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ABSTRACT: We present a novel analysis of a random sampling approach for four clustering prob-
lems in metric spaces: k-median, k-means, min-sum k-clustering, and balanced k-median. For all
these problems, we consider the following simple sampling scheme: select a small sample set of input
points uniformly at random and then run some approximation algorithm on this sample set to com-
pute an approximation of the best possible clustering of this set. Our main technical contribution is a
significantly strengthened analysis of the approximation guarantee by this scheme for the clustering
problems.

The main motivation behind our analyses was to design sublinear-time algorithms for clustering
problems. Our second contribution is the development of new approximation algorithms for the afore-
mentioned clustering problems. Using our random sampling approach, we obtain for these problems
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the first time approximation algorithms that have running time independent of the input size, and
depending on k and the diameter of the metric space only. © 2006 Wiley Periodicals, Inc. Random

Struct. Alg., 30, 226–256, 2007
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1. INTRODUCTION

The problem of clustering large data sets into subsets (clusters) of similar characteristics
has been extensively studied in computer science, operations research, and related fields.
Clustering problems arise in various applications, for example, in data mining, data com-
pression, bioinformatics, pattern recognition, and pattern classification. In some of these
applications, massive datasets have to be processed, e.g., web pages, network flow statistics,
or call-detail records in telecommunication industry. Processing such massive data sets in
more than linear time is by far too expensive and often even linear time algorithms may
be too slow. One reason for this phenomenon is that massive data sets do not fit into main
memory and sometimes even secondary memory capacities are too low. Hence, there is the
desire to develop algorithms whose running times are not only polynomial, but in fact are
sublinear in n (for very recent survey expositions, see, e.g., [8,9,24]). In a typical sublinear-
time algorithm, a subset of the input is selected according to some random process and then
processed by an algorithm. With high probability, the outcome of this algorithm should be
a good approximation of the outcome of an exact algorithm running on the whole input.
In many cases, the randomized process that selects the sample is very simple, e.g., it may
select a subset uniformly at random.

In this paper, we address the problem of designing sublinear-time approximation algo-
rithms using uniformly random sampling for clustering problems in metric spaces. We
consider four clustering problems: the k-median problem, the k-means problem, the min-
sum k-clustering problem, and the balanced k-median problem. Given a finite metric
space (V , µ), the k-median problem is to find a set C ⊆ V of k centers that minimizes∑

p∈V µ(p, C), where µ(p, C) denotes the distance from p to the nearest point in C. The
k-means problem differs from the k-median problem in that we minimize the sum of the
squares of the distances of all points to the nearest center, that is,

∑
p∈V (µ(p, C))2. The

min-sum k-clustering problem for a metric space (V , µ) is to find a partition of V into k
subsets C1, . . . , Ck such that

∑
1≤i≤k

∑
p,q∈Ci

µ(p, q) is minimized. The balanced k-median
problem (which is perhaps less standard than the other three problems) for a metric space
(V , µ) is to find a set {c1, . . . , ck} ⊆ V of k-centers and a partition of V into k subsets
V1, . . . , Vk that minimizes

∑
1≤i≤k |Vi|∑p∈Vi

µ(p, ci). Note that in this problem we allow
that ci /∈ Vi for an optimal partition V1, . . . , Vk . We also consider the variant of the problem
with the constraint ci ∈ Vi. The results obtained in this paper hold for both variants of the
problem.

For all these clustering problems we study the following “simple sampling” algorithm:

• pick a random sample S of points,
• run an approximation algorithm for clustering for the sample, and
• return the clustering induced by the solution for the sample.

The main goal of this article is to design a generic method of analyzing this sampling
scheme and to obtain a significantly stronger quantitative bounds for the performance of
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this method. Using our approach, for a large spectrum of input parameters, we obtain
sublinear-time algorithms for the four clustering problems mentioned earlier. These are the
first approximation algorithms for these problems whose running time is fully independent
of the input size, |V |.

1.1. Previous Research

1.1.1. k-Median. The k-median clustering problem is one of the most studied clustering
problem in the literature, both, in theoretical and applied research. It is well-known that
the k-median clustering in metric spaces is NP-hard and it is even NP-hard to approxi-
mate within a factor of 1 + 2

e [19]. There exist polynomial time approximation algorithms
with constant approximation ratios [2, 5, 6, 16, 20, 26]. When the underlying space is the
Euclidean plane, Arora et al. [1] obtained even a PTAS for k-median (extension to higher
dimensions and improvements in the running time have been obtained in [3, 14, 21, 23]).
The k-median problem has been also extensively investigated in the data stream model,
see, e.g., in [7, 12, 14].

A few sublinear-time algorithms for the k-median problem are also known, that is,
algorithms with a running time of o(n2) (if we consider an arbitrary metric space (V , µ)

with |V | = n, then its description size is �(n2)), see, e.g., [16, 26–28]. The algorithm of
Indyk [16] computes in O(nk) time a set of O(k) centers whose cost approximates the value
of the k-median by a constant factor. Mettu and Plaxton [26] gave a randomized O(1)-
approximate k-median algorithm that runs in time O(n(k + log n)) subject to the constraint
R ≤ 2O(n/ log(n/k)), where R denotes the ratio between the maximum and the minimum
distance between any pair of distinct points in the metric space. Recently, Meyerson et al.
[27] presented a sublinear-time for the k-median problem under an assumption that each
cluster has size �(εn/k); their algorithm requires time O((k2/ε) log(k/ε)) and gives an
O(1)-approximation guarantee with high probability.

In this article, we consider a model where an upper bound on the diameter of the metric
space, � is given, that is, where µ : V × V → [0, �]. We are interested in the average
error of the cost of a sample that is chosen uniformly at random (with repetition) from V .
This model has been introduced by Mishra et al. [28] and is motivated by previous works
in statistics and learning theory. For example, research on uniform convergence in statistics
tries to characterize conditions under which a sample set S is large enough, such that for
any function f from a class F, the mean of f on the sample deviates by at most ε from the
true mean of f .

We remark that an average additive error of ε translates to an additive error of εn for the
total cost. This implies that these are not multiplicative approximation algorithms since the
cost for an optimal clustering can be much smaller than εn. However, for most instances
arising in practice, the average contribution of a point is some small constant. For these
instances, our results translate to approximation algorithms in the classical sense.

Next, let us notice that an additive error cannot be avoided if one wants to design algo-
rithms with o(n) running time. This can be seen as follows. If we take a random sample
of size s then it is unlikely that our sample contains points from a cluster with, say, n

100s
points. If this cluster has distance to the remaining points roughly �, then by not placing
a center in this cluster, one can incur an (average) error of �

s . Since the cost of clustering
the remaining points may be arbitrarily small, this error is of additive nature. Furthermore,
it is easy to see that any algorithm that has an additive average error of at most ε requires
s ≥ �/ε, i.e., the sample size must depend on �.
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We also remark that scaling the instance cannot help to overcome these problems. If we
scale the metric such that the new metric has maximum distance 1, then apply the algorithm
and rescale back to our original instance, the additive error will become ε� rather than ε.

Mishra et al. [28] studied the quality of k-median clusterings obtained by random sam-
pling in this model. Let Aα be an arbitrary α-approximation algorithm for k-median. Using
techniques from statistics and computational learning theory, Mishra et al. [28] proved that
if we sample a set S of s = Õ

((
α�

ε

)2
(k ln n + ln(1/δ))

)
points from V i.u.r. (independently

and uniformly at random) and run algorithm Aα to approximate the k-median solution for S,
then with probability at least 1 − δ the average distance of each point to the nearest center
in the set of centers output by Aα is at most 2α medavg(V , k) + ε, where medavg(V , k) denotes

the average distance to the optimal k-median solution C, that is, medavg(V , k) =
∑

v∈V µ(v,C)

n .
Using this result, Mishra et al. [28] developed a generic sublinear-time approximation algo-
rithm for k-median. If the algorithm Aα has the running time of T(s), then the resulting
algorithm runs in T(s) time for s = Õ

((
α�

ε

)2
(k ln n + ln(1/δ))

)
and computes with proba-

bility at least 1 − δ a set of k centers such that the average distance to the nearest center is
at most 2α medavg(V , k) + ε. Notice that since there exist O(1)-approximation algorithms
for k-median with T(s) = O(s2), this approach leads to an approximation algorithm for the
k-median problem whose dependency on n is only Õ(log2 n), rather than �(n2) or �(nk)

as in the algorithms discussed earlier. On the other hand, the running time of this algo-
rithm depends on �; however, as discussed earlier (see also [26–28]), such a dependency
is necessary to obtain this kind of approximation guarantee.

1.1.2. k-Means Clustering. The k-means problem is another standard clustering prob-
lem that has been widely studied in the literature. As in the case of the k-median problem,
the k-means problem in metric spaces is NP-hard to approximate within a factor of 1 + c,
for some positive constant c. Notice that the k-means problem in a metric space is identical
to the k-median problem in a non-metric space where all the distances are squared. The
squaring of the distances does not maintain the triangle inequality, but it is well-known that
the resulting distance function is almost a metric: all of the properties of a metric space are
satisfied except that the triangle inequality only holds to within a factor of 2. Therefore, in
particular, many algorithms for the k-median problem can be easily transformed to work
for the k-means problem as well.

The k-means clustering problem has been studied especially extensively in geomet-
ric setting, where the input point set is in a Euclidean space R

d and the centers are not
restricted to be input points but may be arbitrary points in R

d . Inaba et al. [15] described an
exact algorithm for this problem that requires time O(nkd+1). There are numerous (1 + ε)-
approximation algorithms for k-means clustering in R

d , see, e.g., [3, 11, 14, 15, 22, 25].
The most recent algorithm, by Kumar et al. [22], is a sampling-based algorithm that finds a
(1+ε)-approximation of k-means clustering for a set of n points in R

d in time O(2(k/ε)O(1)
dn),

which is linear for fixed k and ε.

1.1.3. Min-Sum k-Clustering. The min-sum k-clustering problem was first formulated
(for general graphs) by Sahni and Gonzales [30]. There is a 2-approximation algorithm
by Guttman-Beck and Hassin [13], with running time nO(k). Recently, Bartal et al. [4]
presented an O

(
1
ε

log1+ε n
)
-approximation algorithm with nO(1/ε) running time, and then

Fernandez de la Vega et al. [11] gave a (1 + ε)-approximation algorithm with running
time O(n3k2O((1/ε)k2

)). For points in R
d , Schulman [29] introduced an algorithm for distance
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functions �2
2, �1, and �2 that computes a solution that is either within a (1 + ε)-factor of the

optimum or that disagrees with the optimal clustering in at most an ε fraction of the points.
For the basic case of k = 2 (which is the complement of the Max-Cut problem), Indyk [18,
Theorem 38] gave a (1+ε)-approximation algorithm that runs in time O(21/εO(1)

n(log n)O(1)),
which is sublinear in the full input description size, but superlinear in n.

1.1.4. Balanced k-Median. It is known that in metric spaces the solution to balanced
k-median is to within a factor of 2 of that of min-sum k-clustering, e.g. [4, Claim 1].
Therefore, balanced k-median has been usually considered in connection with the min-sum
k-clustering problem discussed earlier. The problem was first studied by Guttman-Beck and
Hassin [13] who gave an exact O(nO(k))-time algorithm, and Bartal et al. [4] obtained an
O
(

1
ε

log1+ε n
)
-approximation in time nO(1/ε) based on metric embeddings into HSTs [10].

We are not aware of any sublinear-time algorithm for balanced k-median.

1.2. New Contribution

In this article, we investigate the quality of a simple uniform sampling approach to clustering
problems and apply novel analyzes to obtain improved bounds for the running time of
clustering algorithms.

1.2.1. k-Median Problem. We first study the k-median problem. Our sampling is identi-
cal to the one by Mishra et al. [28]; however, our analysis is stronger and leads to significantly
better bounds. Let α ≥ 1, 0 < δ < 1, 0 < β ≤ 1, and ε > 0 be arbitrary parameters.
We prove that if we pick a sample set of size Õ

(
�α

εβ2 (k + α ln(1/δ))
)

i.u.r., then an α-
approximation of the optimal solution for the sample set yields an approximation of the
average distance to the nearest median to within 2(α +β) medavg(V , k)+ε with probability
at least 1−δ; notice, in particular, that this gives the sample size independent of n, which we
consider the main contribution of our result. As noted before (see also [28]), it is impossible
to obtain a sample complexity independent of both � and n.

Comparing our result with the one from [28], we improve the sample complexity
by a factor of � log n

ε
while obtaining a slightly worse approximation ratio of 2(α +

β) medavg(V , k) + ε, instead of 2α medavg(V , k) + ε as in [28]. As a highlight, we obtain

an algorithm that in time Õ
((

�

ε
(k + log(1/δ))

)2)
—fully independent of n—has an aver-

age distance to the nearest median of at most O(medavg(V , k)) + ε with probability at
least 1 − δ.

Furthermore, our analysis can be improved if we assume the input points are in Euclidean
space R

d . In this case, we improve the approximation guarantee to (α + β) medavg(V , k) +
ε at the cost of increasing the sample size to Õ

(
�α

εβ2 (kd + log(1/δ))
)
. This bound also

significantly improves the analysis of Mishra et al. [28].

1.2.2. k-Means Clustering. Our analysis of the sampling algorithm for k-median men-
tioned earlier can be easily modified to handle the k-means clustering problem. The only
real difference is the loss of one � factor in the analysis.

Let meanavg(V , k) denote the average distance to the optimal k-means solution C, that

is, meanavg(V , k) =
∑

v∈V (µ(v,C))2

n . Then, we can prove that if we pick a sample set of

size Õ
(

�2α

εβ2 (k + α ln(1/δ))
)

i.u.r., then an α-approximation of the optimal solution for
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the sample set yields an approximation of the average distance to the nearest k-means to
within 4(α + β) meanavg(V , k) + ε with probability at least 1 − δ. Using this result, we can

obtain an algorithm that in time Õ
((

�2

ε
(k + log(1/δ))

)2)
has the average distance to the

nearest k-means at most O(meanavg(V , k)) + ε with probability at least 1 − δ. We can also
extend our analysis to the Euclidean version of the problem. We prove that a set of points in
Euclidean space R

d , a sample set of size Õ
(

�2α

εβ2 (kd + log(1/δ))
)

can be used to obtain an

algorithm that returns a k-means solution of average cost at most (α+β) meanavg(V , k)+ε2

with probability at least 1 − δ.

1.2.3. Min-Sum k-Clustering and k-Median Problems. The min-sum k-clustering and
the balanced k-median problems are combinatorially more complex than the k-median
problem. For these two problems, we give the first sublinear-time algorithms. Since in
metric spaces the solution to the balanced k-median problem is within a factor of 2 of that
of the min-sum k-clustering problem, we will consider the balanced k-median problem only.

We consider the problem of minimizing the average balanced k-median cost, that is,
the cost of the balanced k-median normalized by the square of the number of input ele-
ments. We use the same approach as for the k-median problem. Let ε > 0, α ≥ 1,
β > 0, and 0 < δ < 1 be arbitrary parameters. We prove that if we pick a sample
set of size Õ

(
�(k+ln(1/ρ))

ε
((α/β)2 + �k2/ε)

)
i.u.r., then an α-approximation of the optimal

solution for the sample set approximates the average balanced k-median cost to within
(2α + β) medb

avg(V , k) + ε with probability at least 1 − δ, where medb
avg(V , k) denotes the

average cost of the optimal solution for balanced k-median. Notice that similarly as for the
k-median problem, the sample size is independent of n.

Unlike the k-median problem, the output of balanced k-median is supposed to consist of
a set of k centers c1, . . . , ck and a partition (clustering) of the input V into V1 ∪ · · · ∪ Vk that
minimizes (or approximately minimizes)

∑k
i=1 |Vi|∑v∈Vi

µ(v, ci). Our sampling algorithm,
when combined with the algorithm due to Bartal et al. [4], leads to a randomized algorithm
that in time independent of n returns the set of k centers c1, . . . , ck for which the value of∑k

i=1 |Vi |
∑

v∈Vi
µ(v,ci)

n2 is at most logO(1) n medb
avg(V , k) + ε with probability at least 1 − δ. If

one also knows the number of elements that are assigned to each cluster in an approximate
solution, then one can compute in O(nk) + Õ(k2.5√n) time an optimal clustering [31].
Since our algorithm can be modified to provide the cluster sizes, we can use this approach
to compute a good solution quickly from the implicit representation as a balanced k-median.

1.3. High Level Description of Our Approach

Before we begin to analyze specific problems, we first discuss our high level approach. We
study the approximation guarantee of the following natural sampling scheme. Choose a mul-
tiset S of s elements i.u.r. from V , for some suitable chosen s. Then run an α-approximation
algorithm A for the problem of interest on S. Our goal is to study the quality of the solution
computed by A on S.�

�

�

�

Generic sampling scheme (V , A, s)

choose a multiset S ⊆ V of size s i.u.r. (with repetitions)
run α-approximation algorithm A on input S to compute a solution C∗ (set of k centers)
return set C∗
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232 CZUMAJ AND SOHLER

Let us denote by cost(X , C) the cost of the clustering (for the problem under consideration)
of set X with the center set C and let Copt denote an optimal solution for V .

To analyze the approximation guarantee of this approach, we proceed in three steps.

(i) We show that w.h.p. and after normalization cost(S, Copt) is an approximation of
cost(V , Copt).

(ii) Since Copt may not be a feasible solution for S (e.g., in the k-median problem Copt

may not be contained in S), we show that there is a feasible solution in S, which
has cost at most c

α
cost(S, Copt) for some constant c ≥ α.

(iii) We show that w.h.p. every possible solution for V with cost more than c cost(V , Copt)

is either not a feasible solution for S or has cost more than c cost(S, Copt) for S.

These three claims will allow us to conclude the analysis as follows. Since S contains
a solution with cost at most c

α
cost(S, Copt), A will compute a solution C∗ with cost at

most c cost(S, Copt). Since every solution for V with cost more than c cost(V , Copt) has cost
more than c cost(S, Copt) for S, we know that A computes a solution C∗ with cost at most
c cost(V , Copt) for V . Hence, our sampling is a c-approximation algorithm.

We apply this approach to study sampling algorithms for four problems: the k-
median problem, the k-means problem, the balanced k-median problem, and the min-sum
k-clustering problem.

2. ANALYSIS OF THE k -MEDIAN PROBLEM

We first consider the k-median problem. A k-median of V is a set C of k points (centers) in
V that minimizes the value of∑

v∈V

min
1≤i≤k

µ(v, ci) ≡
∑
v∈V

µ(v, C).

The k-median problem is to compute a k-median for a given metric space (V , µ).
Let

medopt(V , k) = min
C⊆V ,|C|=k

∑
v∈V

µ(v, C)

denote the cost of a k-median of V and let

medavg(V , k) = 1

|V | medopt(V , k)

denote the average cost of a k-median of V . In a similar manner, for a given U ⊆ V and
C ⊆ V , we define the average cost of solution C to be

costavg(U, C) = 1

|U|
∑
v∈U

µ(v, C).

The following theorem summarizes our analysis and it is the main result of this section.
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Theorem 1. Let (V , µ) be a metric space. Let 0 < δ < 1, α ≥ 1, 0 < β ≤ 1 and ε > 0
be approximation parameters. Let A be an α-approximation algorithm for the k-median
problem in metric spaces. If we choose a sample set S ⊆ V of size s i.u.r., with

s ≥ cα

β

(
k + �

εβ

(
α ln(1/δ) + k ln

(
k�α

εβ2

)))
,

for an appropriate constant c and we run algorithm A with input S, then for the solution
C∗ obtained by A, with probability at least 1 − δ it holds the following

costavg(V , C∗) ≤ 2(α + β) medavg(V , k) + ε.

To begin our analysis of the quality of the approximation of C∗ and the proof of
Theorem 1, let us introduce some basic notation.

Definition 2.1 (ϕ-good/bad solutions). A set of k centers C is a ϕ-bad solution of the
k-median of V if costavg(V , C) > ϕ medavg(V , k). If C is not a ϕ-bad solution, then it is a
ϕ-good solution.

For the k-median problem, we want to prove that for a certain sample size s our algo-
rithm is a (2(α + β))-approximation algorithm. Following the approach described in the
previous section, we have to show that our sample set S contains w.h.p. a solution with
cost at most 2(1 + β/α) medavg(V , k), and hence, any α-approximation for S returns a
2(α + β)-approximation for V w.h.p. We prove the following lemma.

Lemma 2.2. Let S be a multiset of size s ≥ 3�α(1+α/β) ln(1/δ)

β medavg(V ,k)
chosen from V i.u.r. If an

α-approximation algorithm for k-median A is run on input S, then the following holds for
the solution C∗ returned by A: Pr

[
costavg(S, C∗) ≤ 2(α + β) medavg(V , k)

] ≥ 1 − δ.

Proof. Let Copt denote a k-median of V and let Xi denote the random variable for the dis-
tance of the i-th point in S to the nearest center of Copt. Then, costavg(S, Copt) = 1

s

∑
1≤i≤s Xi.

Furthermore, since E[Xi] = medavg(V , k), we also have medavg(V , k) = 1
s E
[∑

Xi

]
.

Therefore,

Pr
[
costavg(S, Copt) >

(
1 + β

α

)
medavg(V , k)

] = Pr

[∑
1≤i≤s

Xi >
(
1 + β

α

)
E

[∑
1≤i≤s

Xi

]]
.

Observe that each Xi satisfies 0 ≤ Xi ≤ �. Therefore, we apply a Hoeffding bound
(Lemma A.2) to obtain:

Pr

[∑
1≤i≤s

Xi > (1 + β/α)E

[∑
1≤i≤s

Xi

]]
≤ e− s medavg(V ,k) min{(β/α),(β/α)2}

3� ≤ δ. (1)

Let C be the set of k centers in S obtained by replacing each c ∈ Copt by its nearest neighbor
in S. By the triangle inequality, we get costavg(S, C) ≤ 2 costavg(S, Copt). Hence, multiset S
contains a set of k centers whose cost is at most 2(1 + β/α) medavg(V , k) with probability
at least 1 − δ. Therefore, the lemma follows because A returns an α-approximation C∗ of
the k-median for S.
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Next, we show that any solution Cb ⊆ S that is a (2α + 6β)-bad solution of a k-median
of V satisfies costavg(S, Cb) > 2(α + β) medavg(V , k) with high probability.

Lemma 2.3. Let S be a multiset of s points chosen i.u.r. from V with s such that

s ≥ c

(1 + α/β)k +
(α + β)�

(
ln(1/δ) + k ln

(
k(α+β)�

β2 medavg(V ,k)

))
β2 medavg(V , k)

 ,

where c is a certain positive constant. Let C be the set of (2α + 6β)-bad solutions C of a
k-median of V. Then,

Pr
[∃Cb ∈ C : Cb ⊆ S and costavg(S, Cb) ≤ 2(α + β) medavg(V , k)

] ≤ δ.

Proof. We choose c so that s ≥ 2α+3β

β
k. Let us consider an arbitrary solution Cb that is a

(2α + 6β)-bad solution of a k-median of V and let S∗ be a multiset of s − k points chosen
i.u.r from V . Then,

Pr
[
Cb ⊆ S and costavg(S, Cb) ≤ 2(α + β) medavg(V , k)

]
= Pr

[
costavg(S, Cb) ≤ 2(α + β) medavg(V , k)

∣∣Cb ⊆ S
]

Pr [Cb ⊆ S]

= Pr
[

costavg(S
∗, Cb) ≤ 2

s

s − k
((α + β) medavg(V , k))

]
Pr [Cb ⊆ S] (2)

≤ Pr
[
costavg(S

∗, Cb) ≤ 2((α + 1.5β) medavg(V , k))
]

Pr [Cb ⊆ S] , (3)

where (2) holds because (s − k) costavg(S∗, Cb) = cost(S∗, Cb) = cost(S∗ ∪ Cb, Cb) =
s costavg(S∗ ∪ Cb, Cb) and the elements are chosen with repetition, and (3) follows from
s ≥ 2α+3β

β
k.

Next, similar to the proof of Lemma 2.2, we prove the following inequality

Pr
[
costavg(S

∗, Cb) ≤ 2(α + 1.5β) medavg(V , k)
] ≤ e

−sβ2 medavg(V ,k)

2(α+β)� . (4)

To prove this, let us denote by Xi the random variable for the distance of the i-th point in
S∗ to the nearest center of Cb. Since Cb is a (2α + 6β)-bad solution of a k-median of V , we
have E[Xi] > (2α + 6β) medavg(V , k). Therefore, we have

Pr
[
costavg(S

∗, Cb) ≤ 2(α + 1.5β) medavg(V , k)
]

= Pr

[
s−k∑
i=1

Xi ≤ (s − k)2(α + 1.5β) medavg(V , k)

]

≤ Pr

[
s−k∑
i=1

Xi ≤
(

1 − 3β

2α + 6β

)
E

[
s−k∑
i=1

Xi

]]
.

Next, since 0 ≤ Xi ≤ �, we apply Hoeffding bound (Lemma A.2) to the above to obtain

Pr
[
costavg(S

∗, Cb) ≤ 2(α + 1.5β) medavg(V , k)
] ≤ exp

−
(

3β

2α+6β

)2
E
[∑s−k

i=1 Xi

]
2�


≤ exp

(
−9β2(s − k) medavg(V , k)

4�(α + 3β)

)
,

Random Structures and Algorithms DOI 10.1002/rsa



SUBLINEAR-TIME APPROXIMATION FOR CLUSTERING 235

where the last inequality follows from E[Xi] > (2α + 6β) medavg(V , k). Since s ≥ 2α+3β

β
k

implies that s − k ≥ 2
3 s, the inequality above yields (4).

Once we have inequality (4), we can combine it with the inequality Pr[Cb ⊆ S] ≤ (s
k

)/(n
k

)
into (3), and then apply there the upper bound |C| ≤ (n

k

)
to conclude:

Pr
[∃Cb ∈ C : Cb ⊆ S and costavg(S, Cb) ≤ 2(α + β) medavg(V , k)

]
≤
∑
Cb∈C

Pr
[
Cb ⊆ S and costavg(S, Cb) ≤ 2(α + β) medavg(V , k)

]
≤
∑
Cb∈C

Pr
[
costavg(S

∗, Cb) ≤ 2
(
α + 1.5β) medavg(V , k)

)]
Pr [Cb ⊆ S]

≤
∑
Cb∈C

exp

(
−β2s medavg(V , k)

2�(α + β)

) (s
k

)(n
k

)
≤
(

n

k

)
exp

(
−β2s medavg(V , k)

2�(α + β)

) (s
k

)(n
k

)
≤ sk exp

(
−β2s medavg(V , k)

2�(α + β)

)
,

which is smaller than δ for

s ≥ max

{
4k�(α + β)

β2 medavg(V , k)
ln

(
4k�(α + β)

β2 medavg(V , k)

)
,

2�(α + β) ln(1/δ)

β2 medavg(V , k)

}
.

This implies Lemma 2.3.

Proof of Theorem 1. Let β∗ be a positive parameter that will be set later in the proof.
Let s be chosen such that the prerequisites of Lemmas 2.2 and 2.3 hold with β replaced by
β∗, that is,

s ≥ c(1 + α/β∗)
(

k + �

β∗ medavg(V , k)

(
α ln(1/δ) + k ln

(
k(α + β∗)�

(β∗)2 medavg(V , k)

)))
(5)

for certain constant c. Let S be a multiset of s points chosen i.u.r. from V . Then, by Lemma 2.3
with probability at least 1− δ, no set C ⊆ S that is a (2α +6β∗)-bad solution of a k-median
of V satisfies the inequality

costavg(S, C) ≤ 2(α + β∗) medavg(V , k).

On the other hand, if we run algorithm A for set S, then by Lemma 2.2, the resulting set C∗

of k centers with probability at least 1 − δ satisfies

costavg(S, C∗) ≤ 2(α + β∗) medavg(V , k).

This, together with the claim above implies that with probability at least 1 − 2δ the set C∗

is a (6β∗, 2α)− good solution of a k-median of V , that is,

Pr
[
costavg(V , C∗) ≤ (2α + 6β∗) medavg(V , k)

] ≥ 1 − 2δ. (6)

To complete the proof, we must include the only parameters β and ε and remove the
dependence of medavg(V , k) in the bound of s in (5).
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Let us first consider the case when medavg(V , k) ≤ ε. We use (5) and (6) with β∗ =
1
6ε/ medavg(V , k), and since β∗ ≥ 1/6, we will obtain that if

s ≥ c(1 + α)

(
k + �

ε

(
α ln(1/δ) + k ln

(
k(α + 1)�

ε

)))
,

for certain positive constant c, then with probability at least 1 − 2δ we have

costavg(V , C∗) ≤ (2α + 6β∗) medavg(V , k) = 2α medavg(V , k) + ε.

Notice that this bound is independent of β.
Next, we consider the case when medavg(V , k) > ε. Then, by (5) and (6), we have that

for a certain constant c > 0 and for β = 3β∗, if

s ≥ c(1 + α/β)

(
k + �

βε

(
α ln(1/δ) + k ln

(
k�(1 + α/β)

β2ε

)))
,

then with probability at least 1 − 2δ we have

costavg(V , C∗) ≤ 2(α + β) medavg(V , k).

Theorem 1 follows by combining these two bounds.

3. k -MEDIAN APPROXIMATION IN EUCLIDEAN SPACES

Our result from the previous section can be improved if we consider the k-median problem
in Euclidean spaces R

d . Let us remind that the Euclidean k-median problem is for an
input set V of n points in R

d to find k centers C = {c1, . . . , ck} ⊆ R
d that minimize

medEd

opt(V , k) = ∑
v∈V min1≤i≤k ‖v − ci‖2, where ‖v − ci‖2 denote the Euclidean distance

between v and ci. (Notice that in the definition of the k-median problem used in Section 2
we required that C ⊆ V ; now, we require only C ⊆ R

d .)

Let medEd

avg(V , k) = 1
|V | medEd

opt(V , k) and costEd

avg(S, C) = 1
|S|
∑

u∈S min1≤i≤k ‖u − ci‖2.
Then, we can prove the following analogue of Theorem 1.

Theorem 2. Let V be a subset of R
d of size n. Let 0 < δ < 1, α ≥ 1, β ≤ 1, and ε > 0

be approximation parameters. Let A be an α-approximation algorithm for the Euclidean
k-median problem in R

d . If we choose a sample set S ⊆ V of size s i.u.r., where

s ≥ cα

β

(
k + �

βε

(
kd ln(

√
d�/ε) + ln(1/δ)

))
,

and we run algorithm A with input S, then for the solution C∗ obtained by A, with probability
at least 1 − δ it holds the following,

costEd

avg(V , C∗) ≤ (α + β) medEd

avg(V , k) + ε.

Proof. The proof is almost identical to the proof of Theorem 1 with the exception of a
few minor modifications. First of all, since we do not require C ⊆ V , in Lemma 2.2 we
do not need factor 2 in the approximation bound in that lemma. Therefore, in particular,
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the bound corresponding to Lemma 2.2 is now as follows: if s ≥ 3�α(1+α/β) ln(1/δ)

β medavg(V ,k)Ed , then
Pr
[
costEd

avg(S, C∗) ≤ (α + β) medEd

avg(V , k)
] ≥ 1 − δ.

Next, we proceed to the analysis corresponding to that in Lemma 2.3. All the arguments
from that lemma can be used here with the exception of the bound of sk for the number
of locations for k centers contained in S, which is in general not true for the Euclidean
k-median problem. However, we can use a standard observation in similar situations, and
consider only centers having points on a certain grid in R

d . Indeed, since we know that the
input is contained in a d-dimensional cube of side length �, we can put a d-dimensional
grid with

(√
d�

2ε

)d
grid points to obtain an additional additive error in k-median of at most

εn (see also [28, Section 3.2]). Therefore, the number of k centers locations can be upper
bounded by

(√
d�

2ε

)kd
. With this upper bound, if C is the set of (α + 3β)-bad solutions of a

k-median of V , then

Pr
[∃Cb ∈ C : costEd

avg(S, Cb) ≤ (α + β) medEd

avg(V , k) + ε
]

≤
(√

d�

2ε

)kd

exp

(−sβ2 medEd

avg(V , k)

(α + 3β)�

)
.

If we use this bound to obtain the result corresponding to Lemma 2.3, then we obtain, that
if

s ≥ c

(
(1 + α/β)k + kd�(α + β) ln(

√
d�/ε)

β2 medEd

avg(V , k)
+ (α + β)�

β2 medEd

avg(V , k)
ln(1/δ)

)

then
Pr
[∃Cb ∈ C : costEd

avg(S, Cb) ≤ (α + β) medEd

avg(V , k) + ε
] ≤ δ.

To complete the proof, we use identical arguments as those used at the end of Section 2.

If we consider separately the cases when medEd

avg(V , k) ≤ ε and when medEd

avg(V , k) > ε,
then using arguments from Section 2, we obtain that if

s ≥ cα

β

(
k + �

βε

(
kd ln(

√
d�/ε) + ln(1/δ)

))
then

Pr
[∃Cb ∈ C : costEd

avg(S, Cb) ≤ (α + β) medEd

avg(V , k) + ε
] ≤ δ,

what completes the proof of Theorem 2.

4. EXTENSION TO k -MEANS CLUSTERING IN METRIC SPACES

The analysis from the previous two sections can be extended to the k-means problem in a
straightforward way. Indeed, the k-means problem is identical to the k-median problem with
the distance function to be the square of the original “metric distance”, i.e., the objective is
to find a set C of k centers that minimizes∑

v∈V

(µ(v, C))2.

Random Structures and Algorithms DOI 10.1002/rsa



238 CZUMAJ AND SOHLER

Similarly to the k-median problem we define the average cost of an optimal k-means
solution for the metric space (V , µ) as

meanavg(V , k) = 1

|V | min
C⊆V ,|C|=k

∑
v∈V

(µ(v, C))2.

Next, we define the average cost as

(costavg)
2(V , C) = 1

|V |
∑
v∈V

(µ(v, C))2.

It is well-known (and easy to see) that the obtained distance function does not define a
metric space, but it is almost a metric: all properties of the metric are satisfied, except that
the triangle inequality holds to within a factor 2. Therefore, all our analyses from Sections 2
and 3 holds with a few basic modifications, as described below.

We first prove a modification of Lemma 2.2 that if a multiset S of size s ≥ 3�2α(1+α/β) ln(1/δ)

β meanavg(V ,k)

is chosen from V i.u.r. then if we run an α-approximation algorithm for k-means A on
input S, then for the solution C∗ obtained by A holds

Pr
[
(costavg)

2(S, C∗) ≤ 4(α + β) meanavg(V , k)
] ≥ 1 − δ, (7)

where for any U ⊆ V , C′ ⊆ V , (costavg)
2(U, C′) = 1

|U|
∑

v∈U(µ(u, C′))2.
The arguments in the proof are identical to those used in the proof of Lemma 2.2 with

two simple differences. First of all, the range of each Xi is now [0, �2], which is caused by
the fact that any square of the distance between a pair of points in V is in that range. This
allows us to replace (1) by the following inequality:

Pr

[∑
1≤i≤s

Xi > (1 + β/α)E

[∑
1≤i≤s

Xi

]]
≤ e

− s meanavg(V ,k) min{(β/α),(β/α)2}
3�2 ≤ δ.

The second modification is caused by the fact that the triangle inequality does not hold for
the k-means problem, but instead we have to use a weakened triangle inequality. And so,
following the arguments at the end of the proof of Lemma 2.2, the “weak” triangle inequal-
ity implies that (costavg)

2(S, C) ≤ 4(costavg)
2(S, Copt), and hence, the random multiset S

contains a set of k centers whose cost is at most 4(1 + β/α) meanavg(V , k) with probability
at least 1 − δ. With these two modifications, we can obtain the variant of Lemma 2.2 with
inequality (7) as described earlier.

Next, we use identical changes to prove a modification of Lemma 2.3, that if for a certain

constant c, a multiset S of size s ≥ c
(
(1 + β/α)k + (α+β)�2(ln(1/δ)+k ln(k(α+β)�/(β2 meanavg(V ,k)))

β2 meanavg(V ,k)

)
is chosen from V i.u.r., then

Pr
[∃Cb ∈ C : Cb ⊆ S and (costavg)

2(S, Cb) ≤ 4(α + β) meanavg(V , k)
] ≤ δ,

where C is the set of (4α + 12β)-bad solutions of a k-mean of V .
Once we have these two modified versions of Lemmas 2.2 and 2.3, we proceed as in the

final arguments of the proof of Theorem 1 to conclude with the following result.
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Theorem 3. Let (V , µ) be a metric space. Let 0 < δ < 1, α ≥ 1, 0 < β ≤ 1 and ε > 0
be approximation parameters. Let A be an α-approximation algorithm for the k-means
problem in metric spaces. If we choose a sample set S ⊆ V of size s i.u.r., with

s ≥ cα

β

(
k + �2

εβ

(
α ln(1/δ) + k ln

(
k�2α

εβ2

)))
,

for some constant c and we run algorithm A with input S, then for the solution C∗ obtained
by A, with probability at least 1 − δ it holds the following

(costavg)
2(V , C∗) ≤ 4(α + β) meanavg(V , k) + ε.

As in the case of the k-median problem, we can extend our analysis to the k-means
problem for Euclidean metrics. Like in the Euclidean variant of the k-median problem we
allow that the set of centers C is any subset of the Euclidean space R

d . For a point set
V ⊆ R

d and an arbitrary set C of points in the R
d , we define

(costEd

avg)
2(V , C) =

∑
v∈V

(µ(V , C))2

and
meanEd

avg(V , k) = min
C⊆Rd ,|C|=k

(costEd

avg)
2(V , C).

Unlike in the general case, we do not lose an additional factor of 2 compared to the
k-median solution. The reason is that like in the Euclidean variant of the k-median problem,
we do not have to move each center of the optimal solution to the closest point in the sample.
Furthermore, it suffices again to consider only solution on a grid with

(√
d�

2ε

)d
points. The

reason is that for any set of points V ⊆ R
d and any y ∈ R

d we have
∑

v∈V (µ(v, y))2 =∑
v∈V (µ(v, c))2 + |V |(µ(c, y))2. Thus by considering only solutions on the grid we lose

at most an additive term ε2n. The following extension of Theorem 3 to Euclidean metrics
follows by a straightforward application of techniques from Section 3 to the arguments
above.

Theorem 4. Let V be a subset of R
d of size n. Let 0 < δ < 1, α ≥ 1, β ≤ 1, and ε > 0

be approximation parameters. Let A be an α-approximation algorithm for the Euclidean
k-means problem in R

d . If we choose a sample set S ⊆ V of size s i.u.r., where

s ≥ cα

β

(
k + �2

βε

(
kd ln(

√
d�2/ε) + ln(1/δ)

))
,

and we run algorithm A with input S, then for the solution C∗ obtained by A, with probability
at least 1 − δ it holds the following,(

costEd

avg

)2
(V , C∗) ≤ (α + β) meanEd

avg(V , k) + ε2.

5. MIN-SUM k -CLUSTERING AND BALANCED k -MEDIAN IN METRIC SPACES

As we mentioned in Introduction, we follow the approach from [4] and [13] and consider
the balanced k-median problem, instead of analyzing min-sum k-clustering.
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Let (V , µ) be a metric space. A balanced k-median of V is a set C = {c1, . . . , ck} of k
points (centers) in V that minimizes the value of

min
partition of V into V1∪···∪Vk

k∑
i=1

|Vi|
∑
u∈Vi

µ(u, ci).

The balanced k-median problem is for a given (V , µ) to compute a balanced k-median
of V and a partition of V into V1 ∪ · · · ∪ Vk that minimizes the sum above. Unless stated
otherwise, we will not require ci ∈ Vi.

Let

medb
opt(V , k) = min

C={c1,...,ck }⊆V
min

partition of V into V1∪···∪Vk

k∑
i=1

|Vi|
∑
u∈Vi

µ(u, ci)

denote the cost of a balanced k-median of V , and let

medb
avg(V , k) = 1

|V |2 medb
opt(V , k)

denote the average cost of a balanced k-median of V . For a given set U ⊆ V and a set of k
centers C = {c1, . . . , ck} ⊆ V , let us define

costb(U, C) = min
partition of U

into U1∪···∪Uk

k∑
i=1

|Ui|
∑
u∈Ui

µ(u, ci), and

costb
avg(U, C) = costb(U, C)

|U|2 .

We will also use the following notation.

Definition 5.1 ((ε, ϕ)-good/bad solution). A set of k centers C is called a (ε, ϕ)-bad
solution of balanced k-median of V if costb

avg(V , C) > ϕ medb
avg(V , k) + ε.

If C is not a (ε, ϕ)-bad solution then it is a (ε, ϕ)-good solution.

5.1. Sampling Algorithms for the Balanced k -Median Problem in Metric Spaces

Our high level approach of analyzing the balanced k-median problem is essentially the
same as for the k-median problem. We investigate the generic sampling scheme described
in Section 1.3, and in Sections 5.3 and 5.4 we prove the following main theorem.

Theorem 5. Let (V , µ) be a metric space. Let A be an α-approximation algorithm for
balanced k-median in metric spaces and let 0 < δ < 1, 0 < ε, and 0 < β < α, be
approximation parameters. If we choose a sample set S ⊆ V of size s i.u.r., where

s ≥
c�(k + ln(1/δ)) ln

(
αk� ln(1/δ)

βε

)
ε

(
α2

β2
+ �k2

ε

)
,

for a suitable positive constant c, and we run algorithm A with input S, then for the solution
C∗ obtained by A, with probability at least 1 − δ it holds the following

costb
avg(V , C∗) ≤ 2(α + β) medb

avg(V , k) + ε.
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The same result (with another constant c) holds for the case when the centers ci are required
to be in the corresponding clusters Vi. Furthermore, in time O(nk) + Õ(k2.5n0.5) one can
find a clustering of V that satisfies the above approximation guarantee.

Since in metric spaces the solution to balanced k-median is within a factor of 2 of that
of min-sum k-clustering, Theorem 5 immediately implies the following theorem.

Theorem 6. Let (V , µ) be a metric space. Let A be an α-approximation algorithm for
min-sum k-clustering in metric spaces and let 0 < δ < 1, ε > 0, and 0 < β < α, be
approximation parameters. If we choose a sample set S ⊆ V of size s i.u.r., where

s ≥
c�(k + ln(1/δ)) ln

(
αk� ln(1/δ)

βε

)
ε

(
α2

β2
+ �k2

ε

)
,

for a suitable positive constant c, and we run algorithm A with input S, then for the solution
C∗ obtained by A, with probability at least 1 − δ it holds the following

costb
avg(V , C∗) ≤ 4(α + β) medb

avg(V , k) + ε.

Furthermore, in time O(nk) + Õ(k2.5n0.5) one can find a clustering of V that satisfies the
above approximation guarantee.

5.2. Overview of the Analysis

Our analysis follows the path used in Section 2. However, the analysis for the balanced
k-median problem is more difficult. The reason is that we do not know much about the
structure of an optimal solution for a given set of centers. The main idea will be to impose
constraints on the sizes of the clusters such that on the one hand the number of distinct
solutions does not increase too much and on the other hand every potential solution is
covered.

In particular, to show that a given bad solution Cb = {c1, . . . , ck} for the entire point set is
also a bad solution for our sample set S (with high probability), we have to consider several
potential clusterings of S. To tackle this, we group clusterings of S by their cardinality
vectors s∗ = (s∗

1, . . . , s∗
k), where

∑k
i=1 s∗

i = s = |S|. We show that any clustering S1, . . . , Sk

of S with centers c1, . . . , ck that satisfies |Si| = s∗
i is not much smaller than the average

cost of the best clustering of V with centers Cb, where certain restrictions, induced by the
cardinality constraints on the |Si|s, are imposed on the |Vi|. Ideally, one would like to set

|Vi| = s∗i |V |
s = xi. The intuition behind this is that, if V1, . . . , Vk is an optimal such cardinality-

constrained clustering, then if we set Si = S ∩ Vi and assume that things behave according
to expectation, we would have |Si| = s∗

i , so S1, . . . , Sk would be an optimal cardinality-
constrained clustering of S (by Lemma 5.6); thus, costcon

avg(S, Cb, s∗, s∗) is precisely the cost
of this clustering, which is easily bound in terms of the cost of the clustering V1, . . . , Vk

(which is at least costb
avg(V , Cb)). However, xi need not be an integer and random variables

need not behave like their expectation. Therefore, one considers the integer vector x′ closest
to x (such that

∑k
i=1 x′

i = |V |) and enforces that |Vi| = x′
i , and then uses Lemma 5.4 and

5.5 to argue that costcon
avg(S, Cb, s∗, s∗) is close to costcon

avg(V , Cb, x′, x′).
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5.3. Good Solution for S That Is Also a Good Solution for V

We begin with a result corresponding to Lemma 2.2 for k-median that shows that there
exists a clustering for S whose cost is a good approximation of the optimal clustering for V .

Lemma 5.2. Let Copt be a balanced k-median of V. Let 0 < γ ≤ 1
2 , 0 < δ < 1, ε > 0 be

arbitrary parameters. If we choose a multiset S ⊆ V of size s ≥ 6αk� ln(3k/δ)

γ ε
i.u.r., then

Pr
[

costb
avg(S, Copt) ≤ (1 + γ )3 medb

avg(V , k) + 6k� ln(3k/δ)

γ 2s2
+ 3ε

2α

]
≥ 1 − δ.

Proof. To simplify the notation, let δ1 = 1
3δ/k. Let Copt = {c1, . . . , ck}. Let V ∗

1 ∪ · · · ∪ V ∗
k

be the optimal partition of V , i.e., medb
opt(V , k) = ∑k

i=1 |V ∗
i |∑u∈V∗

i
µ(u, ci).

Let us call set V ∗
i dense if |V ∗

i | ≥ 3 ln(1/δ1)

γ 2
|V |
s ; V ∗

i is sparse otherwise. Let Si be the random
variable denoting the multiset S ∩ V ∗

i (we assume Si is a multiset, that is, an element can
appear multiple times in Si if it belongs to V ∗

i and it appears multiple times in S).

Our first observation is that if V ∗
i is dense, then we have Pr

[|Si| ≤ (1 − γ )
s|V∗

i |
|V |
] ≤ δ1

and Pr
[|Si| ≥ (1+γ )

s|V∗
i |

|V |
] ≤ δ1, and if V ∗

i is sparse, then we have Pr
[|Si| ≥ 6 ln(1/δ1)

γ 2

] ≤ δ1.

To see this, let us first recall that E[|Si|] = s
|V∗

i |
|V | . Hence, by Chernoff bound (Lemma A.1),

Pr
[
|Si| ≤ (1 − γ )

s|V∗
i |

|V |
]

≤ exp(−γ 2s|V ∗
i |/(2|V |)) ≤ δ1,

and similarly,

Pr
[
|Si| ≥ (1 + γ )

s|V∗
i |

|V |
]

≤ exp(−γ 2s|V ∗
i |/(3|V |)) ≤ δ1.

Next, let us consider sets V ∗
i that are sparse. For any such a set, since |V ∗

i | <
3 ln(1/δ1)

γ 2
|V |
s , we

have E[|Si|] <
3 ln(1/δ1)

γ 2 . Therefore, by Chernoff bound (Lemma A.1), we obtain

Pr
[
|Si| ≥ 6 ln(1/δ1)

γ 2

]
≤ exp

(
− ln(1/δ1)

γ 2

)
≤ δ1,

where the last inequality holds because γ < 1.
In view of these bounds, from now on, let us condition on the event that for dense sets V ∗

i

we have (1 − γ )
s|V∗

i |
|V | < |Si| < (1 + γ )

s|V∗
i |

|V | and for sparse sets V ∗
i we have |Si| <

6 ln(1/δ1)

γ 2 .
This event holds with probability at least 1 − 2kδ1.

Next, we observe that conditioned on the size r of Si, the j-th element of Si is uniformly
distributed in V ∗

i . To see this, let us consider S to be an ordered multiset. Then, any sequence
of s points from V is equally likely to be chosen as S. Now, consider a sequence of points
that has exactly r points in V ∗

i . We observe that by replacing the j-th point in this sequence
with an arbitrary point from Vi we obtain a sequence with r points in V ∗

i , which has the
same probability to be chosen. Hence, the distribution of the j-th point from Si (conditioned
on the size of Si) is the uniform distribution in V ∗

i .
Thus, for any set V ∗

i , let X j
i be a random variable that denotes the distance between a

point selected independently and uniformly at random from Vi and the center ci. Observe
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that for any set V ∗
i , we have E[X j

i ] = 1
|V∗

i |
∑

u∈V∗
i
µ(u, ci). Let us fix i. We first consider the

case when

2
|Si|
s2

γ
|Si|
|V ∗

i |
∑
u∈V∗

i

µ(u, ci) ≥ ε

αk
. (8)

Since 0 ≤ X j
i ≤ � and 0 < γ < 1, we use Hoeffding bound (Lemma A.2) to obtain

Pr

[ |Si |∑
j=1

X j
i ≥

(1 + γ )|Si|∑u∈V∗
i
µ(u, ci)

|V ∗
i |

]
= Pr

[ |Si |∑
j=1

X j
i ≥ (1 + γ )E

[ |Si |∑
j=1

X j
i

]]

≤ exp

(
− γ 2

3�
E

[ |Si |∑
j=1

X j
i

])

= exp

(
− γ 2

3�

|Si|∑u∈V∗
i
µ(u, ci)

|V ∗
i |

)
≤ exp

(
− γ sε

6�αk

)
, (9)

where the last inequality follows from (8) and from the fact that |Si| ≤ s.
If (8) does not hold, then let us choose γ ∗, γ ∗ > γ , such that

2
|Si|
s2

γ ∗ |Si|
|V ∗

i |
∑
u∈V∗

i

µ(u, ci) = ε

αk
.

Notice that in that case,

γ ∗E

[ |Si |∑
j=1

X j
i

]
= γ ∗|Si|

∑
u∈V∗

i
µ(u, ci)

|V ∗
i | = s2ε

2αk|Si| . (10)

Since (8) does not hold and since γ < 1, we have γ ≤ min{1, γ ∗}. Therefore, we use
Hoeffding bound (Lemma A.2) to obtain

Pr

[ |Si |∑
j=1

X j
i ≥ (1 + γ ∗)E

[ |Si |∑
j=1

X j
i

]]
≤ exp

(
−min{γ ∗, γ ∗2}

3�

|Si|∑u∈V∗
i
µ(u, ci)

|V ∗
i |

)

= exp

(
−min{1, γ ∗}

3�

γ ∗|Si|∑u∈V∗
i
µ(u, ci)

|V ∗
i |

)
≤ exp

(
− γ sε

6�αk

)
.

Hence, we combine this inequality with (10) to obtain,

Pr

[ |Si |∑
j=1

X j
i ≥ (1 + γ )E

[ |Si |∑
j=1

X j
i

]
+ s2ε

2αk|Si|

]
= Pr

[ |Si |∑
j=1

X j
i ≥ (1 + γ + γ ∗)E

[ |Si |∑
j=1

X j
i

]]

≤ Pr

[ |Si |∑
j=1

X j
i ≥ (1 + γ ∗)E

[ |Si |∑
j=1

X j
i

]]

≤ exp
(
− γ sε

6�αk

)
.
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Therefore, if we combine this bound with inequality (9) then we get that if s ≥ 6�αk ln(1/δ1)

γ ε
,

then

Pr

[ |Si |∑
j=1

X j
i ≥ (1 + γ )

|Si|∑u∈V∗
i
µ(u, ci)

|V ∗
i | + s2ε

2αk|Si|

]
≤ δ1.

Therefore, from now on, let us condition on the event that for every i, we have that∑
u∈Si

µ(u, ci) < (1 + γ )
|Si|∑u∈V∗

i
µ(u, ci)

|V ∗
i | + s2ε

2αk|Si| .

This event holds with probability at least 1 − kδ1. Under the conditioning above, we can
proceed to the final conclusion:

costb(S, C)

≤
k∑

i=1

|Si|
∑
u∈Si

µ(u, ci) ≤
∑

i:V∗
i is sparse

|Si|
∑
u∈Si

µ(u, ci) +
∑

i:V∗
i is dense

|Si|
∑
u∈Si

µ(u, ci)

≤ 6k� ln(1/δ1)

γ 2
+

∑
i:V∗

i is dense

(1 + γ )s|V ∗
i |

|V |

(
(1 + γ )|Si|∑u∈V∗

i
µ(u, ci)

|V ∗
i | + s2ε

2αk|Si|

)

≤ 6k� ln(1/δ1)

γ 2
+

∑
i:V∗

i is dense

(1 + γ )2s|V ∗
i |∑u∈V∗

i
µ(u, ci)

|V |
|Si|
|V ∗

i |

+
∑

i:V∗
i is dense

(1 + γ )s|V ∗
i |

|V |
s2ε

2αk|Si|

≤ 6k� ln(1/δ1)

γ 2
+

∑
i:V∗

i is dense

(1 + γ )3s2|V ∗
i |∑u∈V∗

i
µ(u, ci)

|V |2 + (1 + γ )s3ε

2αk|V |
∑

i:V∗
i is dense

|V ∗
i |

|Si|

≤ 6k� ln(1/δ1)

γ 2
+ (1 + γ )3s2

|V |2
k∑

i=1

|V ∗
i |
∑
u∈V∗

i

µ(u, ci) + (1 + γ )s3ε

2αk|V |
k|V |

s(1 − γ )

≤ 6k� ln(1/δ1)

γ 2
+ (1 + γ )3s2

|V |2 medb
opt(V , k) + 3εs2

2α
.

This yields the following bound that holds with probability at least 1 − 3kδ1 = 1 − δ:

costb
avg(S, C) ≤ 6k� ln(3k/δ)

γ 2s2
+ (1 + γ )3 medb

avg(V , k) + 3ε

2α
,

what concludes the proof of Lemma 5.2.

Lemma 5.2 can be combined with arguments used in Lemma 2.2 to prove the following.

Corollary 5.3. Let 0 < β < α and ε > 0. Let S be a multiset of size s ≥ cα2�k ln(3k/δ)

βε

chosen from V i.u.r., where c is an appropriate constant. If an α-approximation algorithm
for balanced k-median A is run with input S, then the solution C∗ obtained by A satisfies

Pr
[
costb

avg(S, C∗) ≤ 2(α + β) medb
avg(V , k) + ε

] ≥ 1 − δ.
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Proof. Let us apply Lemma 5.2 with ε replaced by ε/5, parameter γ = β

7α
, and with s

chosen to satisfy

s ≥ 7α

β

√
30αk� ln(3k/δ)

ε
.

This inequality implies that

6k� ln(3k/δ)

γ 2s2
≤ ε

5α
.

Therefore, by Lemma 5.2, if

s ≥ max

{
210α2k� ln(3k/δ)

βε
,

7α

β

√
30αk� ln(3k/δ)

ε

}
,

and if we choose a multiset S ⊆ V of size s i.u.r., then with probability at least 1 − δ we get

costb
avg(S, Copt) ≤ (1 + γ )3 medb

avg(V , k) + 6k� ln(3k/δ)

γ 2s2
+ 3ε

10α

≤ (1 + β/α) medb
avg(V , k) + ε

2α
.

To conclude the proof of Corollary 5.3, similarly as in the proof of Lemma 5.2, let us
choose C to be the set of k centers in S obtained by replacing each c ∈ Copt by its nearest
neighbor in the corresponding cluster of an optimal solution for S with centers Copt. By the
triangle inequality, costb

avg(S, C) ≤ 2 costb
avg(S, Copt). Hence, multiset S contains a set of k

centers whose cost is at most 2(1 + β/α) medb
avg(V , k) + ε

α
with probability at least 1 − δ.

Corollary 5.3 follows since A returns an α-approximation C∗ of the balanced k-median
for S.

5.4. Dealing With Bad Approximations

The next step in our analysis is to consider bad approximations. Corollary 5.3 proves
that typically there is a set of k centers in the sample S that has the average cost close to
medb

avg(V , k). Now, we show in Lemma 5.14 that all Cb ⊆ S that are (12ε, 2α+4β)-bad solu-

tions of a balanced k-median of V satisfy costb
avg(S, Cb) > (2α + β) medb

avg(V , k) + ε with
high probability. Our analysis follows the approach used before in the proof of Lemma 2.3,
but the technical details are more complex.

In the analysis, we fix a (6ε, 2α + 2β)-bad solution Cb = {c1, . . . , ck} of a balanced k-
median of V . Then we further parameterize the problem. We introduce integer cardinality
constraints e = (e1, . . . , ek) and weights w = (w1, . . . , wk), which satisfy

∑
i ei = |V |. We

consider the following problem:

Find a partition of V into k sets V1, . . . , Vk that satisfies |Vi| = ei for every i, and that
minimizes

costcon
avg(V , Cb, e, w) = 1

|V |2
∑

i

wi

∑
v∈Vi

µ(v, ci).
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(Obviously, for the balanced k-median problem, we have to consider only solutions with
e = w but the decoupling of cardinality constraints and weights simplifies the analysis.)
Again we will not require ci ∈ Vi.

We start with two simple lemmas that relate the cost of optimal partitions with different
cardinality constraints and weight vectors to each other.

Lemma 5.4. Let e(1) and e(2) be two cardinality constraints such that ‖e(1)−e(2)‖1 ≤ 2ε|V |
�

.
Let w be an arbitrary weight vector with wi ≤ |V | for all i. Then∣∣costcon

avg(V , Cb, e(1), w) − costcon
avg(V , Cb, e(2), w)

∣∣ ≤ ε.

Proof. Assigning a single point from one cluster to another can change the normalized
cost of the solution by at most |V |�/|V |2 = �/|V |. We can move from a solution for
constraint e(1) to one for e(2) and vice versa by moving at most ε|V |/� points. Therefore,
the cost of the solution changes by at most ε.

In a similar way we can relate solutions with different weight vectors to each other.

Lemma 5.5. Let w(1) and w(2) be two weight vectors with ‖w(1) − w(2)‖1 ≤ 2ε|V |
�

. Let e be
an arbitrary cardinality constraint, so

∑
i ei = |V |. Then∣∣costcon

avg(V , Cb, e, w(1)) − costcon
avg(V , Cb, e, w(2))

∣∣ ≤ ε.

Proof. Changing an entry in weight vector wi by one can change the cost of the normalized
solution by at most |V |�/|V |2 = �/|V |. Since ‖w(1)−w(2)‖1 ≤ 2ε|V |

�
, the cost of the solution

changes by at most ε when moving from w(1) to w(2) or vice versa.

5.4.1. Subset Optimality. Now we can proceed to the main technical tool in our analysis.
We want to find a lower bound for the cost of an optimal partition of our sample set for the
set of centers Cb. To get this lower bound, we will use the following lemma, which states
that certain solutions are optimal solutions for given cardinality constraints and weights.

Lemma 5.6. Let V1, . . . , Vk be an optimal partition of V for centers Cb, cardinality
constraints e and weights w. Let w′ = w/c, for an arbitrary positive real c, and let S1 ⊆
V1, . . . , Sk ⊆ Vk be arbitrary subsets of V1, . . . , Vk, possibly containing multiple copies
of points. Then, S1, . . . , Sk is an optimal partition for centers Cb, cardinality constraints
eS = (|S1|, . . . , |Sk|) and weights w′, where |Si| counts every copy of a point in Si when Si

is a multiset.

Proof. The proof is by contradiction. We show that nonoptimality of S1, . . . , Sk for Cb,
w′, and e implies that V1, . . . , Vk is not an optimal solution for e and w. To show this, we
construct a cyclic change of points that improves the cost of the partition V1, . . . , Vk , but
preserves the cardinality constraints.

A cyclic change is a sequence of points (p0, . . . , pt−1) such that pi �= pj for i �= j.
By applying a cyclic change (p0, . . . , pt−1) to sets V1, . . . , Vk , we mean the operation of
replacing each point pj+1 in its cluster Vi by point pj, where the indices j are taken modulo t.

Observation 5.7. A cyclic change does not affect the cardinality constraints.
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The cost of a cyclic change is the change of the cost in the objective function of the
clustering problem with centers Cb, cardinality constraints e, and weights w when the cyclic
change is applied. Thus, a cyclic change with negative cost for V1, . . . , Vk would contradict
the optimality of V1, . . . , Vk .

For a moment, let us assume that S = ⋃
i Si contains no multiple copies of a point. Let

si = |Si| for every i. For the purpose of contradiction, let us consider an optimal solution
S′

1, . . . , S′
k with |S′

i| = si for Cb, w′ and e, and suppose that the cost of this solution is strictly
smaller than the cost of S1, . . . , Sk . Furthermore, we assume that S′

1, . . . , S′
k has the smallest

Hamming distance (i.e.,
∑k

i=1 |Si ⊕S′
i|) among all optimal solutions satisfying the condition

above. Then, we construct a cyclic change in the following way. We start with an arbitrary
point p0 such that Clust(p0) �= Clust′(p0), where the functions Clust(p) and Clust′(p) return
the index of the cluster containing p in clustering S1, . . . , Sk and S′

1, . . . , S′
k , respectively. This

point is the first point of our cyclic change and we mark it. Then, we choose an unmarked
point from cluster S′

Clust(p0) that is not in SClust(p0). Since the cardinality constraints on Si

and S′
i imply that |Si| = |S′

i|, such a point must exist because p0 ∈ SClust(p0)\S′
Clust(p0). We

continue this process until we find a point pt−1 with Clust(pt−1) = Clust′(p0). Observe that
after applying the cyclic change to the sets S′

1, . . . , S′
k to obtain the clustering T ′

1, . . . , T ′
k ,

we have pi ∈ T ′
Clust(pi)

for 0 ≤ i ≤ t − 1. Furthermore, by the optimality of S′
1, . . . , S′

k and
by the fact that the clustering T ′

1, . . . , T ′
k has smaller Hamming distance to S1, . . . , Sk than

S′
1, . . . , S′

k , the cyclic change has positive cost.
We next show that the inverse cyclic change (pt−1, . . . , p0) has negative cost for

V1, . . . , Vk . We know that

t−1∑
i=0

(−µ(pi, cClust′(pi))w
′
Clust′(pi)

+ µ(pi, cClust(pi))w
′
Clust(pi)

)
> 0,

and so
t−1∑
i=0

(−µ(pi, cClust(pi))wClust(pi) + µ(pi, cClust′(pi))wClust′(pi)

)
< 0,

which means that the latter cyclic change has negative cost and so it can be used to improve
the optimal solution V1, . . . , Vk , which is a contradiction. Hence, S1, . . . , Sk is an optimal
clustering as well.

It remains to show how to deal with the case where points occur more than once in the
sample set S. Assume we have a cyclic change (p0, . . . , pt−1) where point pi and pj are
copies of the same point of V . Then, either (p0, . . . , pi, pj+1, . . . , pt−1) or (pi, . . . , pj) is a
cyclic change of positive cost and we can consider this particular cyclic change. Applying
this argument several times, we arrive at a cyclic change without duplicates of points and
can apply our arguments from above.

5.4.2. Introduction to the Main Construction: Lower Bounding costcon
avg (S , Cb, s∗, s∗).

To find a lower bound for our sample set S with respect to the centers Cb, we show that for
a fixed cardinality constraint s∗ = (s∗

1, . . . , s∗
k) with

∑
i s∗

i = s, and for weights (s∗
1, . . . , s∗

k)

(thus identical to the cardinality constraints), the cost of an optimal partition of S (which is
costcon

avg(S, Cb, s∗, s∗)) will be large with high probability.
This is done in the following way. We first construct a vector x = ( s∗1 |V |

s , . . . ,
s∗k |V |

s

)
, and

define x′ to be the closest integer vector to x in the �1 norm that satisfies
∑

i x′
i = |V |. We

consider an optimal partition of V into set V1, . . . , Vk for centers Cb, cardinality constraints
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e = x′, and weights w = x′. We study the following experiment. We choose s points
p1, . . . , ps from V uniformly at random with repetition and let S = {p1, . . . , ps}. If pj is
in Vi, we assign it to cluster Si. By Lemma 5.6, we know that the clustering S1, . . . , Sk is
optimal for the cardinality constraints |S ∩ Vi| and weights w. We will argue that (a) the
normalized cost of clustering S1, . . . , Sk with weights s∗ approximates well the normalized
cost of V1, . . . , Vk with weights w, and that (b) the cost of clustering S1, . . . , Sk with weights
ws/|V | = (w1

s
|V | , . . . , wk

s
|V | ) is close to the cost of the optimal clustering with cardinality

constraints and weights s∗. We let s′
i be a random variable with value |S ∩ Vi| and let us set

s′ = (s′
1, . . . , s′

k).
We will prove that for sufficiently large s, with high probability the following claims

hold:

• (Lemma 5.8) costcon
avg(S, Cb, s′, ws/|V |) is larger than (1 − λ) costcon

avg(V , Cb, e, w) − ε,
• (Lemma 5.9) costcon

avg(S, Cb, s′, s∗) is larger than costcon
avg(S, Cb, s′, ws/|V |) − ε,

• (Corollary 5.11) costcon
avg(S, Cb, s∗, s∗) is larger than costcon

avg(S, Cb, s′, s∗) − ε.

These three bounds will yield (see Corollary 5.12) a good lower bound for costcon
avg(S,

Cb, s∗, s∗), that is, for the cost of an optimal partition of S with respect to centers Cb and for
cardinality constraint s∗ with

∑
i s∗

i = s, and for weights (s∗
1, . . . , s∗

k).

Lower Bounding costcon
avg (S , Cb , s′, ws/|V |). To get a lower bound for costcon

avg(S, Cb, s∗, s∗),
we begin with the following result that lower bounds costcon

avg(S, Cb, s′, ws/|V |) in terms of
costcon

avg(V , Cb, e, w) and ε.

Lemma 5.8. For s ≥ 2� ln(1/δ)

ελ2 , we get with probability at least 1 − δ that

costcon
avg(S, Cb, s′, ws/|V |) > (1 − λ) costcon

avg(V , Cb, e, w) − ε.

Proof. Since the weights of the clusters are fixed and rescaled by factor s/|V |, the expected
contribution of a random point from V is exactly costcon

avg(V , Cb, e, w)/s. Therefore,

E[costcon
avg(S, Cb, s′, ws/|V |)] = costcon

avg(V , Cb, e, w),

and we have to only show the sharp concentration. By Hoeffding bound (Lemma A.2) and
the fact that a random point from V contributes with at most �/s, we obtain

Pr
[
costcon

avg

(
S, Cb, s′, ws

|V |
) ≤ (1 − ζ )E

[
costcon

avg

(
S, Cb, s′, ws

|V |
)]] ≤ e− ζ2 costcon

avg (V ,Cb ,e,w)s
2� .

Now, we make distinction between the cases costcon
avg(V , Cb, e, w) ≥ ε and costcon

avg(V ,

Cb, e, w) < ε. For costcon
avg(V , Cb, e, w) ≥ ε, the lemma follows with s ≥ 2� ln(1/ρ)

εζ2 and ζ = λ.
Otherwise, if costcon

avg(V , Cb, e, w) < ε, then we choose ζ = ε/ costcon
avg(V , Cb, e, w). In this

case, we get:

Pr
[
costcon

avg(S, Cb, s′, ws/|V |) ≤ costcon
avg(V , Cb, e, w) − ε

] ≤ e
− ε2s

2� costcon
avg (V ,Cb ,e,w) .

Observe that for any λ, 0 < λ ≤ 1, if we choose s such that s ≥ 2� ln(1/ρ)

ελ2 , then we obtain:

exp

(
− ε2s

2� costcon
avg(V , Cb, e, w)

)
≤ exp

(
− ε ln(1/ρ)

λ2 costcon
avg(V , Cb, e, w)

)
≤ ρ,

where the last inequality follows from the fact that costcon
avg(V , Cb, e, w) < ε and that λ ≤ 1.
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This bound finally implies that in either case, for any λ, 0 < λ ≤ 1, if we choose s such
that s ≥ 2� ln(1/ρ)

ελ2 , then we will have

costcon
avg(S, Cb, s′, ws/|V |) ≤ (1 − λ) costcon

avg(V , Cb, e, w) − ε

with probability at most ρ. This yields the lemma.

Lower Bounding costcon
avg (S , Cb , s′, s∗). With a lower bound for costcon

avg(S, Cb, s′, ws/|V |),
we continue our analysis by proving a lower bound for costcon

avg(S, Cb, s′, s∗) by
costcon

avg(S, Cb, s′, ws/|V |) − ε. We apply Lemma 5.5 to get the following.

Lemma 5.9. If s ≥ 2k�/ε, then we have

costcon
avg(S, Cb, s′, s∗) ≥ costcon

avg(S, Cb, s′, ws/|V |) − ε.

Proof. Recall that w is the nearest (in the �1 norm) integer vector to x = |V |
s s∗ that satisfies∑

wi = |V |. It is easy to verify that ‖w − x‖1 ≤ 2k. Hence ‖s∗ − ws/|V |‖1 ≤ 2k as well.
The lemma follows now from Lemma 5.5 with parameters V = S and |S| = s ≥ 2k�/ε.

Lower Bounding costcon
avg (S , Cb , s∗, s∗). Our final step is a lower bound for costcon

avg(S,
Cb, s∗, s∗). We first show that typically, the �1 distance between s′ and its expectation is
small.

Lemma 5.10. If s ≥ 3�2k2 ln(2k/ρ)

ε2 , then with probability at least 1− δ the following holds:

‖s′ − E[s′]‖1 < εs/�.

Proof. Let Xi,j denote the indicator random variable for the event that the j-th point from
S is in Vi. Let us observe that if we set

ζi = εs

k�E
[∑s

j=1 Xi,j

] ,

then we have

Pr

[∣∣∣∣∣
s∑

j=1

Xi,j − E

[
s∑

j=1

Xi,j

]∣∣∣∣∣ ≥ εs/(k�)

]

≤ Pr

[
s∑

j=1

Xi,j ≥ (1 + ζ )E

[
s∑

j=1

Xi,j

]]
+ Pr

[
s∑

j=1

Xi,j ≤ (1 − ζ )E

[
s∑

j=1

Xi,j

]]
.

Let us begin with the analysis of the first term. We assume first that ζ ≤ 1. Then, by the
Hoeffding bound (Lemma A.2), we get

Pr

[∑
j

Xi,j ≥ (1 + ζ )E

[∑
j

Xi,j

]]
≤ e− ζ2E[∑j Xi,j ]

3 = e
−
(

εs
k�E[∑j Xi,j ]

)2 E[∑j Xi,j ]
3 ≤ e

− ε2s
3�2k2 ,

where the last inequality uses the fact that s ≥ E
[∑

j Xi,j

]
. Otherwise, if ζ > 1, then we

have

Pr

[∑
j

Xi,j ≥ (1 + ζ )E

[∑
j

Xi,j

]]
≤ e− ζE[∑j Xi,j ]

3 = e− εs
3k� .
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Similarly, we can use the Hoeffding bound (Lemma A.2) to obtain the following:

Pr

[∑
j

Xi,j ≤ (1 − ζ )E

[∑
j

Xi,j

]]
≤ e− ζ2E[∑j Xi,j ]

2 ≤ e
− ε2s

2�2k2 .

Hence, by combining the three inequalities above, if we choose

s ≥ 3�2k2 ln(2k/δ)

ε2
,

then we get

Pr

[∣∣∣∣∣∑
j

Xi,j − E

[∑
j

Xi,j

]∣∣∣∣∣ ≥ εs/(k�)

]
≤ δ/k.

Now, the lemma follows immediately by applying the union bound to the inequality above.

Our next result follows from Lemma 5.4.

Corollary 5.11. For s ≥ 12�2k2 ln(2k/δ)

ε2 , the following bound holds with probability at least
1 − δ:

costcon
avg(S, Cb, s∗, s∗) ≥ costcon

avg(S, Cb, s′, s∗) − ε.

Proof. We have

‖s′ − s∗‖1 ≤ ‖s′ −E[s′]‖1 +‖E[s′]− s∗‖1 ≤ εs

�
+ s

|V | ‖x′ − x‖1 ≤ εs

�
+ ε2s2

�2|V |k ≤ 2εs/�.

The corollary follows by substituting ε with ε/2.

Finally, we can combine Lemmas 5.8 and 5.9 with Corollary 5.11 to obtain the following.

Corollary 5.12. For every λ and ε, 0 < λ, ε ≤ 1, if

s ≥ 12� ln(4k/δ)

ε

(
�k2

ε
+ 1

λ2

)
,

then with probability at least 1 − δ we get

costcon
avg(S, Cb, s∗, s∗) > (1 − λ) costcon

avg(V , Cb, e, w) − 3ε.

Proof. By Corollary 5.11 we have

costcon
avg(S, Cb, s∗, s∗) ≥ costcon

avg(S, Cb, s′, s∗) − ε

with probability 1 − δ/2 for our choice of s. Using Lemma 5.9, we get

costcon
avg(S, Cb, s∗, s∗) ≥ costcon

avg(S, Cb, s′, ws/|V |) − 2ε.
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By Lemma 5.8, we get with probability 1 − δ/2

costcon
avg(S, Cb, s′, ws/|V |) > (1 − λ) costcon

avg(V , Cb, e, w) − ε.

Combining the last two inequalities, we get with probability 1 − δ

costcon
avg(S, Cb, s∗, s∗) > (1 − λ) costcon

avg(V , Cb, e, w) − 3ε.

This proves Corollary 5.12.

5.4.3. Quality of Bad Solution: Bad Solutions Are Bad. After the analysis in Section
5.4.2, we are now ready to proceed with the analysis of the quality of bad approximation
for a sample set. We begin with a lemma that considers a set of bad centers.

Lemma 5.13. Let S be a multiset of points chosen i.u.r. from V with s such that

s ≥
c�(k + ln(1/δ)) ln

(
αk� ln(1/δ)

βε

)
ε

(
α2

β2
+ �k2

ε

)
,

where c is a suitable constant and δ is an arbitrary confidence parameter. Let Cb be a
(6ε, 2α + 2β)-bad solution of a balanced k-median of V. Suppose that β ≤ α. Then

Pr[costb
avg(S, Cb) > (2α + β) medb

avg(V , k) + ε] ≥ 1 − δ.

Proof. Let us first fix vector s∗. Then, we apply Corollary 5.12 with λ = β/(2(α + β))

and δ′ = δ/sk to get that with probability 1 − δ/sk:

costcon
avg(S, Cb, s∗, s∗) > (1 − λ) costcon

avg(V , Cb, e, w) − 3ε

=
(

1 − β

2(α + β)

)
costcon

avg(V , Cb, e, w) − 3ε.

Next, we observe that since Cb is a (6ε, 2α+2β)-bad solution of a balanced k-median of V ,
we have costcon

avg(V , Cb, e, w) > 2(α+β) medb
avg(V , k)+6ε. Thus, with probability 1−δ/sk:

costcon
avg(S, Cb, s∗, s∗) >

(
1 − β

2(α + β)

)
costcon

avg(V , Cb, e, w) − 3ε

≥
(

1 − β

2(α + β)

) (
2(α + β) medb

avg(V , k) + 6ε
)− 3ε

≥ (2α + β) medb
avg(V , k) + ε,

where the last inequality follows from β ≤ α.
Since there are at most sk choices for s∗, the lemma follows from the bound above and

the union bound.

Once we have the bound for a single set of bad centers, we can proceed with the analysis
of all bad sets of centers.
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Lemma 5.14. Let S be a multiset of s points chosen i.u.r. from V with s such that:

s ≥
c�(k + ln(1/δ)) ln

(
αk� ln(1/δ)

βε

)
ε

(
α2

β2
+ �k2

ε

)
,

where c is a suitable positive constant and δ is an arbitrary confidence parameter. Let C be
the set of (12ε, 2α + 4β)-bad solutions C of a balanced k-median of V. Then,

Pr
[∃Cb ∈ C : Cb ⊆ S and costavg(S, Cb) ≤ (2α + β) medb

avg(V , k) + ε
] ≤ δ.

Proof. We proceed as in the proof of Lemma 2.3. We choose c so that s ≥ 8(α+β)

β
k and we

let S∗ be a multiset of s − k points chosen i.u.r from V . Then,

Pr
[∃Cb ∈ C : Cb ⊆ S and costb

avg(S, Cb) ≤ (2α + β) medb
avg(V , k) + ε

]
≤
∑
Cb∈C

Pr
[
Cb ⊆ S and costb

avg(S, Cb) ≤ (2α + β) medb
avg(V , k) + ε

]
≤
∑
Cb∈C

Pr
[

costb
avg(S

∗, Cb) ≤ s2

(s − k)2

(
(2α + β) medb

avg(V , k) + ε
)]

Pr [Cb ⊆ S]

≤
∑
Cb∈C

Pr
[
costb

avg(S
∗, Cb) ≤ (2α + 2β) medb

avg(V , k) + 2ε
]

Pr [Cb ⊆ S] .

Now, we apply Lemma 5.13 with values of s, β and ε replaced by s∗, 2β and 2ε,
respectively. This will imply that if

s − k ≥
c�(k + ln(1/δ)) ln

(
αk� ln(1/δ)

βε

)
ε

(
(α + β)2

β2
+ �k2

ε

)
,

then for any Cb ∈ C we have

Pr
[
costb

avg(S
∗, Cb) ≤ (2α + 2β) medb

avg(V , k) + 2ε
] ≤ δ.

Thus, if we plug this bound in the inequality above, we get

Pr
[∃Cb ∈ C : Cb ⊆ S and costb

avg(S, Cb) ≤ (2α + β) medb
avg(V , k) + ε

]
≤
∑
Cb∈C

Pr
[
costb

avg(S
∗, Cb) ≤ (2α + 2β) medb

avg(V , k) + 2ε
]

Pr [Cb ⊆ S]

≤ |C|δ
(

s

k

)/(
n

k

)
≤ skδ.

This allows us to conclude that if we set

s ≥
c�(k + ln(1/δ)) ln

(
αk� ln(1/δ)

βε

)
ε

(
α2

β2
+ �k2

ε

)
,

for a suitable constant c, then Lemma 5.14 follows.
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5.5. Concluding the Proof of Theorem 5

We conclude the proof of Theorem 5 that will now follow from Corollary 5.3 and Lemma
5.14.

Proof of Theorem 5. By Lemma 5.14, with probability at least 1 − δ no set C ⊆ S that is
(12ε, 2α + 4β)-bad solution of a balanced k-median of V satisfies the inequality

costb
avg(S, C) > 2(α + β) medb

avg(V , k) + ε.

On the other hand, if we run algorithm A for set S, then by Corollary 5.3 the resulting
set C∗ of k-centers with probability at least 1 − δ satisfies

costb
avg(S, C∗) ≤ 2(α + β) medb

avg(V , k) + ε.

These two claims imply that with probability at least 1 − 2δ the set C∗ is a (12ε, 2α +
4β)-good solution of a balanced k-median of V , that is,

Pr
[
costb

avg(S, C∗) ≤ (2α + 4β) medb
avg(V , k) + 12ε

] ≥ 1 − 2δ.

This implies the first part of the claim for the variant of the problem without the constraint
ci ∈ Vi.

Next, we consider the version of the problem with constraint ci ∈ Vi. We first observe
that Corollary 5.3 holds also when instead of allowing C∗ to be an arbitrary set of points,
we add the constraint that ci ∈ Vi for all i. To see this, let us observe that adding the
constraint ci ∈ Vi can only increase the cost of a bad solution, and at the same time, the
solution returned by our algorithm will still be a good solution for the problem without this
constraint. This implies that the bound in Corollary 5.3 will hold.

We next show that we can enforce the constraint while increasing the average cost of our
solution by at most ε, which will imply our claim. Let us consider a solution V1, . . . , Vk . If
ci ∈ Vj, i �= j, then we swap ci with an arbitrary point v in Vi. This can increase the cost
of the clustering by at most µ(v, cj)|Vj| ≤ �n. We do this for all k clusters. This increases
the cost of our clustering by at most �kn. Thus, if ε ≥ �k/n we have �kn ≤ εn2 and we
increase the average cost by at most ε. Otherwise, s ≥ n and we can run A on the original
input set. This proves the first part of the claim.

To see the second part of the claim, we consider the partition S1, . . . , Sk of our sample
set computed by algorithm A. Then, we consider the integer vector x′ = (x′

1, . . . , x′
k) that is

closest to
( |S1||V |

s , . . . , |Sk ||V |
s

)
. We use x′

i as cluster sizes and run the algorithm from [31] to
obtain an optimal clustering for these sizes. Using similar arguments as before, we obtain
that the cost of this clustering is approximated by the cost of the optimal clustering of our
sample.

APPENDIX A: CONCENTRATION BOUNDS

In this section, we present concentration bounds used in the paper. We begin with Chernoff
bound and then present Hoeffding bound.
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Lemma A.1 (Chernoff bound). Let X1, . . . , XN be independent random variables, with
Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p for each i and for certain p, 0 ≤ p ≤ 1. Let
X = ∑N

i=1 Xi. Then

• for any ζ , 0 ≤ ζ ≤ 1,

Pr[X ≥ (1 + ζ )E[X]] ≤ exp(−ζ 2E[X]/3),

Pr[X ≤ (1 − ζ )E[X]] ≤ exp(−ζ 2E[X]/2);

• for any t ≥ 6E[X],
Pr[X ≥ t] ≤ 2−t .

Lemma A.2 (Hoeffding bound). Let X1, . . . , XN be independent random variables, with
0 ≤ Xi ≤ M for each i, 0 ≤ i ≤ N. Let X = ∑N

i=1 Xi. Then

• for any ζ ≥ 0,

Pr[X ≥ (1 + ζ )E[X]] ≤ exp

(
−E[X] min{ζ , ζ 2}

3M

)
,

Pr[X ≤ (1 − ζ )E[X]] ≤ exp

(
−E[X]ζ 2

2M

)
.
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