with the smallest size in a graph.
MAX-CUT problem: To find a cut with the largest size in a graph.

Observation

MIN-CUT is in P.
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MAX-CUT

Theorem

MAX-CUT is NP-complete.

Proof.

We reduce NAE3SAT to MAX-CUT.
Given m clauses with three literals each, C1, C2, . . . , Cm, and the variables are
x1, x2, . . . , xn. Then we construct a graph G:
Vertex set {x1, x2, . . . , xn};
Edge: Each clause Ci corresponds to a triangle in G; ni multiple edges between xi and
¬xi , where ni is the number of occurrences of xi or ¬xi .
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Proof (contd.)

Example

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ≡
(x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

x1

x2

x3

¬x1

¬x2

¬x3
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Proof (contd.)

Proof.

Let K = 5m. We claim that there is an assignment NAE-satisfying m clauses if and
only if there is a cut (S, V − S) with at least K edges in the graph. To see this, if there
is an assignment NAE-satisfying all clauses, it is easy to get a cut of size 5m (true
literals form a set S). Conversely, if there is a such a cut, then set the literals in S true
and literals in V − S false and we can get a NAE-satisfying assignment.
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