First-Order Logic

An Introduction to First-Order Logic

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

Syntax, Semantics and Validity

Subramani

Outline

Outline

The Syntax of First-Order Logic

- Vocabulary
- Terms and Expressions
- Examples

2) Models of Expressions

- Model Definition
- Different Models for the same vocabulary
- Computability of first-order expressions over graph theory

- Definition
- Reasons for validity
- Prenex Normal Form

Outline

Outline

The Syntax of First-Order Logic

- Vocabulary
- Terms and Expressions
- Examples

2 Models of Expressions

- Model Definition
- Different Models for the same vocabulary
- Computability of first-order expressions over graph theory

- Definition
- Reasons for validity
- Prenex Normal Form

Outline

Outline

The Syntax of First-Order Logic

- Vocabulary
- Terms and Expressions
- Examples

2 Models of Expressions

- Model Definition
- Different Models for the same vocabulary
- Computability of first-order expressions over graph theory

- Definition
- Reasons for validity
- Prenex Normal Form

Vocabulary Terms and Expressions Examples

Outline

The Syntax of First-Order Logic

- Vocabulary
- Terms and Expressions
- Examples

2 Models of Expressions

- Model Definition
- Different Models for the same vocabulary
- Computability of first-order expressions over graph theory

3 Validity

- Definition
- Reasons for validity
- Prenex Normal Form

< < >> < <</p>

Vocabulary Terms and Expressions Examples

The vocabulary of first-order logic

Definition

A vocabulary $\Sigma = (\Phi, \Pi, r)$ consists of a set of function symbols Φ , a set of relation symbols Π (Π must contain the binary equality relation =) and an arity function $r : \Phi \cup \Pi \rightarrow \mathcal{N}$.

0-ary functions are called constants; a relation can never be 0-ary.

Associated with the vocabulary Σ is a finite, countable set of variables $V = \{x, y, z, \dots, \}$.

Vocabulary Terms and Expressions Examples

Outline

The Syntax of First-Order Logic

- Vocabulary
- Terms and Expressions
- Examples

2 Models of Expressions

- Model Definition
- Different Models for the same vocabulary
- Computability of first-order expressions over graph theory

3 Validity

- Definition
- Reasons for validity
- Prenex Normal Form

< < >> < <</p>

 Syntax
 Vocabulary

 Models
 Terms and Expressions

 Validity
 Examples

Definition

Any variable $v \in V$ is a term. If f is a k-ary function and t_1, t_2, \ldots, t_k are terms, then so is $f(t_1, t_2, \ldots, t_k)$.

Definition

If $R \in \Pi$ is a *k*-ary relation and t_1, t_2, \ldots, t_k are terms, then $R(t_1, t_2, \ldots, t_k)$ is an atomic expression. If ϕ and ψ are expressions then so are $\neg \phi$, $\phi \lor \psi$, $\phi \land \psi$ and $(\forall x)\phi$.

Existential Quantifier

For the most part, we will avoid considering $(\exists x)\phi$ separately, since $(\exists x)\phi$ is tautologically equivalent to $\neg(\forall x)\neg\phi$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Syntax
 Vocabulary

 Models
 Terms and Expressions

 Validity
 Examples

Definition

Any variable $v \in V$ is a term. If f is a k-ary function and t_1, t_2, \ldots, t_k are terms, then so is $f(t_1, t_2, \ldots, t_k)$.

Definition

If $R \in \Pi$ is a *k*-ary relation and t_1, t_2, \ldots, t_k are terms, then $R(t_1, t_2, \ldots, t_k)$ is an atomic expression. If ϕ and ψ are expressions then so are $\neg \phi$, $\phi \lor \psi$, $\phi \land \psi$ and $(\forall x)\phi$.

Existential Quantifier

For the most part, we will avoid considering $(\exists x)\phi$ separately, since $(\exists x)\phi$ is tautologically equivalent to $\neg(\forall x)\neg\phi$.

Vocabulary Terms and Expressions Examples

Outline

The Syntax of First-Order Logic

- Vocabulary
- Terms and Expressions
- Examples

2 Models of Expressions

- Model Definition
- Different Models for the same vocabulary
- Computability of first-order expressions over graph theory

3 Validity

- Definition
- Reasons for validity
- Prenex Normal Form

< < >> < <</p>

Vocabulary Terms and Expressions Examples

Two Example Theories

Number Theory

$$\Phi_N = \{\mathbf{0}, \sigma, +, \times, \uparrow\}, \, \Pi_N = \{<^N, =\}.$$

Graph Theory

 $\Phi_{G} = \emptyset, \, \Pi_{G} = \{ \textbf{G}, = \}.$

æ.

Vocabulary Terms and Expressions Examples

Two Example Theories

Number Theory

$$Φ_N = \{0, σ, +, ×, \uparrow\}, Π_N = \{<^N, =\}.$$

Graph Theory

$$\Phi_G=\emptyset,\,\Pi_G=\{\textbf{G},=\}.$$

E.

<ロ> (四) (四) (三) (三) (三)

Model Definition Different Models for the same vocabulary Computability of first-order expressions over graph theory

< < >> < <</p>

Outline

The Syntax of First-Order Logic

- Vocabulary
- Terms and Expressions
- Examples

Models of Expressions Model Definition

- Different Models for the same vocabulary
- Computability of first-order expressions over graph theory

- Definition
- Reasons for validity
- Prenex Normal Form

Model Definition

Different Models for the same vocabulary Computability of first-order expressions over graph theory

Definition and Appropriateness of Models

Definition

A model $M = (U, \mu)$ is a 2-tuple, with U denoting the universe of M and μ denoting the interpretation function of M. μ assigns to each variable, function symbol and relation symbol, a *concrete object* in U.

Model Definition Different Models for the same vocabulary Computability of first-order expressions over graph theory

Model satisfaction

Definition

M satisfies a first-order expression ϕ , written $M \models \phi$, if

(i)
$$\phi$$
 is an atomic expression $R(t_1, t_2, \dots, t_k)$ and $(t_1^M, t_2^M, \dots, t_k^M) \in R^M$,
(ii) $\phi = \neg \psi$ and $M \not\models \psi$,

(iii)
$$\phi = \phi_1 \lor \phi_2$$
 and $M \models \phi_1$ or $M \models \phi_2$,

(iv)
$$\phi = \phi_1 \land \phi_2$$
 and $M \models \phi_1$ and $M \models \phi_2$,

(v) $\phi = (\forall x)\psi$ and $M_{x=u} \models \psi$, for each $u \in U$, where $M_{x=u}$ forces all occurrences of x to equal u.

Model Definition

Different Models for the same vocabulary Computability of first-order expressions over graph theory

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Irrelevance of assignments to bound variables

Proposition

Consider two models M and M' which are appropriate to the vocabulary of a first-order expression ϕ . If M and M' agree on all but the bound variables of ϕ , then $M \models \phi \leftrightarrow M' \models \phi$.

Proof.

Use induction on the length of ϕ !

< < >> < <</p>

Outline

The Syntax of First-Order Logic

- Vocabulary
- Terms and Expressions
- Examples

2 Models of Expressions

Model Definition

Different Models for the same vocabulary

Computability of first-order expressions over graph theory

Svntax

Models

Validity

- Definition
- Reasons for validity
- Prenex Normal Form

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Models for Number Theory

Standard Model \mathcal{N}

The universe *U* is $\{0, 1, 2, ..., \}$. μ is described as follows: $0^N = 0$, $<^N (m, n)$ if m < n, $\sigma^N(n) = n + 1$, $+^N = +$, $\times^N = \times$, $\uparrow^N = \uparrow$.

A model which is less standard $\mathcal{N}_{ m p}$

The universe U is $\{0, 1, ..., p-1\}$. Identical to the standard model, except that all operations are performed modulo p.

The model from Hell \mathcal{N}_h

We use *L* to denote this model. The universe *U* is $2^{\{0,1\}^*}$. μ is described as follows: $0^L = \emptyset$, $\sigma^L(I) = I^*$, $+^L = \cup$, $\times^L = \cdot$, $\uparrow^L = \cap$

Models for Number Theory

Standard Model ${\cal N}$

The universe *U* is $\{0, 1, 2, ..., \}$. μ is described as follows: $0^N = 0$, $<^N (m, n)$ if m < n, $\sigma^N(n) = n + 1$, $+^N = +$, $\times^N = \times$, $\uparrow^N = \uparrow$.

A model which is less standard \mathcal{N}_p

The universe *U* is $\{0, 1, ..., p-1\}$. Identical to the standard model, except that all operations are performed modulo *p*.

The model from Hell \mathcal{N}_h

We use *L* to denote this model. The universe *U* is $2^{\{0,1\}^*}$. μ is described as follows: $0^L = \emptyset$, $\sigma^L(I) = I^*$, $+^L = \cup$, $\times^L = \cdot$, $\uparrow^L = \cap$

< 口 > < 同 > < 三 > < 三 > -

Models for Number Theory

Standard Model ${\cal N}$

The universe *U* is $\{0, 1, 2, ..., \}$. μ is described as follows: $0^N = 0$, $<^N (m, n)$ if m < n, $\sigma^N(n) = n + 1$, $+^N = +$, $\times^N = \times$, $\uparrow^N = \uparrow$.

A model which is less standard \mathcal{N}_p

The universe *U* is $\{0, 1, ..., p-1\}$. Identical to the standard model, except that all operations are performed modulo *p*.

The model from Hell \mathcal{N}_h

We use *L* to denote this model. The universe *U* is $2^{\{0,1\}^*}$. μ is described as follows: $0^L = \emptyset$, $\sigma^L(I) = I^*$, $+^L = \cup$, $\times^L = \cdot$, $\uparrow^L = \cap$,

Syntax Model Definition Models Different Models Validity Computability of

Model Definition Different Models for the same vocabulary Computability of first-order expressions over graph theory

< ロ > < 同 > < 三 > < 三 > -

Models for Number Theory (contd.)

Fact

Let M_1 and M_2 denote two models that are appropriate to the vocabulary Σ of a theory (say number theory). It is possible that for a given first-order expression ϕ over Σ , $M_1 \models \phi$, but $M_2 \not\models \phi$

Example

Let $\phi = (\forall x)(\exists y)(x = y + y)$. Clearly, $N \not\models \phi$, $N_p \models \phi$, if p is odd and $N_h \models \phi$.

Outline

The Syntax of First-Order Logic

- Vocabulary
- Terms and Expressions
- Examples

2 Models of Expressions

- Model Definition
- Different Models for the same vocabulary
- Computability of first-order expressions over graph theory

Svntax

Models

Validity

- Definition
- Reasons for validity
- Prenex Normal Form

Computability in graph theory

Fact

Any first-order expression over the vocabulary Σ_G can be interpreted as the following computational

problem: Given a graph G, does G have property ϕ ?

Theorem

For any first-order expression ϕ over the vocabulary Σ_G , the problem ϕ -graphs is in P.

Proof.

Use induction on the length of the expression.

Fact

Although expressibility as a first-order expression over Σ_G is a sufficient condition for a problem (property) to be in P, it is not a necessary condition. For instance, graph reachability cannot be expressed as a first-order expression, but is in P.

Definition Reasons for validity Prenex Normal Form

Outline

The Syntax of First-Order Logic

- Vocabulary
- Terms and Expressions
- Examples

2 Models of Expressions

- Model Definition
- Different Models for the same vocabulary
- Computability of first-order expressions over graph theory

3 Validity

- Definition
- Reasons for validity
- Prenex Normal Form

< D > < A > < B</p>

Definition Reasons for validity Prenex Normal Form

Valid Expressions

Definition

An expression ϕ is said to be valid, if for all models *M*, which are appropriate to the vocabulary of ϕ , $M \models \phi$. This is denoted by $\models \phi$.

Definition

An expression ϕ is unsatisfiable if and only if $\models \neg \phi$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition Svntax Models Validity

Reasons for validity Prenex Normal Form

Outline

- Vocabulary
- Terms and Expressions
- Examples

- Model Definition
- Different Models for the same vocabulary
- Computability of first-order expressions over graph theory

Validity

- Definition
- Reasons for validity
- Prenex Normal Form

< < >> < <</p>

SyntaxDefinitionModelsReasons for validityValidityPrenex Normal Form

Boolean validity and equality validity

Boolean Validity

If the underlying boolean form of an expression is a tautology, then it is valid. If ϕ and $\phi \rightarrow \psi$ are valid, then ψ is valid.

Equality

Any expression of the form $t_1 = t_1$, or $(t_1 = t'_1, t_2 = t'_2, \dots, t_k = t'_k) \rightarrow f(t_1, t_2, \dots, t_k) = f(t'_1, t'_2, \dots, t'_k)$, or $(t_1 = t'_1, t_2 = t'_2, \dots, t_k = t'_k) \rightarrow R(t_1, t_2, \dots, t_k) \rightarrow R(t'_1, t'_2, \dots, t'_k)$ is valid

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SyntaxDefinitionModelsReasons for validityValidityPrenex Normal Form

Boolean validity and equality validity

Boolean Validity

If the underlying boolean form of an expression is a tautology, then it is valid. If ϕ and $\phi \rightarrow \psi$ are valid, then ψ is valid.

Equality

Any expression of the form $t_1 = t_1$, or $(t_1 = t'_1, t_2 = t'_2, \dots, t_k = t'_k) \rightarrow f(t_1, t_2, \dots, t_k) = f(t'_1, t'_2, \dots, t'_k)$, or $(t_1 = t'_1, t_2 = t'_2, \dots, t_k = t'_k) \rightarrow R(t_1, t_2, \dots, t_k) \rightarrow R(t'_1, t'_2, \dots, t'_k)$ is valid.

Definition Reasons for validity Prenex Normal Form

Validity caused by Quantifiers

Rules

(i) For all ϕ and ψ , $(\forall x)(\phi \rightarrow \psi) \rightarrow ((\forall x)\phi \rightarrow (\forall x)\psi)$ is valid.

(ii) If x does not appear in ϕ , then $\phi \to (\forall x)\phi$ is valid.

(iii) If ϕ is valid, then so is $(\forall x)\phi$.

(iv) If t is substitutable for x, then $(\forall x)\phi
ightarrow \phi[x \leftarrow t]$ is valid.

Definition Reasons for validity Prenex Normal Form

Validity caused by Quantifiers

Rules

(i) For all ϕ and ψ , $(\forall x)(\phi \rightarrow \psi) \rightarrow ((\forall x)\phi \rightarrow (\forall x)\psi)$ is valid.

(ii) If *x* does not appear in ϕ , then $\phi \rightarrow (\forall x)\phi$ is valid.

(iii) If ϕ is valid, then so is $(\forall x)\phi$.

(iv) If t is substitutable for x, then $(\forall x)\phi \rightarrow \phi[x \leftarrow t]$ is valid.

< ロ > < 同 > < 三 > < 三 > -

Definition Reasons for validity Prenex Normal Form

Validity caused by Quantifiers

Rules

- (i) For all ϕ and ψ , $(\forall x)(\phi \rightarrow \psi) \rightarrow ((\forall x)\phi \rightarrow (\forall x)\psi)$ is valid.
- (ii) If *x* does not appear in ϕ , then $\phi \to (\forall x)\phi$ is valid.
- (iii) If ϕ is valid, then so is $(\forall x)\phi$.

(iv) If t is substitutable for x, then $(\forall x)\phi \rightarrow \phi[x \leftarrow t]$ is valid.

< ロ > < 同 > < 三 > < 三 > -

Definition Reasons for validity Prenex Normal Form

Validity caused by Quantifiers

Rules

- (i) For all ϕ and ψ , $(\forall x)(\phi \rightarrow \psi) \rightarrow ((\forall x)\phi \rightarrow (\forall x)\psi)$ is valid.
- (ii) If *x* does not appear in ϕ , then $\phi \rightarrow (\forall x)\phi$ is valid.
- (iii) If ϕ is valid, then so is $(\forall x)\phi$.
- (iv) If *t* is substitutable for *x*, then $(\forall x)\phi \rightarrow \phi[x \leftarrow t]$ is valid.

< 口 > < 同 > < 三 > < 三 > -

SyntaxDefinitionModelsReasons for validityValidityPrenex Normal Form

Outline

The Syntax of First-Order Logic

- Vocabulary
- Terms and Expressions
- Examples

2 Models of Expressions

- Model Definition
- Different Models for the same vocabulary
- Computability of first-order expressions over graph theory

3 Validity

- Definition
- Reasons for validity
- Prenex Normal Form

< < >> < <</p>

Syntax	Definition
Models	Reasons for validity
Validity	Prenex Normal Form

Prenex

A first-order expression ϕ is said to be in Prenex Normal Form, if it consists of a sequence of quantifiers, followed by a quantifier-free Boolean expression.

Theorem

Any first-order expression can be transformed to an equivalent one in Prenex Normal Form.

Proof.

Repeatedly use one or more of the following four propositions to perform the transformation.

 $(\forall x)(\phi \land \psi) \Leftrightarrow (\forall x)\phi \land (\forall x)\psi.$

If x is not free in ψ , then $(\forall x)(\phi \land \psi) \Leftrightarrow (\forall x)\phi \land \psi$. If *x* is not free in ψ , then $(\forall x)(\phi \lor \psi) \Leftrightarrow (\forall x)\phi \lor \psi$

If y does not appear in ϕ , $(\forall x)\phi \Leftrightarrow (\forall y)\phi[x \leftarrow y].$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Syntax	Definition
Models	Reasons for validity
Validity	Prenex Normal Form

Prenex

A first-order expression ϕ is said to be in Prenex Normal Form, if it consists of a sequence of quantifiers, followed by a quantifier-free Boolean expression.

Theorem

Any first-order expression can be transformed to an equivalent one in Prenex Normal Form.

Proof.

Repeatedly use one or more of the following four propositions to perform the transformation.

 $(\forall x)(\phi \land \psi) \Leftrightarrow (\forall x)\phi \land (\forall x)\psi.$

If *x* is not free in ψ , then $(\forall x)(\phi \lor \psi) \Leftrightarrow (\forall x)\phi \lor \psi$.

If x is not free in ψ , then $(\forall x)(\phi \land \psi) \Leftrightarrow (\forall x)\phi \land \psi.$ If y does not appear in ϕ , $(\forall x)\phi \Leftrightarrow (\forall y)\phi[x \leftarrow y].$

< 口 > < 同 > < 三 > < 三 > -

3