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Note

Can only be applied to a well-ordered domain, where the concept of “next” is
unambiguous, e.g., positive integers.

Principle

Assume that the domain is the set of positive integers.

1 P(1) is true.
2 (∀k)[P(k) → P(k + 1)]

P(n) is true, for all positive
integers n.

Note

(i) Showing that P(1) is true is called the basis step.

(ii) Assuming that P(k) is true, in order to show that P(k + 1) is true is called the
inductive hypothesis.
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Since, LHS=RHS, we have shown that P(k) → P(k + 1).

Applying the first principle of mathematical induction, we conclude that the conjecture is true.
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(ii) Prove the basis (usually P(1) and usually easy.)

(iii) Assume P(k).

(iv) Show P(k + 1). (The hard part. Use mathematical manipulation.)
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Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
i2 =

k · (k + 1) · (2k + 1)

6
.

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
i2 =

(k+1)·(k+2)·(2·(k+1)+1)
6 .

LHS =

k+1
X

i=1

i2

= 12
+ 22

+ 32
+ . . . + k2

+ (k + 1)
2

= (12
+ 22

+ 32
+ . . . + k2

) + (k + 1)
2

=
k · (k + 1) · (2k + 1)

6
+ (k + 1)

2
, using the inductive hypothesis

=
k + 1

6
(k · (2k + 1) + 6 · (k + 1))

=
k + 1

6
(2k2

+ k + 6k + 6)
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Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
i2 =

k · (k + 1) · (2k + 1)

6
.

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
i2 =

(k+1)·(k+2)·(2·(k+1)+1)
6 .

LHS =

k+1
X

i=1

i2

= 12
+ 22

+ 32
+ . . . + k2

+ (k + 1)
2

= (12
+ 22

+ 32
+ . . . + k2

) + (k + 1)
2

=
k · (k + 1) · (2k + 1)

6
+ (k + 1)

2
, using the inductive hypothesis

=
k + 1

6
(k · (2k + 1) + 6 · (k + 1))

=
k + 1

6
(2k2

+ k + 6k + 6)

=
k + 1

6
(2k2

+ 7k + 6)
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Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
i2 =

k · (k + 1) · (2k + 1)

6
.

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
i2 =

(k+1)·(k+2)·(2·(k+1)+1)
6 .

LHS =

k+1
X

i=1

i2

= 12
+ 22

+ 32
+ . . . + k2

+ (k + 1)
2

= (12
+ 22

+ 32
+ . . . + k2

) + (k + 1)
2

=
k · (k + 1) · (2k + 1)

6
+ (k + 1)

2
, using the inductive hypothesis

=
k + 1

6
(k · (2k + 1) + 6 · (k + 1))

=
k + 1

6
(2k2

+ k + 6k + 6)

=
k + 1

6
(2k2

+ 7k + 6)
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Induction proof (contd.)

Proof.

=
k + 1

6
(2k2 + 4k + 3k + 6)
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Induction proof (contd.)

Proof.

=
k + 1

6
(2k2 + 4k + 3k + 6)

=
k + 1

6
(2k · (k + 2) + 3 · (k + 2))
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Induction proof (contd.)

Proof.

=
k + 1

6
(2k2 + 4k + 3k + 6)

=
k + 1

6
(2k · (k + 2) + 3 · (k + 2))

=
k + 1

6
(2k + 3) · (k + 2))
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Induction proof (contd.)

Proof.

=
k + 1

6
(2k2 + 4k + 3k + 6)

=
k + 1

6
(2k · (k + 2) + 3 · (k + 2))

=
k + 1

6
(2k + 3) · (k + 2))

=
(k + 1) · (k + 2) · (2 · (k + 1) + 1)

6
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Induction proof (contd.)

Proof.

=
k + 1

6
(2k2 + 4k + 3k + 6)

=
k + 1

6
(2k · (k + 2) + 3 · (k + 2))

=
k + 1

6
(2k + 3) · (k + 2))

=
(k + 1) · (k + 2) · (2 · (k + 1) + 1)

6

= RHS.

Subramani Proofs and Recursion



First Principle of Induction
Second Principle of Induction

Induction proof (contd.)

Proof.

=
k + 1

6
(2k2 + 4k + 3k + 6)

=
k + 1

6
(2k · (k + 2) + 3 · (k + 2))

=
k + 1

6
(2k + 3) · (k + 2))

=
(k + 1) · (k + 2) · (2 · (k + 1) + 1)

6

= RHS.

Since, LHS=RHS, we have shown that P(k) → P(k + 1).
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Induction proof (contd.)

Proof.

=
k + 1

6
(2k2 + 4k + 3k + 6)

=
k + 1

6
(2k · (k + 2) + 3 · (k + 2))

=
k + 1

6
(2k + 3) · (k + 2))

=
(k + 1) · (k + 2) · (2 · (k + 1) + 1)

6

= RHS.

Since, LHS=RHS, we have shown that P(k) → P(k + 1).

Applying the first principle of mathematical induction, we conclude that the conjecture is true.
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Induction Example

Example

Show that the sum of the first n odd integers is n2, i.e., show that
Pn

i=1(2i − 1) = n2.
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Induction Example

Example

Show that the sum of the first n odd integers is n2, i.e., show that
Pn

i=1(2i − 1) = n2.

Proof.

BASIS (P(1)):

LHS =

1
X

i=1

(2i − 1)
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Induction Example

Example

Show that the sum of the first n odd integers is n2, i.e., show that
Pn

i=1(2i − 1) = n2.

Proof.

BASIS (P(1)):

LHS =

1
X

i=1

(2i − 1)

= 2 · 1 − 1

Subramani Proofs and Recursion



First Principle of Induction
Second Principle of Induction

Induction Example

Example

Show that the sum of the first n odd integers is n2, i.e., show that
Pn

i=1(2i − 1) = n2.

Proof.

BASIS (P(1)):

LHS =

1
X

i=1

(2i − 1)

= 2 · 1 − 1

= 1
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Induction Example

Example

Show that the sum of the first n odd integers is n2, i.e., show that
Pn

i=1(2i − 1) = n2.

Proof.

BASIS (P(1)):

LHS =

1
X

i=1

(2i − 1)

= 2 · 1 − 1

= 1

RHS = 12
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Induction Example

Example

Show that the sum of the first n odd integers is n2, i.e., show that
Pn

i=1(2i − 1) = n2.

Proof.

BASIS (P(1)):

LHS =

1
X

i=1

(2i − 1)

= 2 · 1 − 1

= 1

RHS = 12

= 1
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Induction Example

Example

Show that the sum of the first n odd integers is n2, i.e., show that
Pn

i=1(2i − 1) = n2.

Proof.

BASIS (P(1)):

LHS =

1
X

i=1

(2i − 1)

= 2 · 1 − 1

= 1

RHS = 12

= 1

Thus, LHS = RHS and P(1) is true.
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

Subramani Proofs and Recursion



First Principle of Induction
Second Principle of Induction

Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

We need to show that P(k + 1) is true,
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
(2i − 1) = (k + 1)2.
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
(2i − 1) = (k + 1)2.

LHS =

k+1
X

i=1

(2i − 1)
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
(2i − 1) = (k + 1)2.

LHS =

k+1
X

i=1

(2i − 1)

= 1 + 3 + 5 + . . . (2k − 1) + (2(k + 1) − 1)
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
(2i − 1) = (k + 1)2.

LHS =

k+1
X

i=1

(2i − 1)

= 1 + 3 + 5 + . . . (2k − 1) + (2(k + 1) − 1)

= (1 + 3 + 5 + . . . (2k − 1)) + (2k + 1)
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
(2i − 1) = (k + 1)2.

LHS =

k+1
X

i=1

(2i − 1)

= 1 + 3 + 5 + . . . (2k − 1) + (2(k + 1) − 1)

= (1 + 3 + 5 + . . . (2k − 1)) + (2k + 1)

= k2
+ (2k + 1), using the inductive hypothesis
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
(2i − 1) = (k + 1)2.

LHS =

k+1
X

i=1

(2i − 1)

= 1 + 3 + 5 + . . . (2k − 1) + (2(k + 1) − 1)

= (1 + 3 + 5 + . . . (2k − 1)) + (2k + 1)

= k2
+ (2k + 1), using the inductive hypothesis

= (k + 1)
2
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
(2i − 1) = (k + 1)2.

LHS =

k+1
X

i=1

(2i − 1)

= 1 + 3 + 5 + . . . (2k − 1) + (2(k + 1) − 1)

= (1 + 3 + 5 + . . . (2k − 1)) + (2k + 1)

= k2
+ (2k + 1), using the inductive hypothesis

= (k + 1)
2

= RHS
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
(2i − 1) = (k + 1)2.

LHS =

k+1
X

i=1

(2i − 1)

= 1 + 3 + 5 + . . . (2k − 1) + (2(k + 1) − 1)

= (1 + 3 + 5 + . . . (2k − 1)) + (2k + 1)

= k2
+ (2k + 1), using the inductive hypothesis

= (k + 1)
2

= RHS
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
(2i − 1) = (k + 1)2.

LHS =

k+1
X

i=1

(2i − 1)

= 1 + 3 + 5 + . . . (2k − 1) + (2(k + 1) − 1)

= (1 + 3 + 5 + . . . (2k − 1)) + (2k + 1)

= k2
+ (2k + 1), using the inductive hypothesis

= (k + 1)
2

= RHS

Since LHS = RHS, we have shown that P(k) → P(k + 1).
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

k
X

i=1
(2i − 1) = k2

We need to show that P(k + 1) is true, i.e., we need to show that
Pk+1

i=1
(2i − 1) = (k + 1)2.

LHS =

k+1
X

i=1

(2i − 1)

= 1 + 3 + 5 + . . . (2k − 1) + (2(k + 1) − 1)

= (1 + 3 + 5 + . . . (2k − 1)) + (2k + 1)

= k2
+ (2k + 1), using the inductive hypothesis

= (k + 1)
2

= RHS

Since LHS = RHS, we have shown that P(k) → P(k + 1). Applying the first principle of mathematical induction, we conclude that the

conjecture is true.
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One Final Example

Example

Show that 7n − 5n is always an even number for n ≥ 0, i.e., show that 2 | (7n − 5n),
∀n ≥ 0.
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One Final Example

Example

Show that 7n − 5n is always an even number for n ≥ 0, i.e., show that 2 | (7n − 5n),
∀n ≥ 0.

Proof.

BASIS (P(0)):

LHS = 70
− 50
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One Final Example

Example

Show that 7n − 5n is always an even number for n ≥ 0, i.e., show that 2 | (7n − 5n),
∀n ≥ 0.

Proof.

BASIS (P(0)):

LHS = 70
− 50

= 1 − 1
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One Final Example

Example

Show that 7n − 5n is always an even number for n ≥ 0, i.e., show that 2 | (7n − 5n),
∀n ≥ 0.

Proof.

BASIS (P(0)):

LHS = 70
− 50

= 1 − 1

= 0
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Second Principle of Induction

One Final Example

Example

Show that 7n − 5n is always an even number for n ≥ 0, i.e., show that 2 | (7n − 5n),
∀n ≥ 0.

Proof.

BASIS (P(0)):

LHS = 70
− 50

= 1 − 1

= 0

Since the LHS is even, we have proven the basis P(0).
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k .
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k . It follows that (7k

− 5k ) = 2m, for some integer

m.
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k . It follows that (7k

− 5k ) = 2m, for some integer

m. We need to show that P(k + 1) is true, i.e., (7k+1
− 5k+1) is divisible by 2.
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k . It follows that (7k

− 5k ) = 2m, for some integer

m. We need to show that P(k + 1) is true, i.e., (7k+1
− 5k+1) is divisible by 2. Observe that,

7k+1
− 5k+1

= 7 · 7k
− 5 · 5k
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k . It follows that (7k

− 5k ) = 2m, for some integer

m. We need to show that P(k + 1) is true, i.e., (7k+1
− 5k+1) is divisible by 2. Observe that,

7k+1
− 5k+1

= 7 · 7k
− 5 · 5k

= 7 · (2m + 5k
) − 5 · 5k

, using the inductive hypothesis
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k . It follows that (7k

− 5k ) = 2m, for some integer

m. We need to show that P(k + 1) is true, i.e., (7k+1
− 5k+1) is divisible by 2. Observe that,

7k+1
− 5k+1

= 7 · 7k
− 5 · 5k

= 7 · (2m + 5k
) − 5 · 5k

, using the inductive hypothesis

= 14m + 7 · 5k
− 5 · 5k
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k . It follows that (7k

− 5k ) = 2m, for some integer

m. We need to show that P(k + 1) is true, i.e., (7k+1
− 5k+1) is divisible by 2. Observe that,

7k+1
− 5k+1

= 7 · 7k
− 5 · 5k

= 7 · (2m + 5k
) − 5 · 5k

, using the inductive hypothesis

= 14m + 7 · 5k
− 5 · 5k

= 14m + 5k
· (7 − 5)

Subramani Proofs and Recursion



First Principle of Induction
Second Principle of Induction

Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k . It follows that (7k

− 5k ) = 2m, for some integer

m. We need to show that P(k + 1) is true, i.e., (7k+1
− 5k+1) is divisible by 2. Observe that,

7k+1
− 5k+1

= 7 · 7k
− 5 · 5k

= 7 · (2m + 5k
) − 5 · 5k

, using the inductive hypothesis

= 14m + 7 · 5k
− 5 · 5k

= 14m + 5k
· (7 − 5)

= 14m + 2 · 5k
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k . It follows that (7k

− 5k ) = 2m, for some integer

m. We need to show that P(k + 1) is true, i.e., (7k+1
− 5k+1) is divisible by 2. Observe that,

7k+1
− 5k+1

= 7 · 7k
− 5 · 5k

= 7 · (2m + 5k
) − 5 · 5k

, using the inductive hypothesis

= 14m + 7 · 5k
− 5 · 5k

= 14m + 5k
· (7 − 5)

= 14m + 2 · 5k

= 2 · (7m + 5k
)
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k . It follows that (7k

− 5k ) = 2m, for some integer

m. We need to show that P(k + 1) is true, i.e., (7k+1
− 5k+1) is divisible by 2. Observe that,

7k+1
− 5k+1

= 7 · 7k
− 5 · 5k

= 7 · (2m + 5k
) − 5 · 5k

, using the inductive hypothesis

= 14m + 7 · 5k
− 5 · 5k

= 14m + 5k
· (7 − 5)

= 14m + 2 · 5k

= 2 · (7m + 5k
)

= some even number!
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k . It follows that (7k

− 5k ) = 2m, for some integer

m. We need to show that P(k + 1) is true, i.e., (7k+1
− 5k+1) is divisible by 2. Observe that,

7k+1
− 5k+1

= 7 · 7k
− 5 · 5k

= 7 · (2m + 5k
) − 5 · 5k

, using the inductive hypothesis

= 14m + 7 · 5k
− 5 · 5k

= 14m + 5k
· (7 − 5)

= 14m + 2 · 5k

= 2 · (7m + 5k
)

= some even number!

We have thus shown that P(k) → P(k + 1).
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Proof (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that (7k
− 5k ) is divisible by 2 for some k . It follows that (7k

− 5k ) = 2m, for some integer

m. We need to show that P(k + 1) is true, i.e., (7k+1
− 5k+1) is divisible by 2. Observe that,

7k+1
− 5k+1

= 7 · 7k
− 5 · 5k

= 7 · (2m + 5k
) − 5 · 5k

, using the inductive hypothesis

= 14m + 7 · 5k
− 5 · 5k

= 14m + 5k
· (7 − 5)

= 14m + 2 · 5k

= 2 · (7m + 5k
)

= some even number!

We have thus shown that P(k) → P(k + 1). Applying the first principle of mathematical induction, we conclude that the conjecture is true.
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Second Principle of Induction

Note

Also called Strong Induction. Is necessary, when the first principle does not help us.
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Also called Strong Induction. Is necessary, when the first principle does not help us.

Principle

Assume that the domain is the set of integers.
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Note

Also called Strong Induction. Is necessary, when the first principle does not help us.

Principle

Assume that the domain is the set of integers.

(i) P(1) is true.
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Second Principle of Induction

Note

Also called Strong Induction. Is necessary, when the first principle does not help us.

Principle

Assume that the domain is the set of integers.

(i) P(1) is true.

(ii) (∀r)[P(r) true for all r ,
1 ≤ r ≤ k → P(k + 1)]
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Second Principle of Induction

Note

Also called Strong Induction. Is necessary, when the first principle does not help us.

Principle

Assume that the domain is the set of integers.

(i) P(1) is true.

(ii) (∀r)[P(r) true for all r ,
1 ≤ r ≤ k → P(k + 1)]

P(n) is true for all n.
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Show that every number greater than or equal to 8 can be expressed in the form
5a + 3b, for suitably chosen a and b.
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Example

Show that every number greater than or equal to 8 can be expressed in the form
5a + 3b, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10.
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Example

Show that every number greater than or equal to 8 can be expressed in the form
5a + 3b, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all
r , 8 ≤ r ≤ k .
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Show that every number greater than or equal to 8 can be expressed in the form
5a + 3b, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all
r , 8 ≤ r ≤ k . Consider the integer k + 1.
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Example

Show that every number greater than or equal to 8 can be expressed in the form
5a + 3b, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all
r , 8 ≤ r ≤ k . Consider the integer k + 1. Without loss of generality, we assume that
(k + 1) ≥ 11.
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Example

Show that every number greater than or equal to 8 can be expressed in the form
5a + 3b, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all
r , 8 ≤ r ≤ k . Consider the integer k + 1. Without loss of generality, we assume that
(k + 1) ≥ 11. Observe that (k + 1)− 3 = k − 2 is at least 8 and less than k .
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Example

Show that every number greater than or equal to 8 can be expressed in the form
5a + 3b, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all
r , 8 ≤ r ≤ k . Consider the integer k + 1. Without loss of generality, we assume that
(k + 1) ≥ 11. Observe that (k + 1)− 3 = k − 2 is at least 8 and less than k . As per the
inductive hypothesis, k − 2 can be expressed in the form 3a + 5b, for suitably chosen a
and b.
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Example

Show that every number greater than or equal to 8 can be expressed in the form
5a + 3b, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all
r , 8 ≤ r ≤ k . Consider the integer k + 1. Without loss of generality, we assume that
(k + 1) ≥ 11. Observe that (k + 1)− 3 = k − 2 is at least 8 and less than k . As per the
inductive hypothesis, k − 2 can be expressed in the form 3a + 5b, for suitably chosen a
and b. It follows that (k + 1) = 3(a + 1) + 5b, can also be so expressed.
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Example

Show that every number greater than or equal to 8 can be expressed in the form
5a + 3b, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all
r , 8 ≤ r ≤ k . Consider the integer k + 1. Without loss of generality, we assume that
(k + 1) ≥ 11. Observe that (k + 1)− 3 = k − 2 is at least 8 and less than k . As per the
inductive hypothesis, k − 2 can be expressed in the form 3a + 5b, for suitably chosen a
and b. It follows that (k + 1) = 3(a + 1) + 5b, can also be so expressed. Applying the
second principle of mathematical induction, we conclude that the conjecture is true.
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