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1 Problems
1. Consider the following algorithm for sorting an array of n numbers.

Function ARRAY-SORT(A, n)

1: for (i = 1 to n) do
2: for (j = n downto i+ 1) do
3: if (A[j] < A[j − 1]) then
4: SWAP(A[j], A[j − 1]).
5: end if
6: end for
7: end for

Algorithm 1.1: Sorting Algorithm

Argue the correctness of the algorithm using loop invariants and analyze its running time.

Solution:
Correctness: The first step is to choose a useful loop invariant.

Consider the following invariant: At the end of the kth iteration of the outer for loop, the array A[1 · · k] is sorted
and A[k] is the kth smallest element in A.

Let us focus on the first execution of the outer for loop. In this case, the inner for loop executes (n− 1) times. After
the inner for loop has executed for the first time, A[n − 1] stores the minimum of A[n] and A[n − 1]. After it has
executed the second time, A[n − 2] stores the minimum of A[n], A[n − 1] and A[n − 2]. Likewise, when the inner
for loop has executed for the (n − 1)th time, A[1] stores the minimum of A[n], A[n − 1], . . . , A[1]. It thus follows
that at the end of the first iteration, A[1] is the smallest element in A.

Assume that the loop invariant holds at the end of the rth iteration, i.e., assume that after the outer for loop has
executed r times, the array A[1 · · r] is sorted and A[r] is the rth smallest element of the array. We shall now argue
that the loop invariant holds after the (r + 1)th iteration. Observe that as argued before, the inner for loop moves the
minimum element of the array A[(r + 1) · · n] into A[r + 1] performing swaps as necessary. It follows that A[r + 1]
is now the (r + 1)th smallest element of the array and that the array A[1 · · (r + 1)] is sorted.

The algorithm terminates when the outer for loop has executed n times. At this juncture, we can conclude that the
array A[1 · · n] is sorted and that A[n] is the nth smallest element in the array.

Resource Analysis: Let T (n) denote the running time of the algorithm on an array of n elements. Observe that we
are interested in the number of element to element comparisons only.
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Since there is only one element to element comparison, in the nested for loops, we have,

T (n) =

n∑
i=1

n∑
j=i+1

1

=

n∑
i=1

(n− (i+ 1) + 1)

=

n∑
i=1

(n− i)

=

n∑
i=1

n−
n∑

i=1

i

= n · n− n · (n+ 1)

2

=
n · (n− 1)

2

2

2. (a) Show that log n! = Θ(n · log n).

(b) Show that max(f(n), g(n)) = Θ(f(n) + g(n)), where f(n) and g(n) are non-negative functions.

Solution:

(a) We first show that log n! = O(n · log n). Observe that,

log n! = log(1 · 2 · . . . n)

= log 1 + log 2 + . . . log n

≤ log n+ log n+ . . . log n

= n · log n

We next show that log n! = Ω(n · log n). Observe that,

log n! = log(1 · 2 · . . . n)

= log 1 + log 2 + . . . log n

≥ log(
n

2
+ 1) + log(

n

2
+ 2) + . . . log(

n

2
+
n

2
)

≥ log
n

2
+ log

n

2
+ . . . log

n

2

=
n

2
log

n

2

=
n

2
log n− n

2

Now note that,

n

2
log n− n

2
≥ n

4
log n

as long as,

n

2
log n− n

4
log n ≥ n

2
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⇒ n

4
log n ≥ n

2
⇒ log n ≥ 2

⇒ n ≥ 4

Thus, log n! = Ω(n · log n).
From the above discussion, we can conclude that, log n! = Θ(n · log n).

(b) First observe that, max(f(n), g(n)) ≤ (f(n) + g(n)), as long as f(n) and g(n) are non-negative functions, i.e.,
max(f(n), g(n)) = O(f(n) + g(n)).
Now observe that, (f(n) + g(n)) ≤ 2 ·max(f(n), g(n)), as long as f(n) and g(n) are non-negative functions,
i.e, max(f(n), g(n)) = Ω((f(n) + g(n)).
From the above discussion, we can conclude that, max(f(n) + g(n)) = Θ(f(n) + g(n)).
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3. An m × n array A of integers is said to be a Monge Array, if for all i, j, k, and l, such that 1 ≤ i < k ≤ m and
1 ≤ j < l ≤ n, we have,

A[i, j] +A[k, l] ≤ A[i, l] +A[k, j]

(a) Prove that an array A is Monge, if and only if for all i = 1, 2, . . . ,m− 1 and j = 1, 2, . . . n− 1, we have,

A[i, j] +A[i+ 1, j + 1] ≤ A[i, j + 1] +A[i+ 1, j]. (1)

Solution: If we assume that A is Monge, then it is easy to see that Condition (1) holds, that is:

A[i, j] +A[i+ 1, j + 1] ≤ A[i, j + 1] +A[i+ 1, j]

(just let k = i+ 1 and l = j + 1).
For the other direction, we first prove a “helper” lemma.

Lemma 1.1 Let n ≥ 2 and let A be a 2× n matrix satisfying Condition (1). Then A is Monge.

Proof: By induction on n. The base case is n = 2, so A is a 2 × 2 matrix. In this case, Condition (1) and the
Monge definition coincide.
For the inductive step, assume that the lemma holds for all c ≤ n and let A be a 2 × (n + 1) matrix which
satisfies Condition (1) (this is strong induction). We need to show that

A[1, j] +A[2, l] ≤ A[1, l] +A[2, j] (2)

for all 1 ≤ j < l ≤ (n+ 1). If j 6= 1 or l 6= (n+ 1), we can apply the induction hypothesis to a sub-matrix of
A.
If j = 1 and l = (n+ 1), consider the following entries of A:[

A[1, 1] · · · A[1, l − 1] A[1, l]
A[2, 1] · · · A[2, l − 1] A[2, l]

]
.

The sub-matrix of A consisting of the first n columns satisfies Condition (1) and is therefore Monge, by the
induction hypothesis. Similary, the sub-matrix consisting of the last two columns of A form a Monge sub-
matrix. Since both of these submatrices are Monge, the following inequalities hold:

A[1, 1] +A[2, l − 1] ≤ A[1, l − 1] +A[2, 1],

A[1, l − 1] +A[2, l] ≤ A[1, l] +A[2, l − 1].

Adding these two inequalites together yields Condition (2). 2
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We now prove that all matrices which satisfy Condition (1) are, in fact, Monge. Consider the following ordering
on N× N :

(n,m) < (n′,m′) precisely when [(n < n′) or (n = n′ and m < m′)].

(that is, the “dictionary order” on N× N). It is easy to see that this is a well-ordering on N× N. Let (n,m) be
the least element in this ordering such that there exists an n ×m matrix A which satisfies Condition (1) but is
not Monge. We make the following observations about the 2-tuple (n,m):

(i) Both n and m must be at least 2. If m or n is 1, the Monge condition is vacously true.
(ii) n must be at least 3, since if n is 2, A would be Monge by Lemma 1.1.

Therefore, we can assume that n ≥ 3 and m ≥ 2.
The Monge condition requires the entries of A to satisfy many inequalities. Note that the minimality of (n,m)
guarantees that all of these inequalities, except for

A[1, 1] +A[m,n] ≤ A[1,m] +A[n, 1] (3)

hold. Also note that the minimality of (n,m) does not immediately imply anything about Condition (3). Intu-
itively, we are guaranteed that all of the inequalities, except for possibly the one involving the “corners” of A,
are satisfied. If this is not the case, we could find a smaller submatrix within A that satisfies Condition (1) but
is not Monge. This would contradict the minimality of (n,m).
We now show that Condition (3) must also hold. Consider the following entries of A:

A[1, 1] · · · A[1, n]
...

...
...

A[n− 1, 1] · · · A[n− 1,m]
A[n, 1] · · · A[n,m]


We know that the inequalities

A[1, 1] +A[n− 1,m] ≤ A[1, n] +A[n− 1, 1],

A[n− 1, 1] +A[n,m] ≤ A[n− 1,m] +A[n, 1],

must hold. (Why?) Adding these inequalities together yields

A[1, 1] +A[m,n] ≤ A[1,m] +A[n, 1].

Thus A is in fact a Monge array, which contradicts our hypothesis. 2
(b) Let f(i) be the index of the column containing the leftmost minimum element of row i. Prove that f(1) ≤

f(2) ≤ . . . ≤ f(m), for any m× n Monge array.
Solution: Let A denote a Monge array, such that that there exists an i with f(i) > f(i+ 1). We can then draw
the following picture of A: 

...
...

...
...

...
· · · A[i, f(i+ 1)] · · · A[i, f(i)] · · ·
· · · A[i+ 1, f(i+ 1) · · · A[i+ 1, f(i)] · · ·
...

...
...

...
...


Observe that, we must have, A[i, f(i+ 1)] > A[i, f(i)], since if A[i, f(i+ 1)] = A[i, f(i)], then f(i) is not the
index of the column containing the leftmost minimum element of row i.
Likewise, A[i+ 1, f(i)] ≥ A[i+ 1, f(i+ 1)], since f(i+ 1) is the index of the column containing the leftmost
minimum element of row i+ 1.
Adding these inequalities together, we get,

A[i, f(i+ 1)] +A[i+ 1, f(i)] > A[i, f(i)] +A[i+ 1, f(i+ 1)]

This contradicts the fact that A is Monge. 2
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4. Show that for any integer n ≥ 0,
n∑

k=0

C(n, k) · k = n · 2n−1.

Solution: At n = 0, the LHS of the identity is C(n, 0) · 0 = 0 and the RHS is 0 · 2−1 = 0.

At n = 1, the LHS of the identity is C(n, 0) · 0 + C(n, 1) · 1 = n and the RHS is n · 21−1 = n.

Thus, the identity is clearly true for n = 0 and n = 1. For n ≥ 2, we consider two cases:

(i) n is odd - In this case, the numbers n−1
2 , n+1

2 , etc. are integral.
Observe that,

n∑
k=0

C(n, k) · k = 0 · C(n, 0) + 1 · C(n, 1) + 2 · C(n, 2) + · · ·+ (n− 1) · C(n, n− 1) + n · C(n, n)

= [0 · C(n, 0) + n · C(n, n)] + [1 · C(n, 1) + (n− 1) · C(n, n− 1)]

+[2 · C(n, 2) + (n− 2) · C(n, n− 2)] + . . .

[(
n− 1

2
) · C(n,

n− 1

2
) + (

n− 1

2
+ 1) · C(n, (

n− 1

2
+ 1)]

=

n−1
2∑

k=0

[k · C(n, k) + (n− k) · C(n, n− k)]

=

n−1
2∑

k=0

[k · C(n, k) + (n− k) · C(n, k)], since C(n, k) = C(n, n− k)

=

n−1
2∑

k=0

[n · C(n, k)]

= n ·

n−1
2∑

k=0

C(n, k)

Let us focus on the sum
∑n−1

2

k=0 C(n, k). In class, we showed that,
∑n

k=0 C(n, k) = 2n. Now note that,

n−1
2∑

k=0

C(n, k) = C(n, 0) + C(n, 1) + . . . C(n,
n− 1

2
)

=
1

2
· [2 · C(n, 0) + 2 · C(n, 1) + . . . 2 · C(n,

n− 1

2
)]

=
1

2
· [(C(n, 0) + C(n, n)) + (C(n, 1) + C(n, n− 1) + . . . (C(n,

n− 1

2
) + C(n,

n+ 1

2
))],

since C(n, k) = C(n, n− k)

=
1

2

n∑
k=0

C(n, k)

=
1

2
2n

Accordingly,

n∑
k=0

C(n, k) · k = n ·

n−1
2∑

k=0

C(n, k)
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= n · (2n

2
)

= n · 2n−1

(ii) n is even - In this case, the number n
2 is integral. The analysis is identical to the case when n is odd, except that

the term n
2C(n, n2 ) is not combined with any other term. Accordingly, we have,

n∑
k=0

C(n, k) · k = n ·
n
2∑

k=0

C(n, k)

= n · 2n

2

= n · 2n−1

2

5. Let X be a non-negative random variable and suppose that E[X] and σ =
√
V ar(X) are well-defined.

(a) Show that Pr[X ≥ t] ≤ E[X]
t , for all t > 0.

(b) Show that Pr[|X − E[X]| ≥ t · σ] ≤ 1
t2 , for any t > 0.

Solution:

(a) Observer that,

E[X] =
∑
x

x · Pr[X = x]

=
∑

0≤x<t

x · Pr[X = x] +
∑
x≥t

x · Pr[X = x]

≥
∑
x≥t

x · Pr[X = x], since X ≥ 0

≥
∑
x≥t

t · Pr[X = x]

= t · Pr[X ≥ t]

⇒ Pr[X ≥ t] ≤ E[X]

t

The above inequality is known as Markov’s inequality.

(b) Observe that,

Pr[|X −E[X]| ≥ t · σ] = Pr[|X − E[X]|2 ≥ t2 · σ2]

≤ E[(X − E[X])2]

t2 · σ2
], by Markov′s inequality

=
V ar[X]

t2 · σ2
, by the definition of variance

=
σ2

t2 · σ2

⇒ Pr[|X − E[X]| ≥ t · σ] ≤ 1

t2

2
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