
Design of Algorithms - Homework III (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems
1. Professor Krustowski claims to have discovered a new sorting algorithm. Given an array A of n numbers, his

algorithm breaks the array into 3 equal parts of size n
3 , viz., the first third, the middle third and the bottom third. It

then recursively sorts the first two-thirds of the array, the bottom two-thirds of the array and finally the first two-thirds
of the array again. Using mathematical induction, prove that the Professor has indeed discovered a correct sorting
algorithm. You may assume the following: The input size n is always some multiple of 3; additionally, the algorithm
sorts by brute-force, when n is exactly 3. Formulate a recurrence relation to describe the complexity of Professor
Krustowski’s algorithm and obtain tight asymptotic bounds.

Solution: As per the specifications, the algorithm works correctly, when n ≤ 3.

Assume that the algorithm works correctly, as long as 1 ≤ n ≤ k, where k > 3.

Now consider the case where the array A contains k + 1 elements.

We divide the array A[1··k+1] (conceptually) into the following regions: L1 : A[1··k+1
3], L2 : A[k+1

3 +1··23 ·(k+1)]
and L3 : A[23 · (k + 1) + 1 · ·k + 1]. Thus, the first recursive invocation is called on L1 ∪ L2, the second recursive
invocation is called on L2 ∪ L3, and the third recursive invocation is called on L1 ∪ L2 again.

By the inductive hypothesis, the first recursive invocation will return a correctly sorted array, since the size of the
input array is at most k. (Note that 2

3 · (k+1) ≤ k as long as k ≥ 2.) It follows that after the first recursive invocation,
each element in L2 is at least as large as every element in L1. Arguing similarly, we observe that the second recursive
invocation correctly sorts the set L2 ∪L3; further every element in L3 is at least as large as each element in L2. From
the correctness of the first recursive invocation, we can therefore conclude that each element in L3 is at least as large
as every element in L1∪L2; further as per the inductive hypothesis, all the elements in L3 have been correctly sorted.
The third recursive invocation completes the sorting procedure, since by the inductive hypothesis, it correctly sorts
L1 ∪ L2 and thus the set L1 ∪ L2 ∪ L3 is correctly sorted.

Let T (n) denote the running time of Professor Krustowski’s algorithm. We have,

T (n) = 3, n ≤ 3

= 3 · T
(2

3
· n
)
, otherwise

The recurrence relation fits the template of the Master Theorem, with a = 3, b = 3
2 and f(n) = 0.

It is easy to see that f(n) = O(n(log1.5 3)−ε) for some ε > 0, so T (n) ∈ Θ(n2.7) by the master theorem (case 1).

2

2. Assume that you are given a chain of matrices 〈A1 A2 A3 A4〉, with dimensions 2 × 5, 5 × 4, 4 × 2, and 2 × 4,
respectively. Compute the optimal number of multiplications required to calculate the chain product and also indicate
what the optimal order of multiplication should be using parentheses.

1

Solution: Let m[i, j] denote the optimal number of multiplications to multiply the chain 〈Ai, Ai+1, . . . , Aj〉, where
matrix Ai has dimensions di−1 × di. As per the discussion in class, we know that

m[i, j] = 0, if j ≤ i

= min
k:i≤k<j

m[i, k] +m[k + 1, j] + di−1 · dk · dj

Computing M = [m[i, j]], i = 1, 2, 3, 4; j = i, i+ 1, . . . , 4, in bottom-up fashion, we get,

M =


0 40 56 72
0 0 40 80
0 0 0 32
0 0 0 0


By the above table, the optimal number of multiplications to multiply the given chain is 72; by recording the split
values, we see that the optimal order of multiplication is (((A1 ·A2) ·A3) ·A4).

2

3. A hiker has a choice of n objects {o1, o2, . . . , on} to fill a knapsack of capacity W . Object oi has benefit pi and
weight wi. A subset of objects is said to be feasible if the combined weight of the objects in the subset is at most
W . The hiker’s goal is to select a feasible subset of objects such that the benefit to him is maximized (benefits are
additive). Note that an object cannot be selected fractionally; it is either selected or not. Design a dynamic program
to help the hiker.

Solution: We first formulate the problem as an integer program. Let xi denote a variable, which is 1 if the hiker
selects object oi and 0, otherwise.

Accordingly, the benefit to the hiker is:
∑n
i=1 pi · xi and the cumulative weight of the objects in the knapsack is:∑n

i=1 wi · xi. Since, the capacity constraint of the knapsack cannot be violated, we must have
∑n
i=1 wi · xi ≤W .

Thus the integer program is:

max

n∑
i=1

pi · xi

n∑
i=1

wi · xi ≤W.

Let Si denote that subset of the set of objects, that includes the first i objects only. In other words, S0 = ∅, S1 = {o1},
S5 = {o1, o2, . . . , o5} and so on.

Define m[i, w] to be the maximum benefit that can be reaped using only the objects in Si and a knapsack of capacity
w. The following recurrences follow naturally:

m[0, w] = 0

m[i, 0] = 0

m[i, w] = m[i− 1, w], if wi > w

m[i, w] = max{m[i− 1, w],m[i− 1, w − wi] + pi}, if wi ≤ w

The first equality states that if there are no objects at all to choose from, then regardless of the capacity of the knapsack,
the benefit reaped is 0. Likewise, the second equality states that if the knapsack has capacity 0, it does not matter
how many objects you select; the accrued benefit is 0. The third equality states that if the oi has weight exceeding
the capacity of the knapsack, then we might as well focus on the first (i − 1) objects. If wi ≤ w, then we have two
choices, viz., we could exclude object oi, in which case the benefit accrued is m[i− 1, w] or we could include object
oi, in which case the benefit accrued is m[i− 1, w − wi] + pi.

2

As with the other dynamic programs that we studied, we can construct a table for m[i, j] and compute m[n,W],
which is the entry that we are interested in. Since each entry can be computed in O(1) time, and there are (n+ 1) ·W
entries in the table, we can implement the dynamic program in O(n ·W) time.

2

4. Let T denote a binary search tree. Show that

(a) If node a in T has two children, then its successor has no left child and its predecessor has no right child.
(b) If the keys in T are distinct and x is a leaf node and y is x’s parent, then y · key is either the smallest key in T

larger than x · key, or the largest key in T smaller than x · key.

Solution:

(a) Since a has two children, its right subtree is non-empty. Its successor therefore is the leftmost node in the right
subtree. (Why? For instance, why cannot its successor be one of its ancestors?) But by definition, the leftmost
node has no left child.
A similar argument shows that the predecessor of a has no right child.

(b) Since the keys in T are distinct, either x · key < y · key, or y · key < x · key.
Assume that x · key < y · key; it follows that x is the left child of y. Furthermore, assume the existence of a
node z in T , such that x · key < z · key < y · key. Let r denote the root of T . Clearly, z must be in the same
subtree of r (left or right) as y. (Why?) Then observe, that z must be an ancestor of y, because it cannot be part
of the left subtree of y (x is the only node in the left subtree), and at the same time, z · key < y · key, i.e., z
cannot be part of the right subtree of y either. Finally note that y cannot be part of the left subtree of z, since
y · key > z · key and y cannot be part of the right subtree of z, since that would imply that x · key > y · key,
contradicting our initial assumption. In other words, such a z cannot exist. We conclude that y · key is the
smallest key in T , that is larger than x · key.
A similar argument applies to the case in which y · key < x · key.

2

5. An AVL tree is a binary search tree that is height balanced: for each node x, the heights of the left and right subtrees
of x differ by at most 1. Prove that an AVL tree with n nodes has height O(log n).

Solution: We need the following lemma.

Lemma 1.1 In an AVL tree of height h, there are at least Fh nodes, where Fh is the hth Fibonacci number.

Proof: The base h = 0 is easy: a tree of height 0 has either 1 or 0 nodes, and F0 = 0.

Now assume that the claim is true for all AVL trees of height h. Let T be an AVL tree of height h+ 1. Let Tl and Tr
be the left and right subtrees of the root of T , respectively. The AVL condition implies that Tl and Tr are both AVL
trees. Since T has height h+ 1, at least one of Tl, Tr has height h and neither has a height greater than h. Thus, using
the AVL condition, either both have height h, or one has height h and the other has height h − 1. By induction, the
number of nodes in T is at least

Fh + Fh−1 + 1,

which is at least Fh+1. 2

Now we use a standard fact about the Fibonacci numbers:

Fi+2 ≥ φi for i ≥ 0

where φ(≈ 1.61803399) is the golden ratio (see Section 4-5 of [CLRS09]).

Combining Lemma 1.1 and this fact, we see that an AVL tree of height h ≥ 2 has at least φh−2 many nodes. This
implies that an AVL tree with n nodes has height at most⌊

log n

log φ
+ 2

⌋
,

3

which is O(log n).

2

References
[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 3rd edition,

2009.

4

