Recurrence Relations

K. Subramani¹

¹ Lane Department of Computer Science and Electrical Engineering West Virginia University

18 January, 2011

Outline

Recurrences

Outline

Recurrences

Solving Recurrences

Examples

(i)

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Examples

(i)

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(ii)

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

Examples

(i)

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(ii)

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(iii)

$$F(1) = 1$$

 $F(2) = 1$
 $F(n) = F(n-1) + F(n-2), n \ge 3$

Three methods

Three methods

(i) Expand-Guess-Verify (EGV).

Three methods

- (i) Expand-Guess-Verify (EGV).
- (ii) Formula.

Three methods

- (i) Expand-Guess-Verify (EGV).
- (ii) Formula.
- (iii) Recursion Tree.

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(1) = 2$$

$$S(n) = 2 \cdot S(n-1), n \geq 2.$$

(i) Expand:
$$S(1) = 2$$
,

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand:
$$S(1) = 2$$
, $S(2) = 2 \cdot 2 = 4$,

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand:
$$S(1) = 2$$
, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand:
$$S(1) = 2$$
, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand:
$$S(1) = 2$$
, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,

(ii) Guess:
$$S(n) = 2^n$$

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction!

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n > 2.$

(i) Expand:
$$S(1) = 2$$
, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,

- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n > 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction!
 BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven. INDUCTIVE STEP: Assume that $S(k) = 2^k$.

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n > 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

$$S(k+1) =$$

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n > 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

$$S(k+1) = 2 \cdot S(k)$$
, by definition

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n > 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

$$S(k+1)$$
 = $2 \cdot S(k)$, by definition
 = $2 \cdot 2^k$, by inductive hypothesis

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n > 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

$$S(k+1)$$
 = $2 \cdot S(k)$, by definition
 = $2 \cdot 2^k$, by inductive hypothesis
 = 2^{k+1} !

Consider the recurrence:

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n > 2.$

- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

$$RHS = 2^{1}$$

$$= 2$$

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k+1) = 2^{k+1}$. Observe that,

$$S(k+1)$$
 = $2 \cdot S(k)$, by definition
 = $2 \cdot 2^k$, by inductive hypothesis
 = 2^{k+1} !

Applying the first principle of mathematical induction, we conclude that $S(n) = 2^n$.

EGV (contd.)

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand: T(1) = 1,

EGV (contd.)

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$,

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$, $T(3) = 3 + T(n-2) = 7$,

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$, $T(3) = 3 + T(n-2) = 7$, ...

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

- (i) Expand: T(1) = 1, T(2) = T(1) + 3 = 4, T(3) = 3 + T(n-2) = 7, ...
- (ii) Guess: $T(n) = 3 \cdot n 2$.

Example

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$, $T(3) = 3 + T(n-2) = 7$, ...

- (ii) Guess: $T(n) = 3 \cdot n 2$.
- (iii) Verify: Somebody from class!

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power.

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n-1).

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n-1). For example, $S(n) = c \cdot S(n-1) + g(n)$.

Subramani

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n-1). For example, $S(n) = c \cdot S(n-1) + g(n)$. The recurrence is called homogeneous, if

g(n) = 0, for all n.

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n-1). For example, $S(n) = c \cdot S(n-1) + g(n)$. The recurrence is called homogeneous, if g(n) = 0, for all n.

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n-1). For example, $S(n) = c \cdot S(n-1) + g(n)$. The recurrence is called homogeneous, if g(n) = 0, for all n.

$$S(1) = k_0$$

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n-1). For example, $S(n) = c \cdot S(n-1) + g(n)$. The recurrence is called homogeneous, if g(n) = 0, for all n.

$$S(1) = k_0$$

$$S(n) = c \cdot S(n-1) + g(n)$$

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n-1). For example, $S(n) = c \cdot S(n-1) + g(n)$. The recurrence is called homogeneous, if g(n) = 0, for all n.

$$S(1) = k_0$$

$$S(n) = c \cdot S(n-1) + g(n)$$

$$\Rightarrow S(n) = c^{n-1} \cdot k_0 + \sum_{i=2}^{n} c^{n-i} \cdot g(i).$$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 =$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 = 2$, g(n) =

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) =$$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) = 2^{n-1} \cdot 2 + \sum_{i=2}^{n} 2^{n-i} \cdot 0$$

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) = 2^{n-1} \cdot 2 + \sum_{i=2}^{n} 2^{n-i} \cdot 0$$

= 2^{n}

Example

$$S(1) = 4$$

$$S(n) = 2 \cdot S(n-1) + 3, \ n \geq 2.$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 =$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 = 4$, g(n) =

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) =$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$
$$= 2^{n+1} + 3 \sum_{i=2}^{n} 2^{n-i}$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

$$= 2^{n+1} + 3 \sum_{i=2}^{n} 2^{n-i}$$

$$= 2^{n+1} + 3 \cdot [2^{n-2} + 2^{n-3} + \dots + 2^{0}]$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

$$= 2^{n+1} + 3 \sum_{i=2}^{n} 2^{n-i}$$

$$= 2^{n+1} + 3 \cdot [2^{n-2} + 2^{n-3} + \dots + 2^{0}]$$

$$= 2^{n+1} + 3 \cdot [2^{n-1} - 1]$$



Formula

(i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- (ii) Solve the characteristic equation: $t^2-c_1\cdot t-c_2=0$. Let r_1 and r_2 denote the roots.

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- (ii) Solve the characteristic equation: $t^2-c_1\cdot t-c_2=0$. Let r_1 and r_2 denote the roots.

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- (ii) Solve the characteristic equation: $t^2-c_1\cdot t-c_2=0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p+q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p+q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$

Then,
$$S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$$

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p+q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$

Then,
$$S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$$

(b) If $r_1 = r_2 = r$, solve

$$p = S(1)$$

$$(p+q)\cdot r = S(2)$$

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p+q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$

Then,
$$S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$$

(b) If $r_1 = r_2 = r$, solve

$$p = S(1)$$

$$(p+q)\cdot r = S(2)$$

Then,
$$S(n) = p \cdot r^{n-1} + q \cdot (n-1) \cdot r^{n-1}$$

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), \ n \ge 3$$

(i)
$$c_1 = 6$$
, $c_2 = -5$.

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), \ n \ge 3$$

(i)
$$c_1 = 6$$
, $c_2 = -5$. Characteristic equation:

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

(i)
$$c_1 = 6$$
, $c_2 = -5$. Characteristic equation: $t^2 - 6 \cdot t + 5 = 0$.

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

(i)
$$c_1=6$$
, $c_2=-5$. Characteristic equation: $t^2-6\cdot t+5=0$. Solution is: $r_1=1$, $r_2=5$.

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p + q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p + q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

Example

Solve the recurrence relation

$$T(1) = 5$$

 $T(2) = 13$
 $T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n > 3$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p + q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

- (iii) Accordingly, the solution is $T(n) = 3 \cdot 1^{n-1} + 2 \cdot 5^{n-1} = 3 + 2 \cdot 5^{n-1}$.
- Г

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$$

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), \ n \ge 3$$

(i)
$$c_1 = 8$$
, $c_2 = -16$.

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

(i)
$$c_1 = 8$$
, $c_2 = -16$. Characteristic equation: $t^2 - 8t + 16 = 0$.

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$

(i)
$$c_1 = 8$$
, $c_2 = -16$. Characteristic equation: $t^2 - 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$\begin{array}{rcl} p & = & 1 \\ p \cdot 4 + q \cdot 4 & = & 12 \end{array}$$

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $t_1 = t_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$

$$p \cdot 4 + q \cdot 4 = 12$$

We get p = 1 and q = 2.

Example

Solve the recurrence relation:

$$S(1) = 1$$

 $S(2) = 12$
 $S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n \ge 3$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$
$$p \cdot 4 + q \cdot 4 = 12$$

We get p = 1 and q = 2.

(iii) Accordingly, the solution is $S(n) = 4^{n-1} + 2 \cdot (n-1) \cdot 4^{n-1} = (2n-1) \cdot 4^{n-1}$.

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), n \ge 2, n = 2^m$

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m$

$$\Rightarrow S(n) = c^{\log n} \cdot k_0 + \textstyle \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i).$$

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m$

$$\Rightarrow S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i)$$
. (All logarithms are to base 2).

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m$

 $\Rightarrow S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i)$. (All logarithms are to base 2).

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), n \ge 2, n = 2^m$

 \Rightarrow $S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i)$. (All logarithms are to base 2).

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$

Note that $k_0 =$

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), n \ge 2, n = 2^m$

 \Rightarrow $S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n - i} \cdot g(2^i)$. (All logarithms are to base 2).

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$

Note that $k_0 = 1$, c =

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m$

 \Rightarrow $S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n - i} \cdot g(2^i)$. (All logarithms are to base 2).

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$

Note that $k_0 = 1$, c = 1 and g(i) =

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m$

 \Rightarrow $S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n - i} \cdot g(2^i)$. (All logarithms are to base 2).

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$

Note that $k_0 = 1$, c = 1 and g(i) = 1, $\forall i$.

Formula for Divide and Conquer Recurrence

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m$

 \Rightarrow $S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n - i} \cdot g(2^i)$. (All logarithms are to base 2).

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$

Formula for Divide and Conquer Recurrence

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m$

 $\Rightarrow S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i)$. (All logarithms are to base 2).

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n - i} \cdot (1)$$

Formula for Divide and Conquer Recurrence

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), n \ge 2, n = 2^m$

 $\Rightarrow S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i)$. (All logarithms are to base 2).

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n - i} \cdot (1)$$

$$= 1 + (\log n) \cdot 1$$

Formula for Divide and Conquer Recurrence

$$S(1) = k_0$$

 $S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m$

 $\Rightarrow S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i)$. (All logarithms are to base 2).

Example

Solve the recurrence:

$$C(1) = 1$$

 $C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n - i} \cdot (1)$$

$$= 1 + (\log n) \cdot 1$$

$$= 1 + \log n$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^m$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \quad n \ge 2, \quad n = 2^m$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$.

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \quad n \ge 2, \quad n = 2^m$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$

Note that $k_0=3,\,c=2$ and $g(i)=2\cdot i,\,\,\,\forall i.$ As per the formula,

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^i)$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^m$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$
$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$

Note that $k_0=3,\,c=2$ and $g(i)=2\cdot i,\,\,\,\forall i.$ As per the formula,

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n)$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n)$$

$$= 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n)$$

$$= 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$$

$$= 3 \cdot n + n \cdot 2 \cdot \log n,$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n)$$

$$= 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$$

$$= 3 \cdot n + n \cdot 2 \cdot \log n, \text{ since } (a^{\log n} = n, \ a \neq 0)$$

Solve the recurrence:

$$T(1) = 3$$

 $T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^i)$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n)$$

$$= 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$$

$$= 3 \cdot n + n \cdot 2 \cdot \log n, \text{ since } (a^{\log n} = n, \ a \neq 0)$$

$$= 3 \cdot n + 2 \cdot n \cdot \log n$$

Theorem

Let $a \ge 1$ and $b \ge 1$ be constants.

Theorem

Theorem

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Theorem

Let $a \ge 1$ and $b \ge 1$ be constants. Let f(n) be a function and let T(n) be defined recursively as follows:

$$T(n) = a \cdot T(\frac{n}{h}) + f(n)$$

(i) If $f(n) = O(n^{\log_b a - \epsilon})$, for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

Theorem

$$T(n) = a \cdot T(\frac{n}{h}) + f(n)$$

- (i) If $f(n) = O(n^{\log_b a \epsilon})$, for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- (ii) If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

Theorem

$$T(n) = a \cdot T(\frac{n}{h}) + f(n)$$

- (i) If $f(n) = O(n^{\log_b a \epsilon})$, for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- (ii) If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.
- (iii) If $f(n) = \Omega(n^{\log_b a + \epsilon})$, for some constant $\epsilon > 0$, and if $a \cdot f(\frac{n}{b}) \le c \cdot f(n)$, for some constant c < 1, then $T(n) = \Theta(f(n))$.

Theorem

Let $a \ge 1$ and $b \ge 1$ be constants. Let f(n) be a function and let T(n) be defined recursively as follows:

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

- (i) If $f(n) = O(n^{\log_b a \epsilon})$, for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- (ii) If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.
- (iii) If $f(n) = \Omega(n^{\log_b a + \epsilon})$, for some constant $\epsilon > 0$, and if $a \cdot f(\frac{n}{b}) \le c \cdot f(n)$, for some constant c < 1, then $T(n) = \Theta(f(n))$.

Note

Proof is via induction. Outside scope of class.

Theorem

Let $a \ge 1$ and $b \ge 1$ be constants. Let f(n) be a function and let T(n) be defined recursively as follows:

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

- (i) If $f(n) = O(n^{\log_b a \epsilon})$, for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- (ii) If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.
- (iii) If $f(n) = \Omega(n^{\log_b a + \epsilon})$, for some constant $\epsilon > 0$, and if $a \cdot f(\frac{n}{b}) \le c \cdot f(n)$, for some constant c < 1, then $T(n) = \Theta(f(n))$.

Note

Proof is via induction. Outside scope of class. The master theorem does not cover all cases!

(i)
$$T(n) = 9 \cdot T(\frac{n}{3}) + n$$
.

(i)
$$T(n) = 9 \cdot T(\frac{n}{3}) + n$$
.

(ii)
$$T(n) = T(\frac{2n}{3}) + 1$$
.

- (i) $T(n) = 9 \cdot T(\frac{n}{3}) + n$.
- (ii) $T(n) = T(\frac{2n}{3}) + 1$.
- (iii) $T(n) = 3 \cdot T(\frac{n}{4}) + n \cdot \log n$.

- (i) $T(n) = 9 \cdot T(\frac{n}{3}) + n$.
- (ii) $T(n) = T(\frac{2n}{3}) + 1$.
- (iii) $T(n) = 3 \cdot T(\frac{n}{4}) + n \cdot \log n$.
- (iv) $T(n) = 2 \cdot T(\frac{n}{2}) + n$.

(i)
$$T(n) = 9 \cdot T(\frac{n}{3}) + n$$
.

(ii)
$$T(n) = T(\frac{2n}{3}) + 1$$
.

(iii)
$$T(n) = 3 \cdot T(\frac{n}{4}) + n \cdot \log n$$
.

(iv)
$$T(n) = 2 \cdot T(\frac{n}{2}) + n$$
.

(v)
$$T(n) = 2 \cdot T(\sqrt{n}) + \log n$$
.