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Main points

Random experiment, sample spaces, events, combining events, conditional probability,
independence.
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In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g.,
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7.
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or . . . .
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or . . . .

Example

Let X denote the random variable that is defined as the sum of two fair dice.
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or . . . .

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are
the values that X can take?
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or . . . .

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are
the values that X can take?

P{X = 1} =
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or . . . .

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are
the values that X can take?

P{X = 1} = 0
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or . . . .

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are
the values that X can take?

P{X = 1} = 0

P{X = 2} =
1

36
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or . . . .

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are
the values that X can take?

P{X = 1} = 0

P{X = 2} =
1

36
...
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Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual
outcome, but in some function of the outcome, e.g., in the experiment of tossing two
dice, we could be interested in knowing whether or not the the sum of the upturned
faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or . . . .

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are
the values that X can take?

P{X = 1} = 0

P{X = 2} =
1

36
...

P{X = 12} =
1

36
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Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads.
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Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?
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Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
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Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1

4
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Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1

4

P{Y = 1} =
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Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1

4

P{Y = 1} =
1

2
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Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1

4

P{Y = 1} =
1

2

P{Y = 2} =
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Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1

4

P{Y = 1} =
1

2

P{Y = 2} =
1

4
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Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1

4

P{Y = 1} =
1

2

P{Y = 2} =
1

4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete.

Subramani Probability Theory



Recap
Random Variables

Expectation
Expectation of a function of a random variable

Linearity of Expectation
Variance and Standard Deviation

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1

4

P{Y = 1} =
1

2

P{Y = 2} =
1

4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete. For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.
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Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that
counts the number of heads. What values can Y take?

P{Y = 0} =
1

4

P{Y = 1} =
1

2

P{Y = 2} =
1

4

Definition

A random variable that can take on only a countable number of possible values is said
to be discrete. For a discrete random variable X , the probability mass function (pmf)
p(a) is defined as:

p(a) = P{X = a}.

Some books refer to the probability mass function as the probability density function
(pdf).
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Conditional Random Variables

Multiple random variables

More than one random variable can be defined on the sample space.
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Conditional Random Variables

Multiple random variables

More than one random variable can be defined on the sample space. For instance,
consider the experiment of rolling two dice.
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Conditional Random Variables

Multiple random variables

More than one random variable can be defined on the sample space. For instance,
consider the experiment of rolling two dice. We could define a random variable X that
is the sum of the two upturned faces and another random variable Y that is the product
of the two upturned faces.
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Conditional Random Variables

Multiple random variables

More than one random variable can be defined on the sample space. For instance,
consider the experiment of rolling two dice. We could define a random variable X that
is the sum of the two upturned faces and another random variable Y that is the product
of the two upturned faces.
Let X and Y be two random variables defined on a sample space S.
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Conditional Random Variables

Multiple random variables

More than one random variable can be defined on the sample space. For instance,
consider the experiment of rolling two dice. We could define a random variable X that
is the sum of the two upturned faces and another random variable Y that is the product
of the two upturned faces.
Let X and Y be two random variables defined on a sample space S. The function
P{X = x andY = y} is defined as the joint probability mass function of X and Y .
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Conditional Random Variables

Multiple random variables

More than one random variable can be defined on the sample space. For instance,
consider the experiment of rolling two dice. We could define a random variable X that
is the sum of the two upturned faces and another random variable Y that is the product
of the two upturned faces.
Let X and Y be two random variables defined on a sample space S. The function
P{X = x andY = y} is defined as the joint probability mass function of X and Y .
For a fixed value y ,

P{Y = y} =
X

x

P{X = x andY = y}
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Conditional Random Variables

Multiple random variables

More than one random variable can be defined on the sample space. For instance,
consider the experiment of rolling two dice. We could define a random variable X that
is the sum of the two upturned faces and another random variable Y that is the product
of the two upturned faces.
Let X and Y be two random variables defined on a sample space S. The function
P{X = x andY = y} is defined as the joint probability mass function of X and Y .
For a fixed value y ,

P{Y = y} =
X

x

P{X = x andY = y}

Likewise, for a fixed value x ,

P{X = x} =
X

y

P{X = x andY = y}
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Conditional Random Variables

Multiple random variables

More than one random variable can be defined on the sample space. For instance,
consider the experiment of rolling two dice. We could define a random variable X that
is the sum of the two upturned faces and another random variable Y that is the product
of the two upturned faces.
Let X and Y be two random variables defined on a sample space S. The function
P{X = x andY = y} is defined as the joint probability mass function of X and Y .
For a fixed value y ,

P{Y = y} =
X

x

P{X = x andY = y}

Likewise, for a fixed value x ,

P{X = x} =
X

y

P{X = x andY = y}

Finally,

P{X = x | Y = y} =
P{X = x andY = y}

P{Y = y}

Subramani Probability Theory
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Independence of Random Variables

Independent random variables

Two random variables X and Y are said to be independent, if

P{X = x andY = y} = P{X = x} · P{Y = y}
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The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes;
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The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a “success”
and the other a “failure”.
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The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a “success”
and the other a “failure”. If we let the random variable X assume the value 1, if the
experiment was a success and 0, if the experiment was a failure, then X is said to be a
Bernoulli random variable.

Subramani Probability Theory



Recap
Random Variables

Expectation
Expectation of a function of a random variable

Linearity of Expectation
Variance and Standard Deviation

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a “success”
and the other a “failure”. If we let the random variable X assume the value 1, if the
experiment was a success and 0, if the experiment was a failure, then X is said to be a
Bernoulli random variable. The probability mass function of X is given by:

p(1) = P{X = 1} = p
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The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a “success”
and the other a “failure”. If we let the random variable X assume the value 1, if the
experiment was a success and 0, if the experiment was a failure, then X is said to be a
Bernoulli random variable. The probability mass function of X is given by:

p(1) = P{X = 1} = p

p(0) = P{X = 0} = 1 − p

where 0 ≤ p ≤ 1 is the probability that the experiment results in a success.
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The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the
probability of success in each trial being p. If X is the random variable that counts the
number of successes in the n trials, then X is said to be a Binomial Random Variable.
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The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the
probability of success in each trial being p. If X is the random variable that counts the
number of successes in the n trials, then X is said to be a Binomial Random Variable.
The probability mass function of X is given by:
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The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the
probability of success in each trial being p. If X is the random variable that counts the
number of successes in the n trials, then X is said to be a Binomial Random Variable.
The probability mass function of X is given by:

p(i) = P{X = i} =
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The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the
probability of success in each trial being p. If X is the random variable that counts the
number of successes in the n trials, then X is said to be a Binomial Random Variable.
The probability mass function of X is given by:

p(i) = P{X = i} = C(n, i) · pi · (1 − p)n−i
, i = 0, 1, 2, . . . n
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The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the
probability of success in each trial being p. If X is the random variable that counts the
number of successes in the n trials, then X is said to be a Binomial Random Variable.
The probability mass function of X is given by:

p(i) = P{X = i} = C(n, i) · pi · (1 − p)n−i
, i = 0, 1, 2, . . . n

Example

Consider the experiment of tossing four fair coins.
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The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the
probability of success in each trial being p. If X is the random variable that counts the
number of successes in the n trials, then X is said to be a Binomial Random Variable.
The probability mass function of X is given by:

p(i) = P{X = i} = C(n, i) · pi · (1 − p)n−i
, i = 0, 1, 2, . . . n

Example

Consider the experiment of tossing four fair coins. What is the probability that you will
get two heads and two tails?
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The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the
probability of success in each trial being p. If X is the random variable that counts the
number of successes in the n trials, then X is said to be a Binomial Random Variable.
The probability mass function of X is given by:

p(i) = P{X = i} = C(n, i) · pi · (1 − p)n−i
, i = 0, 1, 2, . . . n

Example

Consider the experiment of tossing four fair coins. What is the probability that you will
get two heads and two tails?
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Example (contd.)

Solution

Let the event of heads turning up denote a “success.”

Subramani Probability Theory



Recap
Random Variables

Expectation
Expectation of a function of a random variable

Linearity of Expectation
Variance and Standard Deviation

Example (contd.)

Solution

Let the event of heads turning up denote a “success.” Accordingly, we are interested in
the probability of getting exactly two successes in four Bernoulli trials.
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Example (contd.)

Solution

Let the event of heads turning up denote a “success.” Accordingly, we are interested in
the probability of getting exactly two successes in four Bernoulli trials. As discussed
above,

p(2) =
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Example (contd.)

Solution

Let the event of heads turning up denote a “success.” Accordingly, we are interested in
the probability of getting exactly two successes in four Bernoulli trials. As discussed
above,

p(2) = C(4, 2) · (
1

2
)2
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Example (contd.)

Solution

Let the event of heads turning up denote a “success.” Accordingly, we are interested in
the probability of getting exactly two successes in four Bernoulli trials. As discussed
above,

p(2) = C(4, 2) · (
1

2
)2 · (1 −

1

2
)2

Subramani Probability Theory



Recap
Random Variables

Expectation
Expectation of a function of a random variable

Linearity of Expectation
Variance and Standard Deviation

Example (contd.)

Solution

Let the event of heads turning up denote a “success.” Accordingly, we are interested in
the probability of getting exactly two successes in four Bernoulli trials. As discussed
above,

p(2) = C(4, 2) · (
1

2
)2 · (1 −

1

2
)2

=
3

8
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The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are
performed until a success occurs.
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The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are
performed until a success occurs. If X is the random variable that counts the number of
trials until the first success, then X is said to be a geometric random variable.
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The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are
performed until a success occurs. If X is the random variable that counts the number of
trials until the first success, then X is said to be a geometric random variable. The
probability mass function of X is given by:

p(i) = P{X = i} =

Subramani Probability Theory
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The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are
performed until a success occurs. If X is the random variable that counts the number of
trials until the first success, then X is said to be a geometric random variable. The
probability mass function of X is given by:

p(i) = P{X = i} = (1 − p)i−1 · p, i = 1, 2, . . .
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Expectation
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Expectation

Definition

Let X denote a discrete random variable with probability mass function p(x).
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Expectation

Definition

Let X denote a discrete random variable with probability mass function p(x). The
expected value of X , denoted by E[X ] is defined by:

E[X ] =
X

x

x · p(x)
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Expectation

Definition

Let X denote a discrete random variable with probability mass function p(x). The
expected value of X , denoted by E[X ] is defined by:

E[X ] =
X

x

x · p(x)

Note

E[X ] is the weighted average of the possible values that X can assume, each value
being weighted by the probability that X assumes that value.
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Expectation

Definition

Let X denote a discrete random variable with probability mass function p(x). The
expected value of X , denoted by E[X ] is defined by:

E[X ] =
X

x

x · p(x)

Note

E[X ] is the weighted average of the possible values that X can assume, each value
being weighted by the probability that X assumes that value.

Example

Let X denote the random variable that records the outcome of tossing a fair die.
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Expectation

Definition

Let X denote a discrete random variable with probability mass function p(x). The
expected value of X , denoted by E[X ] is defined by:

E[X ] =
X

x

x · p(x)

Note

E[X ] is the weighted average of the possible values that X can assume, each value
being weighted by the probability that X assumes that value.

Example

Let X denote the random variable that records the outcome of tossing a fair die. What
is E[X ]?
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Example

Let X denote a Bernoulli Random Variable with p denoting the probability of success.
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Expectation of a Bernoulli Random Variable

Example

Let X denote a Bernoulli Random Variable with p denoting the probability of success.
What is E[X ]?
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Expectation of a Bernoulli Random Variable

Example

Let X denote a Bernoulli Random Variable with p denoting the probability of success.
What is E[X ]?
Solution:

E[X ] = 1 · p + 0 · (1 − p)
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Expectation of a Bernoulli Random Variable

Example

Let X denote a Bernoulli Random Variable with p denoting the probability of success.
What is E[X ]?
Solution:

E[X ] = 1 · p + 0 · (1 − p)

= p

�

Subramani Probability Theory



Recap
Random Variables

Expectation
Expectation of a function of a random variable

Linearity of Expectation
Variance and Standard Deviation

Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p.
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Example

Let X denote a Binomial Random Variable with parameters n and p. What is E [X ]?
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Example

Let X denote a Binomial Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

n
X

i=0

i · p(i), by definition
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Example

Let X denote a Binomial Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

n
X

i=0

i · p(i), by definition

=

n
X

i=0

i · C(n, i) · pi
· (1 − p)

n−i
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Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

n
X

i=0

i · p(i), by definition

=

n
X

i=0

i · C(n, i) · pi
· (1 − p)

n−i

=

n
X

i=0

i ·
n!

i!(n − i)!
· pi

· (1 − p)
n−i
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Example

Let X denote a Binomial Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

n
X

i=0

i · p(i), by definition

=

n
X

i=0

i · C(n, i) · pi
· (1 − p)

n−i

=

n
X

i=0

i ·
n!

i!(n − i)!
· pi

· (1 − p)
n−i

=

n
X

i=1

i ·
n!

i!(n − i)!
· pi

· (1 − p)
n−i
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Example

Let X denote a Binomial Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

n
X

i=0

i · p(i), by definition

=

n
X

i=0

i · C(n, i) · pi
· (1 − p)

n−i

=

n
X

i=0

i ·
n!

i!(n − i)!
· pi

· (1 − p)
n−i

=

n
X

i=1

i ·
n!

i!(n − i)!
· pi

· (1 − p)
n−i

=

n
X

i=1

n!

(i − 1)!(n − i)!
· pi

· (1 − p)
n−i
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Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

n
X

i=0

i · p(i), by definition

=

n
X

i=0

i · C(n, i) · pi
· (1 − p)

n−i

=

n
X

i=0

i ·
n!

i!(n − i)!
· pi

· (1 − p)
n−i

=

n
X

i=1

i ·
n!

i!(n − i)!
· pi

· (1 − p)
n−i

=

n
X

i=1

n!

(i − 1)!(n − i)!
· pi

· (1 − p)
n−i

= n · p
n

X

i=1

(n − 1)!

(i − 1)!(n − i)!
· pi−1

· (1 − p)
n−i
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Example

Let X denote a Binomial Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

n
X

i=0

i · p(i), by definition

=

n
X

i=0

i · C(n, i) · pi
· (1 − p)

n−i

=

n
X

i=0

i ·
n!

i!(n − i)!
· pi

· (1 − p)
n−i

=

n
X

i=1

i ·
n!

i!(n − i)!
· pi

· (1 − p)
n−i

=

n
X

i=1

n!

(i − 1)!(n − i)!
· pi

· (1 − p)
n−i

= n · p
n

X

i=1

(n − 1)!

(i − 1)!(n − i)!
· pi−1

· (1 − p)
n−i
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Expectation of a Binomial Random Variable (contd.)

Example

Substituting k = i − 1, we get,

E [X ] = n · p
n−1
X

k=0

(n − 1)!

k ! · (n − k − 1)!
· pk

· (1 − p)
n−k−1
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Expectation of a Binomial Random Variable (contd.)

Example

Substituting k = i − 1, we get,

E [X ] = n · p
n−1
X

k=0

(n − 1)!

k ! · (n − k − 1)!
· pk

· (1 − p)
n−k−1

= n · p
n−1
X

k=0

(n − 1)!

k ! · ((n − 1) − k)!
· pk

· (1 − p)
(n−1)−k
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Expectation of a Binomial Random Variable (contd.)

Example

Substituting k = i − 1, we get,

E [X ] = n · p
n−1
X

k=0

(n − 1)!

k ! · (n − k − 1)!
· pk

· (1 − p)
n−k−1

= n · p
n−1
X

k=0

(n − 1)!

k ! · ((n − 1) − k)!
· pk

· (1 − p)
(n−1)−k

= n · p
n−1
X

k=0

C(n − 1, k) · pk
· (1 − p)

(n−1)−k
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Expectation of a Binomial Random Variable (contd.)

Example

Substituting k = i − 1, we get,

E [X ] = n · p
n−1
X

k=0

(n − 1)!

k ! · (n − k − 1)!
· pk

· (1 − p)
n−k−1

= n · p
n−1
X

k=0

(n − 1)!

k ! · ((n − 1) − k)!
· pk

· (1 − p)
(n−1)−k

= n · p
n−1
X

k=0

C(n − 1, k) · pk
· (1 − p)

(n−1)−k

= n · p · [p + (1 − p)]
n−1

, Binomial theorem
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Expectation of a Binomial Random Variable (contd.)

Example

Substituting k = i − 1, we get,

E [X ] = n · p
n−1
X

k=0

(n − 1)!

k ! · (n − k − 1)!
· pk

· (1 − p)
n−k−1

= n · p
n−1
X

k=0

(n − 1)!

k ! · ((n − 1) − k)!
· pk

· (1 − p)
(n−1)−k

= n · p
n−1
X

k=0

C(n − 1, k) · pk
· (1 − p)

(n−1)−k

= n · p · [p + (1 − p)]
n−1

, Binomial theorem

= n · p · 1
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Example

Substituting k = i − 1, we get,

E [X ] = n · p
n−1
X

k=0

(n − 1)!

k ! · (n − k − 1)!
· pk

· (1 − p)
n−k−1

= n · p
n−1
X

k=0

(n − 1)!

k ! · ((n − 1) − k)!
· pk

· (1 − p)
(n−1)−k

= n · p
n−1
X

k=0

C(n − 1, k) · pk
· (1 − p)

(n−1)−k

= n · p · [p + (1 − p)]
n−1

, Binomial theorem

= n · p · 1

= n · p
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Example

Let X denote a Geometric Random Variable with parameters n and p.
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Example

Let X denote a Geometric Random Variable with parameters n and p. What is E [X ]?
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Example

Let X denote a Geometric Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

∞
X

i=1

i · p(i), by definition
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Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

∞
X

i=1

i · p(i), by definition

=

∞
X

i=1

i · (1 − p)
i−1

· p
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Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

∞
X

i=1

i · p(i), by definition

=

∞
X

i=1

i · (1 − p)
i−1

· p

=

∞
X

i=1
i · qi−1

· p, whereq = 1 − p
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Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

∞
X

i=1

i · p(i), by definition

=

∞
X

i=1

i · (1 − p)
i−1

· p

=

∞
X

i=1
i · qi−1

· p, whereq = 1 − p

= p ·

∞
X

i=1

i · qi−1
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Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

∞
X

i=1

i · p(i), by definition

=

∞
X

i=1

i · (1 − p)
i−1

· p

=

∞
X

i=1
i · qi−1

· p, whereq = 1 − p

= p ·

∞
X

i=1

i · qi−1

= p ·

∞
X

i=1

d

dq
[qi

]
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Example

Let X denote a Geometric Random Variable with parameters n and p. What is E [X ]?
Solution:

E [X ] =

∞
X

i=1

i · p(i), by definition

=

∞
X

i=1

i · (1 − p)
i−1

· p

=

∞
X

i=1
i · qi−1

· p, whereq = 1 − p

= p ·

∞
X

i=1

i · qi−1

= p ·

∞
X

i=1

d

dq
[qi

]
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Example

Solution:

E [X ] = p ·

d

dq
[

∞
X

i=1
qi

]
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Expectation of a Geometric Random Variable (contd.)

Example

Solution:

E [X ] = p ·

d

dq
[

∞
X

i=1
qi

]

= p ·

d

dq
[

q

1 − q
]
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Expectation of a Geometric Random Variable (contd.)

Example

Solution:

E [X ] = p ·

d

dq
[

∞
X

i=1
qi

]

= p ·

d

dq
[

q

1 − q
]

= p ·

(1 − q) ·
d
dq [q] − q ·

d
dq [1 − q]

(1 − q)2
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Expectation of a Geometric Random Variable (contd.)

Example

Solution:

E [X ] = p ·

d

dq
[

∞
X

i=1
qi

]

= p ·

d

dq
[

q

1 − q
]

= p ·

(1 − q) ·
d
dq [q] − q ·

d
dq [1 − q]

(1 − q)2

= p ·

(1 − q) · 1 − q · (−1)

(1 − q)2
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Expectation of a Geometric Random Variable (contd.)

Example

Solution:

E [X ] = p ·

d

dq
[

∞
X

i=1
qi

]

= p ·

d

dq
[

q

1 − q
]

= p ·

(1 − q) ·
d
dq [q] − q ·

d
dq [1 − q]

(1 − q)2

= p ·

(1 − q) · 1 − q · (−1)

(1 − q)2

= p ·

1

(1 − q)2
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Expectation of a Geometric Random Variable (contd.)

Example

Solution:

E [X ] = p ·

d

dq
[

∞
X

i=1
qi

]

= p ·

d

dq
[

q

1 − q
]

= p ·

(1 − q) ·
d
dq [q] − q ·

d
dq [1 − q]

(1 − q)2

= p ·

(1 − q) · 1 − q · (−1)

(1 − q)2

= p ·

1

(1 − q)2

= p ·

1

p2
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Example

Solution:

E [X ] = p ·

d

dq
[

∞
X

i=1
qi

]

= p ·

d

dq
[

q

1 − q
]

= p ·

(1 − q) ·
d
dq [q] − q ·

d
dq [1 − q]

(1 − q)2

= p ·

(1 − q) · 1 − q · (−1)

(1 − q)2

= p ·

1

(1 − q)2

= p ·

1

p2

=
1

p

�
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Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the
random variable itself.

Subramani Probability Theory



Recap
Random Variables

Expectation
Expectation of a function of a random variable

Linearity of Expectation
Variance and Standard Deviation

Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the
random variable itself. For instance, in the coin-tossing experiment, we could be
interested in the square of the number of successes.
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Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the
random variable itself. For instance, in the coin-tossing experiment, we could be
interested in the square of the number of successes. The question of interest then is
how to determine the expectation of a function of a random variable, given that we only
know the distribution of the random variable.
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Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the
random variable itself. For instance, in the coin-tossing experiment, we could be
interested in the square of the number of successes. The question of interest then is
how to determine the expectation of a function of a random variable, given that we only
know the distribution of the random variable.

Example

Let X be a random variable, with the following pmf:

p(0) = 0.3, p(1) = 0.5, p(2) = 0.2
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Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the
random variable itself. For instance, in the coin-tossing experiment, we could be
interested in the square of the number of successes. The question of interest then is
how to determine the expectation of a function of a random variable, given that we only
know the distribution of the random variable.

Example

Let X be a random variable, with the following pmf:

p(0) = 0.3, p(1) = 0.5, p(2) = 0.2

Compute E[X2].
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Expectation of functions of random variables (contd.)

Solution

Let Y = X2.
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Expectation of functions of random variables (contd.)

Solution

Let Y = X2. Observe that Y is also a random variable.
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Expectation of functions of random variables (contd.)

Solution

Let Y = X2. Observe that Y is also a random variable. What are the values that Y can
take?
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Expectation of functions of random variables (contd.)

Solution

Let Y = X2. Observe that Y is also a random variable. What are the values that Y can
take? 0, 1 and 4.
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Expectation of functions of random variables (contd.)

Solution

Let Y = X2. Observe that Y is also a random variable. What are the values that Y can
take? 0, 1 and 4. Let us compute the pmf of Y .
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Expectation of functions of random variables (contd.)

Solution

Let Y = X2. Observe that Y is also a random variable. What are the values that Y can
take? 0, 1 and 4. Let us compute the pmf of Y . Note that,
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Expectation of functions of random variables (contd.)

Solution

Let Y = X2. Observe that Y is also a random variable. What are the values that Y can
take? 0, 1 and 4. Let us compute the pmf of Y . Note that,

P{Y = 0} = P{X2 = 0} = P{X = 0} = 0.3
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Expectation of functions of random variables (contd.)

Solution

Let Y = X2. Observe that Y is also a random variable. What are the values that Y can
take? 0, 1 and 4. Let us compute the pmf of Y . Note that,

P{Y = 0} = P{X2 = 0} = P{X = 0} = 0.3

Similarly,

P{Y = 1} = P{X2 = 1} = P{X = 1} = 0.5
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Expectation of functions of random variables (contd.)

Solution

Let Y = X2. Observe that Y is also a random variable. What are the values that Y can
take? 0, 1 and 4. Let us compute the pmf of Y . Note that,

P{Y = 0} = P{X2 = 0} = P{X = 0} = 0.3

Similarly,

P{Y = 1} = P{X2 = 1} = P{X = 1} = 0.5

P{Y = 4} = P{X2 = 4} = P{X = 2} = 0.2
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Expectation of functions of random variables (contd.)

Solution

Let Y = X2. Observe that Y is also a random variable. What are the values that Y can
take? 0, 1 and 4. Let us compute the pmf of Y . Note that,

P{Y = 0} = P{X2 = 0} = P{X = 0} = 0.3

Similarly,

P{Y = 1} = P{X2 = 1} = P{X = 1} = 0.5

P{Y = 4} = P{X2 = 4} = P{X = 2} = 0.2

Accordingly,
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Expectation of functions of random variables (contd.)

Solution

Let Y = X2. Observe that Y is also a random variable. What are the values that Y can
take? 0, 1 and 4. Let us compute the pmf of Y . Note that,

P{Y = 0} = P{X2 = 0} = P{X = 0} = 0.3

Similarly,

P{Y = 1} = P{X2 = 1} = P{X = 1} = 0.5

P{Y = 4} = P{X2 = 4} = P{X = 2} = 0.2

Accordingly,

E[Y ] = E[X2] = 0 · 0.3 + 1 · 0.5 + 4 · 0.2 = 1.3
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Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

E[g(X)] =
X

x : p(x)>0

g(x) · p(x)
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Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

E[g(X)] =
X

x : p(x)>0

g(x) · p(x)

Note

Applying the above theorem to the previous problem,
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Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

E[g(X)] =
X

x : p(x)>0

g(x) · p(x)

Note

Applying the above theorem to the previous problem,

E[X2] =
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Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

E[g(X)] =
X

x : p(x)>0

g(x) · p(x)

Note

Applying the above theorem to the previous problem,

E[X2] = 02 · 0.3 + 12 · 0.5 + 22 · 0.2 = 1.3
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Linearity of Expectation

Proposition

Let X1, X2, . . . , Xn denote n random variables, defined over some probability space.
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Linearity of Expectation

Proposition

Let X1, X2, . . . , Xn denote n random variables, defined over some probability space.
Let a1, a2, . . . , an denote n constants. Then,
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Linearity of Expectation

Proposition

Let X1, X2, . . . , Xn denote n random variables, defined over some probability space.
Let a1, a2, . . . , an denote n constants. Then,

E[
n

X

i=1

ai · Xi ] =
n

X

i=1

ai · E[Xi ]
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Linearity of Expectation

Proposition

Let X1, X2, . . . , Xn denote n random variables, defined over some probability space.
Let a1, a2, . . . , an denote n constants. Then,

E[
n

X

i=1

ai · Xi ] =
n

X

i=1

ai · E[Xi ]

Note

Note that linearity of expectation holds even when the random variables are not
independent.
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Linearity of Expectation

Proposition

Let X1, X2, . . . , Xn denote n random variables, defined over some probability space.
Let a1, a2, . . . , an denote n constants. Then,

E[
n

X

i=1

ai · Xi ] =
n

X

i=1

ai · E[Xi ]

Note

Note that linearity of expectation holds even when the random variables are not
independent.

Example

What is the expected value of the sum of the upturned faces, when two fair dice are
tossed?
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Expectation of product

Independent random variable

If X and Y are independent random variables (i.r.v.s), then

E[X · Y ] = E[X ] · E[Y ]

.
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Another Application

Example

Compute the expected value of the Binomial random variable.
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Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

Xi = 1,
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Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

Xi = 1, if the ith trial is a success
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Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

Xi = 1, if the ith trial is a success

= 0, otherwise
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Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

Xi = 1, if the ith trial is a success

= 0, otherwise

Accordingly, the Binomial random variable (say X ) can be expressed as:

X = X1 + X2 + . . . Xn
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Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

Xi = 1, if the ith trial is a success

= 0, otherwise

Accordingly, the Binomial random variable (say X ) can be expressed as:

X = X1 + X2 + . . . Xn

However, each Xi is Bernoulli random variable with probability of success p!
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Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

Xi = 1, if the ith trial is a success

= 0, otherwise

Accordingly, the Binomial random variable (say X ) can be expressed as:

X = X1 + X2 + . . . Xn

However, each Xi is Bernoulli random variable with probability of success p! Hence, using linearity of expectation,

E [X ] =
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Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

Xi = 1, if the ith trial is a success

= 0, otherwise

Accordingly, the Binomial random variable (say X ) can be expressed as:

X = X1 + X2 + . . . Xn

However, each Xi is Bernoulli random variable with probability of success p! Hence, using linearity of expectation,

E [X ] = E [X1 + X2 + . . . Xn ]

Subramani Probability Theory



Recap
Random Variables

Expectation
Expectation of a function of a random variable

Linearity of Expectation
Variance and Standard Deviation

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

Xi = 1, if the ith trial is a success

= 0, otherwise

Accordingly, the Binomial random variable (say X ) can be expressed as:

X = X1 + X2 + . . . Xn

However, each Xi is Bernoulli random variable with probability of success p! Hence, using linearity of expectation,

E [X ] = E [X1 + X2 + . . . Xn ]

=

n
X

i=1

E [Xi ]
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Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

Xi = 1, if the ith trial is a success

= 0, otherwise

Accordingly, the Binomial random variable (say X ) can be expressed as:

X = X1 + X2 + . . . Xn

However, each Xi is Bernoulli random variable with probability of success p! Hence, using linearity of expectation,

E [X ] = E [X1 + X2 + . . . Xn ]

=

n
X

i=1

E [Xi ]

=

n
X

i=1
p
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Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

Xi = 1, if the ith trial is a success

= 0, otherwise

Accordingly, the Binomial random variable (say X ) can be expressed as:

X = X1 + X2 + . . . Xn

However, each Xi is Bernoulli random variable with probability of success p! Hence, using linearity of expectation,

E [X ] = E [X1 + X2 + . . . Xn ]

=

n
X

i=1

E [Xi ]

=

n
X

i=1
p

= n · p
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Definition

Basics

The expected value of a random variable does not contain any information about the
“spread” of values. For instance, E[X ] = 1

2 for the distribution

P{X = 0} = P{X = 1} = 1
2 and the distribution P{X = 1

4} = P{X = 3
4} = 1

2 .

Subramani Probability Theory



Recap
Random Variables

Expectation
Expectation of a function of a random variable

Linearity of Expectation
Variance and Standard Deviation

Definition

Basics

The expected value of a random variable does not contain any information about the
“spread” of values. For instance, E[X ] = 1

2 for the distribution

P{X = 0} = P{X = 1} = 1
2 and the distribution P{X = 1

4} = P{X = 3
4} = 1

2 .
The variance of a random variable X , with mean E[X ] is:

Var [X ] = E[(X − E[X ])2]

= E[X2] − (E[X ])2
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Laws of Variances

Note

(i) If a is a constant, then Var [aX ] = a2Var [X ].

Subramani Probability Theory



Recap
Random Variables

Expectation
Expectation of a function of a random variable

Linearity of Expectation
Variance and Standard Deviation

Laws of Variances

Note

(i) If a is a constant, then Var [aX ] = a2Var [X ].

(ii) If X1, X2, . . . Xn are independent random variables, then
Var [

Pn
i=1 Xi ] =

Pn
i=1 Var [Xi ].
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Laws of Variances

Note

(i) If a is a constant, then Var [aX ] = a2Var [X ].

(ii) If X1, X2, . . . Xn are independent random variables, then
Var [

Pn
i=1 Xi ] =

Pn
i=1 Var [Xi ].

Standard Deviation

The positive square root of the variance of a random variable is called its standard
deviation.
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Exercises

Exercise

Compute the variances of the following random variables:

(i) Bernoulli random variable.

(ii) Binomial random variable.

(iii) Geometric random variable.
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Computing Expectations by conditioning

Function of a random variable

Let X and Y denote two random variables. What is E[X | Y ]?
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Computing Expectations by conditioning

Function of a random variable

Let X and Y denote two random variables. What is E[X | Y ]? E[X | Y ] is that function
of the random variable Y whose value at Y = y is E[X | Y = y ].
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Function of a random variable

Let X and Y denote two random variables. What is E[X | Y ]? E[X | Y ] is that function
of the random variable Y whose value at Y = y is E[X | Y = y ].

Lemma

E[X ] = E[E[X | Y ]].
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Function of a random variable

Let X and Y denote two random variables. What is E[X | Y ]? E[X | Y ] is that function
of the random variable Y whose value at Y = y is E[X | Y = y ].

Lemma

E[X ] = E[E[X | Y ]].
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