Asymptotics

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

13 January, 2011

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers. In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers. In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

Order of magnitude of functions

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers. In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

(i) Constants do not matter in rate of growth.

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers. In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

- (i) Constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers. In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

- (i) Constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{\geq 0} \to \Re_{\geq 0}.$

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers. In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

- (i) Constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{\geq 0} \to \Re_{\geq 0}$.

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers. In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

- (i) Constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{\geq 0} \to \Re_{\geq 0}$.

Example

(i) Which function grows faster: $100x^2$ or $\frac{1}{10^6}x^3$?

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers. In case of functions, we are interested in *rate of growth*, i.e., does function f grow at a faster rate than function g?

Note

- (i) Constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{\geq 0} \to \Re_{\geq 0}$.

- (i) Which function grows faster: $100x^2$ or $\frac{1}{10^6}x^3$?
- (ii) Which function grows faster: $x^2 10$ or x + 10?

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then f = O(g), if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then f = O(g), if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then $f = \Omega(g)$, if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then f = O(g), if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then $f = \Omega(g)$, if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then f = o(g), if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) < c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then f = O(g), if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then $f = \Omega(g)$, if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then f = o(g), if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) < c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then $f = \Theta(g)$, if f = O(g) and g = O(f).

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then f = O(g), if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then $f = \Omega(g)$, if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then f = o(g), if there exist constants *c* and n_0 such that for all $n \ge n_0$, $f(x) < c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then $f = \Theta(g)$, if f = O(g) and g = O(f).

Order of Magnitude (contd.)

Order of Magnitude (contd.)

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals. Then $f = \omega(g)$, if g = o(f).

(i) Let
$$f(x) = 2x^2 - 2$$
 and $g(x) = \frac{1}{100}x^2 - 100$.

(i) Let
$$f(x) = 2x^2 - 2$$
 and $g(x) = \frac{1}{100}x^2 - 100$. $f = \Theta(g)$.

(i) Let
$$f(x) = 2x^2 - 2$$
 and $g(x) = \frac{1}{100}x^2 - 100$. $f = \Theta(g)$.

(ii) Let
$$f(x) = 2x^2 - 2$$
 and $g(x) = \frac{1}{100}x - 100$.

(i) Let
$$f(x) = 2x^2 - 2$$
 and $g(x) = \frac{1}{100}x^2 - 100$. $f = \Theta(g)$.

(ii) Let
$$f(x) = 2x^2 - 2$$
 and $g(x) = \frac{1}{100}x - 100$. $f = \Omega(g)$.

- (i) Let $f(x) = 2x^2 2$ and $g(x) = \frac{1}{100}x^2 100$. $f = \Theta(g)$.
- (ii) Let $f(x) = 2x^2 2$ and $g(x) = \frac{1}{100}x 100$. $f = \Omega(g)$.
- (iii) Let $f(x) = 2x^2 2$ and $g(x) = \frac{1}{100}x 100$.

(i) Let
$$f(x) = 2x^2 - 2$$
 and $g(x) = \frac{1}{100}x^2 - 100$. $f = \Theta(g)$.

(ii) Let
$$f(x) = 2x^2 - 2$$
 and $g(x) = \frac{1}{100}x - 100$. $f = \Omega(g)$.

(iii) Let
$$f(x) = 2x^2 - 2$$
 and $g(x) = \frac{1}{100}x - 100$. $g = O(f)$.

The limit test

Let *f* and *g* denote two functions mapping non-negative reals to non-negative reals.

The limit test

Let *f* and *g* denote two functions mapping non-negative reals to non-negative reals. Let $I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$.

The limit test

Let *f* and *g* denote two functions mapping non-negative reals to non-negative reals. Let $I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$. Then

The limit test

Let *f* and *g* denote two functions mapping non-negative reals to non-negative reals. Let $I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$. Then

(i) If *I* is a positive constant, then $f = \Theta(g)$.

The limit test

Let *f* and *g* denote two functions mapping non-negative reals to non-negative reals. Let $I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$. Then

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0, then f = o(g).

The limit test

Let *f* and *g* denote two functions mapping non-negative reals to non-negative reals. Let $I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$. Then

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0, then f = o(g).
- (iii) If $I = \infty$, then g = o(f).

The limit test

Let *f* and *g* denote two functions mapping non-negative reals to non-negative reals. Let $I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$. Then

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0, then f = o(g).
- (iii) If $I = \infty$, then g = o(f).

Note

If
$$\lim_{x\to\infty} f(x) = \infty$$
 and if $\lim_{x\to\infty} g(x) = \infty$, then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

The limit test

Let *f* and *g* denote two functions mapping non-negative reals to non-negative reals. Let $I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$. Then

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0, then f = o(g).
- (iii) If $I = \infty$, then g = o(f).

Note

If
$$\lim_{x\to\infty} f(x) = \infty$$
 and if $\lim_{x\to\infty} g(x) = \infty$, then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

The above rule is called L'Hospital's rule.

Examples

(i) Show that $x = o(x^2)$.

- (i) Show that $x = o(x^2)$.
- (ii) Show that $x = o(x \log x)$.

- (i) Show that $x = o(x^2)$.
- (ii) Show that $x = o(x \log x)$.
- (iii) Show that $\log x = o(x)$.