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1 Problems

1. Consider the following algorithm for sorting an array of » numbers.

Function ARRAY-SORT(A, n)
1: for (i = 1ton)do

2 for (j = n downto 7+ 1) do
3 if (A[j] < A[j — 1]) then
4 SwAP(A[j], A[j — 1))
5 end if

6: end for

7: end for

Algorithm 1.1: Sorting Algorithm

Argue the correctness of the algorithm using loop invariants and analyze its running time.
Solution:
Correctness: The first step is to choose a useful loop invariant.

Consider the following invariant: At the end of the k*" iteration of the outer for loop, the array A[l - - k] is sorted
and A[k] is the k*" smallest element in A.

Let us focus on the first execution of the outer for loop. In this case, the inner for loop executes (n — 1) times. After
the inner for loop has executed for the first time, A[n — 1] stores the minimum of A[n] and A[n — 1]. After it has
executed the second time, A[n — 2] stores the minimum of A[n], A[n — 1] and A[n — 2]. Likewise, when the inner
for loop has executed for the (n — 1)*" time, A[1] stores the minimum of A[n], A[n — 1], ..., A[1]. It thus follows
that at the end of the first iteration, A[1] is the smallest element in A.

Assume that the loop invariant holds at the end of the rth jteration, i.e., assume that after the outer for loop has
executed r times, the array A[1 - - ] is sorted and A[r] is the r*" smallest element of the array. We shall now argue
that the loop invariant holds after the (r + 1)*" iteration. Observe that as argued before, the inner for loop moves the
minimum element of the array A[(r + 1) - - n] into A[r + 1] performing swaps as necessary. It follows that A[r + 1]
is now the (r + 1)*" smallest element of the array and that the array A[1 - - (r + 1)] is sorted.

The algorithm terminates when the outer for loop has executed n times. At this juncture, we can conclude that the
array A[l - - n] is sorted and that A[n] is the n'" smallest element in the array.

Resource Analysis: Let 7'(n) denote the running time of the algorithm on an array of n elements. Observe that we
are interested in the number of element to element comparisons only.




Since there is only one element to element comparison, in the nested for loops, we have,
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(a) Show that logn! = O(n - logn).
(b) Show that max(f(n),g(n)) = ©(f(n) + g(n)), where f(n) and g(n) are non-negative functions.
Solution:

(a) We first show that logn! = O(n - logn). Observe that,
logn! = log(1-2-...n)
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We next show that log n! = Q(n - logn). Observe that,

logn! = log(l-2-...n)
= logl+log2+...logn

n n n n
> log(—= — — 4+ =
> 0g(2+1)+log(2+2)+ log(2+2)
> lo E+10 E+ 1 n
> log +log +...log 5
= Dl
- %5
= Elo n—E

g BTy

Now note that,

" no_on
glogn—o = logn

as long as,

g} US| >
5 logn— logn >

|3



énl . n
1o b
48" =g
=logn > 2

=>n > 4

Thus, log n! = Q(n - logn).
From the above discussion, we can conclude that, logn! = ©(n - logn).

(b) First observe that, max(f(n), g(n)) < (f(n) + g(n)), as long as f(n) and g(n) are non-negative functions, i.e.,

max(f(n),g(n)) = O(f(n) + g(n)).

Now observe that, (f(n) + g(n)) < 2-max(f(n),g(n)), as long as f(n) and g(n) are non-negative functions,
i.e, max(f(n),g(n)) = Q(f(n) + g(n)).

From the above discussion, we can conclude that, max(f(n) + g(n)) = ©(f(n) + g(n)).

O

3. Anm X n array A of integers is said to be a Monge Array, if for all ¢, j,k, and [, such that 1 < i < k < m and
1 <j <l <n,wehave,
Ali, j] + Alk, 1] < A[i, 1] + Alk, j]

(a) Prove that an array A is Monge, if and only if forall¢ =1,2,...,m —1land j = 1,2,...n — 1, we have,
Ali, ]+ Ali + 1,5 + 1] < Afi, j + 1] + Afi + 1, 4]. (1)
Solution: If we assume that A is Monge, then it is easy to see that Condition (1) holds, that is:
Ali, jl+ Ali+ 1,7 + 1] < Afi, j + 1] + Ali + 1, 5]
(ustletk=¢+landl =35+ 1).
For the other direction, we first prove a “helper” lemma.

Lemma 1.1 Letn > 2 and let A be a 2 x n matrix satisfying Condition (1). Then A is Monge.

Proof: By induction on n. The base case is n = 2, so A is a 2 x 2 matrix. In this case, Condition (1) and the
Monge definition coincide.

For the inductive step, assume that the lemma holds for all ¢ < n and let A be a 2 x (n + 1) matrix which
satisfies Condition (1) (this is strong induction). We need to show that

AlL j] + A[2,1] < A[L,1] + A[2, j] )

foralll <j<lI<(n+1).Ifj# 1lorl# (n+ 1), we can apply the induction hypothesis to a sub-matrix of
A.
If j = 1and ! = (n + 1), consider the following entries of A
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The sub-matrix of A consisting of the first n columns satisfies Condition (1) and is therefore Monge, by the

induction hypothesis. Similary, the sub-matrix consisting of the last two columns of A form a Monge sub-
matrix. Since both of these submatrices are Monge, the following inequalities hold:

AL+ A[2,1—1] < AL 1 — 1] + A[2,1],
AL — 1)+ A[2,0) < AL, 1] + A[2,1 — 1].

Adding these two inequalites together yields Condition (2). O



(b)

We now prove that all matrices which satisfy Condition (1) are, in fact, Monge. Consider the following ordering
onN x N:
(n,m) < (n’,m") precisely when [(n < n’) or (n =n’ and m < m’)].

(that is, the “dictionary order” on N x N). It is easy to see that this is a well-ordering on N x N. Let (n, m) be
the least element in this ordering such that there exists an n x m matrix A which satisfies Condition (1) but is
not Monge. We make the following observations about the 2-tuple (n, m):

(1) Both n and m must be at least 2. If m or n is 1, the Monge condition is vacously true.

(i) m must be at least 3, since if n is 2, A would be Monge by Lemma 1.1.
Therefore, we can assume that n > 3 and m > 2.
The Monge condition requires the entries of A to satisfy many inequalities. Note that the minimality of (n, m)
guarantees that all of these inequalities, except for

A1, 1) + Alm,n] < A[l,m] + A[n, 1] 3)

hold. Also note that the minimality of (n, m) does not immediately imply anything about Condition (3). Intu-
itively, we are guaranteed that all of the inequalities, except for possibly the one involving the “corners” of A,
are satisfied. If this is not the case, we could find a smaller submatrix within A that satisfies Condition (1) but
is not Monge. This would contradict the minimality of (n,m).

We now show that Condition (3) must also hold. Consider the following entries of A:

Al 1] A[l,n]
A[n—:l,l] A[n—zl,m]
Aln, 1] e Aln,m]

We know that the inequalities

AL 1)+ Aln—1,m] < All,n]+ A[n —1,1],

Al —1,1] + Aln,m] < Aln — 1,m] + A[n, 1],
must hold. (Why?) Adding these inequalities together yields
A[l, 1] 4+ Alm,n] < A[l,m] + Aln, 1].

Thus A is in fact a Monge array, which contradicts our hypothesis. O

Let f(i) be the index of the column containing the leftmost minimum element of row ¢. Prove that f(1) <
f(2) <...< f(m), for any m x n Monge array.

Solution: Let A denote a Monge array, such that that there exists an ¢ with f(i) > f(i + 1). We can then draw
the following picture of A:

Observe that, we must have, A[i, f(i + 1)] > A[é, f(7)], since if A[i, f(i + 1)] = A[i, f(4)], then f(¢) is not the
index of the column containing the leftmost minimum element of row :.

Likewise, A[i + 1, f(i)] > A[i + 1, f(i + 1)], since f(i + 1) is the index of the column containing the leftmost
minimum element of row 7 + 1.
Adding these inequalities together, we get,

Ali, fl+ D]+ Ali + 1, £()] > Ali, f()] + Ali + 1, f(i + 1)]

This contradicts the fact that A is Monge. O



4. Show that for any integer n > 0,

n
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Solution: At n = 0, the LHS of the identity is C(n,0) - 0 = 0 and the RHS is 0 - 271 = 0.

At n = 1, the LHS of the identity is C'(n,0) - 0 + C(n,1) - 1 = n and the RHS is n - 2}~ ! = n.
Thus, the identity is clearly true for n = 0 and n = 1. For n > 2, we consider two cases:

(i) nis odd - In this case, the numbers 25+, 241 etc. are integral.
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Observe that,
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Let us focus on the sum ), 2 C(n, k). In class, we showed that, >’ C(n, k) = 2™. Now note that,
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(ii) m is even - In this case, the number % is integral. The analysis is identical to the case when n is odd, except that
the term 5 C(n, %) is not combined with any other term. Accordingly, we have,

Y Cnk) k= n«iC’(n,k)
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5. Let X be a non-negative random variable and suppose that F[X] and 0 = /Var(X) are well-defined.
(a) Show that Pr[X > ¢] < ZX] forall ¢ > 0.
(b) Show that Pr{|X — E[X]| >t-0] < %, forany ¢t > 0.
Solution:
(a) Observer that,
EX] = Zm Pr(X = z]

0<z<t x>t

[X = z], since X >0
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The above inequality is known as Markov’s inequality.
(b) Observe that,

Pr(|X —E[X]|>t-0] = Pr[|X - E[X]?>t 07

E[(X — E[X])?

< u], by Markov's inequality
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