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coNP as related to NP

Definition (coNP)

coNP is the complexity class which contains the complements of problems found in NP.

Another way of looking at coNP

Just as NP can be considered to be the set of problems with succinct ”yes” certificates,
coNP can be considered to be the set of problems with succinct ”no” certificates. This
means that a ”no” instance of a problem in coNP has a short proof of it being a ”no”
instance.
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Examples

1 coSAT = {〈b〉 : b is a boolean expression with no satisfying assignments}
2 PRIMES = {〈p〉 : p is a prime number}
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Problems have both succinct ”yes” and succinct ”no” certificates.
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1 PRIMES
2 All problems in P
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PRIMES is in NP ∩ coNP

Goal

We first want to develop a different way of determining primality.
Want to show that a number p > 1 is prime if and only if there is a number 1 < r < p

such that rp−1 = 1 mod p and r
p−1

q 6= 1 mod p for all prime divisors q of p − 1.

Definition (Relative Primality)

Two numbers a and b are relatively prime iff their greatest common divisor, (a, b), is 1.

Examples

5 and 234 are relatively prime,
57 and 95 are not, 19 is a common factor.
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An alternate look at primality

Definition (Φ(n))

Φ(n) = {m : 1 ≤ m < n, (m, n) = 1}.

Definition (Euler φ function)

φ(n) = |Φ(n)| and φ(1) = 1.
In other words, φ(n) is the number of numbers between 1 and n − 1 which are
relatively prime to n

Lemma (1)

φ(n) = n
Q

p|n(1− 1
p ) where p is a prime.

Proof.

Assume that p1, p2 . . . , pk are the prime divisors of n. Observe that each pi knocks off
one in every pi candidates for φ(n), leaving n · (1− 1

pi
) candidates for φ(n). It therefore

follows that φ(n) = n
Q

p|n(1− 1
p ) where p is a prime.
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An alternate look at primality

Examples

Φ(8) = {1, 3, 5, 7}
φ(8) = 8 · (1− 1

2 ) = 4

Theorem

If (m, n) = 1, then φ(m · n) = φ(m) · φ(n).

Proof.

Follows from the previous lemma as m and n share no common prime factors. Thus
the terms in the product m · n

Q
p|m·n(1− 1

p ) are distributed without overlap to

n
Q

p|n(1− 1
p ) and m

Q
p|m(1− 1

p ).

Example

φ(95) = 95 · (1− 1
5 ) · (1− 1

19 ) = 72 = 4 · 18 = φ(5) · φ(19)
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An alternate look at primality

TheoremP
m|n φ(m) = n

Proof.

Let
Ql

i=1 pki
i be the prime factorization of n. Consider the following productQl

i=1(φ(1) + φ(pi ) + φ(p2
i ) + · · ·+ φ(pki

i ))

Its easy to see that the i th term in this product is simply pki
i . Thus the product is simply

equal to n. If the product is expanded out one term for each divisor of n is produced.

The term corresponding to m =
Ql

i=1 p
k′i
i where 1 ≤ k ′i < ki , is

Ql
i=1 φ(p

k′i
i ). However,

by the previous theorem, this term is simply φ(m).

ExampleP
m|27 φ(m) = φ(1) + φ(3) + φ(9) + φ(27) = 1 + 2 + 6 + 18 = 27
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An alternate look at primality

Theorem (Fermat’s Little Theorem)

For all 0 < a < p, ap−1 ≡ 1 mod p, where p is a prime.

Proof.

Lets consider the set a · Φ(p) = {a · i mod p : 0 < i < p}. We have that this set is
equal to the set Φ(p) = {i, 0 < i < p}. Suppose otherwise, thus there exist elements
m 6= m′ in Φ(p) such that a ·m ≡ a ·m′ mod p. Thus a · (m −m′) ≡ 0 mod p
leading to a contradiction. Now take the products of all the elements in each set, thus
we have that ap−1 · (p − 1)! ≡ (p − 1)! mod p. Thus (ap−1 − 1) · (p − 1)! ≡ 0
mod p. Since (p − 1)! 6= 0 mod p we have the desired result.

Corollary

For all a ∈ Φ(n), aφ(n) ≡ 1 mod n
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m 6= m′ in Φ(p) such that a ·m ≡ a ·m′ mod p. Thus a · (m −m′) ≡ 0 mod p
leading to a contradiction. Now take the products of all the elements in each set, thus
we have that ap−1 · (p − 1)! ≡ (p − 1)! mod p. Thus (ap−1 − 1) · (p − 1)! ≡ 0
mod p. Since (p − 1)! 6= 0 mod p we have the desired result.

Corollary

For all a ∈ Φ(n), aφ(n) ≡ 1 mod n
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An alternative look at primality

Definition (Exponent of a number mod n)

The exponent of a number m ∈ Φ(n) is the smallest integer k > 0 for which mk ≡ 1
mod n. It is worth noting that if ml ≡ 1 mod n then k |l . As otherwise l mod k would
be the exponent of m.

Example

The exponent of 10 mod 11 is 2 as 102 ≡ 1 mod 11 but 10 6= 1 mod 11.

Definition

Let R(k), for a given prime p, denote the number of residues in Φ(p) which have
exponent k .

Example

Let p = 5 thus R(3) = 0 and R(2) = 1.
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An alternate look at primality

Theorem

Any polynomial of degree k that is not identically zero has at most k distinct roots
mod p.

Proof.

This will be shown by induction on k . If k = 0 this is obvious as the polynomial is
constant. Assume that the theorem holds for al polynomials of degree at most k − 1.
Let π(x) = ak xk + . . .+ a1x + a0 be a polynomial of degree k with k + 1 distinct roots,
say x1, x2, . . . , xk+1. Now let π′(x) = π(x)− ak ·

Qk
i=1(x − xi ). Thus π′(x) is a

polynomial of degree at most k − 1, which is not identically 0. Therefore, π′(x) must
have k − 1 distinct roots as per the inductive hypothesis, but x1, . . . , xk are all distinct
roots of π′(x) contradicting the hypothesis!

Application to R(k)

Since xk − 1 for k 6∈ φ(p) is a non-zero polynomial it has at most k roots mod p and
thus R(k) ≤ k .
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An alternate look at primality

Theorem

For a given prime p, for all k ∈ Φ(p) we have that R(k) ≤ φ(k).

Proof.

If R(k) = 0 then were done. So we assume that there is an element s with exponent k .
Then (1, s, s2, . . . , sk−1) are all distinct. And for all 0 ≤ i < k , (si )k = sik ≡ 1i = 1
mod p. Thus these si constitute all k possible roots of xk − 1 mod p. Let sl have
exponent k . If l /∈ Φ(k) then d = (l, k) > 1 and (sl )k/d = s

lk
d = (sk )l/d ≡ 1 mod p

leading to a contradiction. Thus if sl has exponent k mod p then l ∈ Φ(k), which
means that R(k) ≤ φ(k).
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An alternate look at primality

Theorem

A number p > 1 is prime if and only if there is a number 1 < r < p such that rp−1 = 1

mod p and r
p−1

q 6= 1 mod p for all prime divisors q of p − 1.

Proof.

p is a prime: As each 0 < i < p has an exponent, that divides p − 1,
p − 1 =

P
l|p−1 R(l) ≤

P
l|p−1 φ(l) = p − 1. Thus R(l) = φ(l) for all l|p − 1. Namely

R(p − 1) = φ(p − 1) > 0 and so there is at least one r that has exponent p − 1.
p is not a prime: let r ∈ Φ(p) be a number such that rp−1 ≡ 1 mod p, we also have
that rφ(p) ≡ 1 mod p. Let k be the exponent of r mod p. Thus k |p − 1 and k |φ(p).
Since p is not a prime k ≤ φ(p) < p − 1. Let q be a prime factor of p−1

k . Thus k | p−1
q

and so r
p−1

q ≡ 1 mod p
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Showing that PRIMES is in NP ∩ coNP

Theorem (Pratt’s Theorem)

PRIMES is in NP ∩ coNP

Proof.

Part 1: PRIMES is in coNP. Trivially true, since the succinct disqualification for
x /∈ PRIMES is simply the factorization of x.
eg. 12 = 3 · 4 and 117 = 9 · 13.
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Proof.

Part 2: PRIMES is in NP. First we will try to construct a certificate for any x ∈ PRIMES.
Once a reasonable certificate is found we will show that it is succinct.

Possible Certificates, C(p), for p ∈ PRIMES

1 C(p) = r such that rp−1 = 1 mod p.
Insufficient as 20 is a ”valid” certificate for 21 /∈ PRIMES.

2 C(p) = (r , p1, p2, . . . , pk ) where rp−1 = 1 mod p and r
p−1

pi 6= 1 mod p for
1 ≤ i ≤ k and p1 · · · · · pk = p − 1.
Insufficient as (10, 2, 45) is a ”valid” certificate for 91 /∈ PRIMES.
Need some way to ensure that p1, . . . , pk are primes without having to check.

3 C(p) = (r ; p1,C(p1), p2,C(p2), . . . , pk ,C(pk )) where C(1)=(1), rp−1 = 1 mod p,

and r
p−1

pi 6= 1 mod p for 1 ≤ i ≤ k and p1 · · · · · pk = p − 1.
eg. C(67) = (2; 2, (1), 3, (2; 2, (1)), 11, (8; 2, (1), 5, (3; 2, (1)))).
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Proof.

First we will show that the certificate is succinct. We will show that for all primes p the
certificate has length at most 4 · log2(p). If p = 2 or p = 3 this is trivial. For any p > 3,
p − 1 will have k < log(p) prime divisors q1 = 2, q2, . . . , qk . Thus C(p) will contain 2k
separators, the number r , 2 and its certificate (1), the qi s (at most 2 log p bits), and the
C(qi )s.
By the inductive hypothesis, we have that |C(qi )| ≤ 4 log2 qi . Thus
|C(p)| ≤ 4 log p + 5 + 4

Pk
i=2 log2 qi

The logarithms of the q1s add up to log p−1
2 < log p − 1, so the sum of their squares is

at most (log p − 1)2. Thus
|C(p)| ≤ 4 log2 p + 9− 4 log p, which is less than 4 log2 p when p ≥ 5.
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Now it needs to be shown that C(p) is verifiable in polynomial time. This hinges of the
computation of rp−1 mod p. If repeated multiplication by r is done then this process
clearly takes exponential time. However, repeated squaring can be used.
Let l = dlog(p)e. First r , r2, r4, . . . , r2l

mod p are computed. Each of these steps
takes O(l2) time. Then multiply the appropriate exponents of r to obtain rp−1 mod p.
As there are O(l) multiplications this entire process takes O(l3) time.

Example

p = 7, r = 5
thus p − 1 = 6 and l = 3.
so r2 = 25 ≡ 4, r4 = 16 ≡ 2, r8 = 4 mod 7 thus rp−1 = r4 · r2 = 8 ≡ 1 mod 7.
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However, it is not enough that rp−1 mod p takes O(l3) time. We need to show that the
entire verification process of C(p) runs in polynomial time. To do this we need to

compute rp−1 mod p, r
p−1

qi mod p for each of the O(l) qi s, q1, q2, . . . , qk , and each
of the C(qi )s. This entire process takes O(l4) time.
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Just as P ⊆ NP, we have that P = coP ⊆ coNP. Thus P ⊆ NP ∩ coNP.
It is also unknown if P = NP ∩ coNP.
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