Computational Complexity - Homework II

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. Each question is worth 4 points.
- 2. You need to turn in the quiz by 9 am on 3/17/2010.

2 Problems

- 1. Classify each of the following languages (with appropriate justification) as recursive, recursively enumerable (but not recursive), or not recursively enumerable.
 - (a) $L = \{ \langle M \rangle : M \text{ halts on at least one string} \}.$
 - (b) $L = \{ \langle M, M' \rangle : L(M) = L(M') \}.$
- 2. Assume that you are given a formula ϕ in CNF over the variables $X = \{x_1, x_2, \dots, x_n\}$. Let $C_1 = (x_1 \lor P)$ and $C_2 = (\bar{x_1} \lor Q)$ denote two clauses in ϕ , where P and Q are arbitrary disjuncts over X. Let $\phi' = \phi \land (P \lor Q)$. The above process is called a resolution step on variable x_1 .
 - (i) Show that resolution steps are solution preserving.
 - (ii) We can continue in this fashion resolving on x_1 and other variables, deriving a new formula at each time till no new clauses can be added. Call the final formula ϕ^* . Show that ϕ is satisfiable if and only if ϕ^* does not contain the empty clause (\Box). Note that \Box is the resolvent of the clauses (x_i), ($\bar{x_i}$), for any i = 1, 2, ..., n.
- 3. Let Σ_{EG} denote an enhanced vocabulary for graph theory. Σ_{EG} has one function symbol (+). It has three relational symbols, viz., the binary relation =, a binary relation <, and a ternary relation, called G_w. Typical expressions in the new vocabulary are: G_w(x, y, 5), G_w(y, z, -5), (∀z)(∃y)G_w(z, y, ∞) and so on. Write a sentence in Σ_{EG} which describes graphs containing negative cost cycles.
- 4. Let P_1 denote the statement: If Δ is consistent, then Δ has a model. Let P_2 denote the statement: If $\Delta \models \phi$, then $\Delta \vdash \phi$. Argue that P_1 and P_2 are equivalent.
- 5. Show that for any first-order expression ϕ over the vocabulary Σ_G , the property ϕ -GRAPHS can be tested in logarithmic space.