
Metropolis Algorithms for Representative Subgraph Sampling

Christian Hübler, Hans-Peter Kriegel
Institute of Computer Science

Ludwig-Maximilians-Universität
Munich, Germany

huebler@ifi.lmu.de, kriegel@dbs.ifi.lmu.de

Karsten Borgwardt, Zoubin Ghahramani
University of Cambridge

Department of Engineering
Cambridge, United Kingdom

kmb51@eng.cam.ac.uk, zoubin@eng.cam.ac.uk

Abstract

While data mining in chemoinformatics studied graph
data with dozens of nodes, systems biology and the Internet
are now generating graph data with thousands and millions
of nodes. Hence data mining faces the algorithmic chal-
lenge of coping with this significant increase in graph size:
Classic algorithms for data analysis are often too expensive
and too slow on large graphs.

While one strategy to overcome this problem is to design
novel efficient algorithms, the other is to ’reduce’ the size of
the large graph by sampling. This is the scope of this paper:
We will present novel Metropolis algorithms for sampling
a ’representative’ small subgraph from the original large
graph, with ’representative’ describing the requirement that
the sample shall preserve crucial graph properties of the
original graph. In our experiments, we improve over the
pioneering work of Leskovec and Faloutsos (KDD 2006),
by producing representative subgraph samples that are both
smaller and of higher quality than those produced by other
methods from the literature.

1 Introduction

Graphs are ubiquitous: They are used in various ap-
plication domains to represent objects and their relation-
ships, including fields such as bioinformatics, systems biol-
ogy, social network analysis and even software engineering.
Whereas in the past, graph structures in application domains
such as chemoinformatics included dozens of nodes, nowa-
days, bioinformatics and the Internet are generating graphs
with thousands or even tens and hundreds of thousands of
nodes.

This increase in graph size is a challenge for data mining:
In many applications we either need to run expensive algo-
rithms such as simulations (routing protocols, virus propa-
gation, ‘viral marketing’ analysis) on these graphs, or we
want to get an impression of the graph topology from vi-

sualization. The runtime effort for all these tasks usually
scales at least polynomially in the size of the graph, i.e. its
number of nodes n. For large graphs, these runtimes of
O(nc), where often c ≥ 3, are not affordable. As we are
highly interested in data analysis on these large graphs, we
have to work around this problem. Strategy one is to de-
velop scalable algorithms that improve on the c term such
that the overall runtime is better than quadratic. This usu-
ally comes at the price of employing heuristics which do
not guarantee an optimal solution to the problem at hand.
Strategy two would be to improve the n term in the run-
time effort. Reducing n is equivalent to reducing the graph
size. One way to do this is by sampling a subgraph from the
large graph such that this subgraph approximates the origi-
nal graph well. This is the problem we study in this article.

Why could such a subgraph sample be of interest to us?
First, we can perform simulations on this sample graph that
are too expensive on the large graph. Second, the sample
graph may be deemed a ‘model’ of the large graph, repre-
senting its properties in a compact manner. Third, choosing
a subgraph sample might provide interesting insights into
the nodes that belong to this sample; they are representa-
tive of the graph as a whole. Fourth, sampling a smaller
subgraph is more ‘true’ to the data than generating an artifi-
cial small graph that approximates the original graph. Any
observations we make on the subgraph sample can be pin-
pointed to a particular node or set of nodes in the original
graph. For a generated graph, there is no 1:1 correspon-
dence to nodes in the original graph.

But how does one measure if a graph sample is ‘good’
and approximates the original graph well? How do we mea-
sure if it is a ‘representative’ sample of the large graph? The
idea is to find a subgraph sample S that approximates topo-
logical properties S of the original graph G, such as its de-
gree distribution. This problem of finding a ‘representative
subgraph sample’ can be cast into the following optimiza-
tion problem:

argminS�G∧|S|=n′Δ(σ(S), σ(G)) (1)

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.124

283

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.124

283



where G is the original graph, S is a subgraph of G with
|S| = n′ nodes, σ(X) is a topological property of graph X ,
and Δ is a distance function on these topological properties.

For most graph properties and distance functions, solv-
ing problem (1) optimally is intractable. We demonstrate
this by showing that problem (1) is closely related to a NP-
complete problem which we refer to as FIT. We define the
FIT problem as

argminS�G∧|S|=n′Δ(σ(S), σ1) (2)

for a given vector σ1.

Theorem 1 FIT is NP-complete.

Proof We show that CLIQUE ≤p FIT. CLIQUE is the
problem to decide whether a graph G contains a clique
of n′ nodes. Searching for a size n′-clique in a graph
is equivalent to solving the following instance of the
FIT problem: Assume σ(S) is the degree distribution of
subgraph S (normalized to 1) and σ1 is equivalent to the
degree distribution of a graph whose nodes all have the
same degree n′ − 1 (normalized to 1 as well). If FIT finds
a subgraph S such that Δ(σ(S), σ1) = 0, then G obviously
contains a clique of size n′. If min Δ(σ(S), σ1) > 0, then
G does not contain a clique of size n′. Hence CLIQUE
is polynomial-time reducible to FIT, and thus FIT is
NP-complete.

To cope with the NP-completeness of the FIT problem,
we define and explore the use of Metropolis-based sampling
and optimization techniques to find ‘good’ solutions to (1)
as measured by Δ(σ(S), σ(G)).

Another question we are interested in is whether captur-
ing σ(G) for a number of key properties σ will result in a
subgraph S which might embody many other properties of
G. Empirically, we observe, for instance, that by matching
the degree distribution of G and S, we can preserve other
interesting graph properties.

Note that, as commonly done in the graph mining liter-
ature, we are dealing with undirected graphs without self-
loops and multiple edges here. The samples of our methods
always represent induced subgraphs of the original graph,
that is we keep all edges between nodes in the sample sub-
graph that are present in the original graph. Methods from
the literature that we compare to may generate non-induced
subgraphs as well.

1.1 Related work

Unlike our approach, existing graph sampling algorithms
do not compute properties of the original graph for the ac-
tual sampling step. They can be classified into three concep-
tual categories [9]: Random node selection, random edge
selection and sampling by exploration.

There are slightly different variants of randomly select-
ing nodes (RandomNode, RandomPageRank, RandomDe-
greeeNode) or edges (RandomEdge, RandomNodeEdge).
For comparison purposes, in this paper, we use the most
common instances, namely uniformly distributed settings
of RandomNode (RN ) and RandomEdge (RE). Both al-
gorithms generate induced subgraphs of the original graph
from a set of randomly selected nodes or edges.

In contrast, sampling algorithms that perform a graph
exploration randomly select a starting node and then visit
nodes and edges in its vicinity. The spectrum of explorative
algorithms reaches from RandomNextNeighbor over Ran-
domWalk and RandomJump to ForestFire exploration tech-
niques. As ForestFire (FF ) with an appropriate forward
burning probability pf has been reported to perform best
among all explorative algorithms [9], we use it for com-
parison to our novel approach, both in an induced (FFi)
and not-induced fashion (FF ). Beginning with a randomly
picked seed node ForestFire is recursively ”burning” a ge-
ometrically distributed number of outgoing links together
with the corresponding neighbor-nodes. Any ”burning”
neighbor itself burns a random number (mean: (pf/(1 −
pf )) of its own links. This procedure proceeds until enough
(n′) nodes are burned. Not-induced ForestFire is adding
all burned nodes and edges to the sample, while induced
ForestFire is constructing an induced subgraph using the set
of burned nodes. Thus induced ForestFire leads to samples
being more connected.

In previous work also attempts were made to sample
graphs by reduction. Instead of selecting nodes or edges
that will be included in the future sample, nodes or edges are
deleted from the original graph. Thus the original graph is
shrunken to a sample. The number of nodes can be reduced
by as much as 70% while preserving important graph prop-
erties [8]. Furthermore sampling schemes were developed
and investigated for visualization [15]. Some visualization-
approaches are compressing the large graph based on a pre-
computed ranking of vertices [4]. Repeatedly constructive
graph modeling approaches are also proposed to be used
as sampling algorithms by aborting graph growth ahead of
time [10].

1.2 Contributions

Whereas existing graph sampling algorithms do not
compute properties of the original graph G, the key idea
of our approach is to use graph properties of the original
graph G that are efficient to compute or to approximate to
guide us to ‘good’ representative subgraph samples. To-
wards this end, we design graph sampling strategies based
on the Metropolis Algorithm and Simulated Annealing.

Empirically, our approach shows two remarkable advan-
tages over existing methods:

284284



• First, it generates subgraph samples of high quality:
The generated sample approximates the properties of
the original graph better than previous approaches.

• Second, it allows to find high quality samples of small
size: The size of our samples is much smaller than
those commonly used in the literature.

This article is structured as follows. In Section 2, we re-
view the Metropolis Algorithm and Simulated Annealing,
which are the foundations of our approach to representa-
tive subgraph sampling. In Section 3, we present our three
novel strategies to subgraph sampling. In Section 4, we dis-
cuss criteria for assessing the quality of a graph sample. We
evaluate the practical performance of all proposed methods
in Section 5, before concluding with a short discussion of
our findings in Section 6.

2 Markov Chain Monte Carlo Methods

From a statistical point of view, induced graph sampling
is the task to draw a set S of n′ nodes from the n := |V |
nodes of the original graph G = (V, E). For example in
the case of RandomNode the samples S are uniformly dis-
tributed on the sample space X = {S � V |n′ = |S|}.
By contrast the distribution of better performing explorative
sampling algorithms like induced ForestFire is not explic-
itly known.

The main idea of Metropolis graph sampling is to draw
a sample from the sample space X following a specific den-
sity �(S). This density should reflect subgraph sample qual-
ity well, which means good induced samples S should be
drawn more frequently than worse ones. Thus �(S) depends
on the quality of the sample S.

From this point of view an obvious choice of �(S) is one
depending on a distance measure with respect to a prepro-
cessed graph property. The severe problem with such a den-
sity �(S) is that it is only given in an unnormalized manner
�∗(S). To obtain the normalized density �(S) we have to
calculate and sum over

(
n
n′

)
summands which is obviously

intractable:

�(S) =
�∗(S)

∑
S′∈X �∗(S′)

How can we draw samples from the sample space X if
the underlying normalized density �(S) is not given explic-
itly? This problem is solved by the Metropolis algorithm.

2.1 Metropolis algorithm

The Metropolis Algorithm [11, 5] can draw samples
from any probability distribution, provided that a function
�∗ proportional to the density �(S) can be calculated for
any S ∈ X.

Such a stochastic simulation is reached by using Markov
Chains. A Markov Chain is a stochastic process with the
property that future states depend only on the current state
but not on past states. In our case each state depicts a single
set of nodes S which in turn represents a sample S with n’
nodes. In general Markov Chains are defined as follows:

Definition 2 (Markov Chain) Let Π denote a stochastic
matrix. Let (Xn)n≥0 be a sequence of random variables op-
erating on a probability space (Ω,F , P ) with values in X.
The sequence (Xn)n≥0 is called Markov Chain with state-
space X and transition matrix Π, if ∀S0, . . . , Sn+1 ∈ X
with P (X0 = S0, . . . , Xn = Sn) > 0:

P (Xn+1 = Sn+1|X0 = S0, . . . , Xn = Sn) = Π(Sn, Sn+1)

For the Metropolis algorithm the central property of
Markov Chains is their ergodicity under certain conditions
[13]. The ergodicity-theorem states that the Markov Chain
converges through transitions to a stationary distribution if
and only if any state is reachable by any other state in a
finite number of transitions.

This property is used alongside with detailed balance

�(S)Π(S, S′) = �(S′)Π(S′, S)

to obtain a Markov Chain with equilibrium distribution
�(S). Therefore we can simulate transitions on this Markov
Chain until it converges and then draw a sample which
is distributed according to �(S). The clue is that the un-
normalized density �∗(S) suffices to the simulation of the
Markov Chain because it is proportional to �(S) and the
normalizing constant can be canceled out by detailed bal-
ance.

In the basic Metropolis algorithm, the transition prob-
ability Π(S, S′) is separated into a proposal distribution
Q(S, S′), describing the probability of proposing a move
to state S′ from state S, and an acceptance probability
a(S, S′), thus Π(S, S′) = Q(S, S′) · a(S, S′) with S �=
S′. The acceptance probability has to be chosen in such
a way that detailed balance is still ensured: a(S, S′) =
min(1, Q(S,S′)

Q(S′,S)
�∗(S′)
�∗(S) ). The proposal distribution Q(S, S′)

can be easy to compute, for instance, it can be uniformly
distributed over some set of states S′. Thus instead of cal-
culating the probability of any possible transition the algo-
rithm only needs to calculate the acceptance probabilities
of transitions which are actually proposed. A non-uniform
proposal distribution can be used to preferentially propose
certain transitions. In this article we always utilize sym-
metric proposal distributions Q(S, S′) = Q(S′, S). Hence
the acceptance probability is simplified to: a(S, S′) =
min(1, �∗(S′)

�∗(S) ).
The following proposition proves our approach to be ac-

curate:

285285



Proposition 3 Assume that the constructed Markov Chain
only has transitions between adjacent states (displaying ad-
jacent subgraphs) using a symmetric proposal distribution
and the above acceptance probability. Under these condi-
tions, the equilibrium distribution of the Markov Chain is
exactly the desired density �(S).

The proof of this proposition is straigthforward
and due to space limitations only shown in the ap-
pendix (http://mlg.eng.cam.ac.uk/˜karsten/
RSS_ICDM08/icdm_appendix.pdf).

We use the Metropolis algorithm for optimization rather
than for approximating a distribution. We turn Metropolis
into an optimization algorithm by choosing an appropriate
unnormalized density �∗(S), which in our case is inversely
proportional to a distance measure Δ(σ(G), σ(S)) =
ΔG,σ(S) between the real graph G and the sample S.

As the search space is exponential in the size of the sub-
graph sample, we have to reward ‘good’ samples extremely
because otherwise lower-quality samples would dominate
the process of sampling due to their large number. We do
this by exponentiating the difference ΔG,σ(S) by a large
positive scalar p. Hence we define �∗ as

�∗(S) :=
1

ΔG,σ(S)p
=

1
Δ(σ(G), σ(S))p

, (3)

where p ∈ R
+ and p	 0.

2.2 Simulated Annealing

The problem of Metropolis is that the convergence of
the Markov Chain can be slowed down enormously if the
Markov Chain gets stuck in a local maximum of the un-
derlying density �(S). If the Markov Chain enters such a
state it is unlikely that this state is left within a reasonable
amount of time. An approach to solve this problem is Sim-
ulated Annealing [7]: It is based on the idea that states with
high density �(S) (called low energy states) are mostly not
uniformly distributed on the state space X. Thus we change
the density �(S) in such a way that in the beginning, more
transitions are accepted (high temperature) and in the very
end, only transitions are accepted which are an improve-
ment (low temperature). Thus energy barriers arising from
regions of low density separating regions of high density
can be overcome and local energy minimums (maxima of
density) can be left in time. The hope is that in the end the
simulation ends up on the right side of the barrier where the
global maximum or at least the better local maximum can be
found. This approach is based on the idea that the distribu-
tion at higher temperature is a good guide to the distribution
at lower temperature. We define the temperature-dependent
density as

�∗p,T (S) = e
log �∗

p(S)

T = elogΔG,σ(S)(−
p
T

)
= ΔG,σ(S)(−

p
T )

so that a new acceptance-probability follows

a(S, S′) = min(1,
�∗p,T (S′)
�∗p,T (S)

) = min(1, (
ΔG,σ(S)
ΔG,σ(S′)

)
p
T )

assuming a symmetric proposal distribution Q(S, S′) =
Q(S′, S).

For our experiments, we use Simulated Annealing with
a geometric annealing schedule, which means that we
gradually reduce the temperature according to Tt+1 =
γTt with 0 < γ < 1, where t is the t-th step in our sam-
pling procedure.

3 Metropolis Graph Sampling

We use the Metropolis algorithm in order to optimize a
randomly picked initial sample. The key idea is that after
picking a random subgraph sample S from G, we search the
space of subgraphs by removing a node from and adding a
new node to S in each iteration.

3.1 Adaptation to graph sampling

As stated earlier, we choose a �∗(S) that is inversely pro-
portional to ΔG,σ(S)p. ΔG,σ(S) can be any distance mea-
sure between topological properties σ of the sample S and
the original graph G, for instance, a distance on degree dis-
tributions. We discuss these graph properties in Section 4.1
and suitable distance measures in Section 4.2. On the one
hand, these graph properties help us to find a representative
subgraph sample. On the other hand, we have to compute
these properties for the original graph G as well as for ev-
ery sample visited by the Markov Chain. For this reason,
we restrict ourselves to graph properties that are efficient to
compute (like e.g. the degree distribution). The pseudocode
of our Metropolis Graph Sampling algorithm (without an-
nealing) is depicted in Algorithm 1.

3.2 Complexity analysis

There are 4 crucial steps in our Metropolis subgraph
sampling: First, the time effort to read the graph G, which
is O(n · davg), where davg is the average degree of a node
in G; second, the computation time for the graph property
σ(G), denoted by R(σ(G)); third, the time effort to pick an
initial sample, which is in O(n′ · davg); fourth, the runtime
effort for each of the #it iterations of the Markov Chain,
which includes updating our subgraph sample (removing
one node, adding one node) in O(n′ · davg) and computing
its graph properties in R(σ(Scurrent)). Hence the over-all
complexity is

O(n·davg+R(σ(G))+#it (davg · n′ + R(σ(Scurrent)))).

286286



Algorithm 1 Metropolis Subgraph Sampling

Input: Graph G = (V, E), distance function ΔG,σ(·),
sample size n′, number of possible transitions #it, ex-
ponent p

Scurrent ← uniformly at random from G
Sbest := Scurrent

for i := 1 to #it do
node v ← randomly from Scurrent

node w ← randomly from (V \ Scurrent) ∪ {v}
Snew := (Scurrent \ {v}) ∪ {w}
α← uniformly at random from interval [0, 1]
if α < (ΔG,σ(Scurrent)

ΔG,σ(Snew) )p then
Scurrent := Snew

if ΔG,σ(Scurrent) < ΔG,σ(Sbest) then
Sbest := Scurrent

end if
end if

end for

Output: Sbest

3.3 Choice of the exponent p

The choice of the exponent p depends on the original
graph G. As p is responsible for good samples being fa-
vored over worse ones, it very much depends on the real
graph G and the distance measure Δ. In principle, any
p > 0 will result in the same optima, however larger p cre-
ate a more peaked probability distribution.

If G has a high fraction of medium-quality samples then
p needs to be of high value to make the small group of
extraordinary samples competitive. Most graph properties
used as similarity measures evaluating a sample S, firstly
depend on whether S is connected. Because of that a
suitable p is depending on the edges-per-node ratio of G
which determines the total number of possible connected
subgraphs. Besides graphs of large size also demand high
values of p as the overall fraction of good samples shrinks
with the graph size n. We use the following rule of thumb
in all of our experiments (with k being the number of edges
of G): pG = 10 · k

n log10 n.
Why do we not generally use either enormous p values or

an exponential function of ΔG,σ(S)? To answer this ques-
tion, one should bear in mind that large differences in den-
sity are seldom overcome by the Markov Chain. Large or
exponential choice of p might enhance convergence, but one
then faces an increased risk of getting stuck in a state which
is a local maximum of the density.

3.4 Speeding up convergence

As we use Metropolis for optimizing (as described in
2.1), convergence of the Markov Chain is equivalent to the
achievement of an appropriate sample. In this section we

discuss a common and a new graph specific approach to de-
crease the number of required iterations needed to achieve
convergence of the Markov Chain and thus a good sample.
By decreasing the number of performed iterations we hope
to notedly reduce the CPU runtime.

Simulated Annealing in graph setting A common way
to avoid that the Metropolis algorithm gets stuck in local
optima is to use Simulated Annealing. Since local optima
can slow down convergence, Simulated Annealing may be
useful for speeding up the sampling process.

Chaining We also propose a new graph-specific ap-
proach called Chaining to speed up convergence: As mostly
the real graph G is connected or at least consists of few con-
nected components, it can be observed that good samples
are extremely often connected.

Thus the idea arises of restricting the search space X to
connected samples. Let us assume for all of the following
results that the original graph G is connected. If G has more
than 1 component, the following sampling algorithm is still
applicable, but will sample a subgraph within the compo-
nent of the initial sample only.

Restricting ourselves to connected samples shrinks the
state space of the Markov Chain, so we have to adapt the
proposal distribution Q(S, S′), so that detailed balance is
achieved. We do this by initially deleting a randomly se-
lected node from S. The reduced sample is called Sr.
Then we add another random node from N(Sr) = {v ∈
V (G)|v /∈ V (Sr) ∧ ∃w ∈ V (Sr)s.t. e = (v, w) ∈ E(G)}
of adjacent nodes to the reduced set of nodes Sr. If the
resulting induced subgraph S′ is not connected because
a bridge node — whose removal disconnects the sample
— was deleted, we reenter the old state S. Otherwise
we decide according to the acceptance probability a(S, S′)
whether we should pass into the new state S′.

In contrast to original Metropolis graph sampling all
states of Chaining’s reduced state space are of a minimum
quality because of being connected. Thus less proposed
transitions are rejected due to higher values of a(S, S′) in
average. For this reason the hope is that the amount of nec-
essary iterations to achieve convergence can be decreased.

We want to show that the Markov Chain with restricted
state space Xcon converges to �(S) = �∗(S)∑

S′∈Xcon
�∗(S′) , un-

der the assumption that the original graph G is connected.
The proof of proposition 3 can be directly adopted if we
show the restricted proposal distribution to be symmetric:

Proposition 4 For the Chaining algorithm’s construction
of new states (as described above) it holds that Q(S, S′) =
Q(S′, S).

Proof For S = S′ or |S ∩ S′| < n′ − 1 this is trivial. Oth-
erwise S and S′ are adjacent. The proposal probabilities
Q(S, S′) and Q(S′, S) describe the cases of constructing S
out of S′ and S′ out of S respectively. In both cases first

287287



of all we delete a randomly drawn node out of the start-
ing set of nodes (S or S′). The probability of picking ex-
actly the node S and S′ differ in is ( 1

n′ ). This probabil-
ity is independent of the direction of the transition. The
resulting graph S ∩ S′ containing n′ − 1 nodes is equal
in both cases. Thus the probability of constructing S and
S′ respectively out of S ∩ S′ is 1/N(S ∩ S′). Hence
Q(S, S′) = 1

n′ · 1
N(S∩S′) = Q(S′, S).

As stated earlier (proposition 3) with this requirement of
symmetry detailed balance, the ergodicity-theorem and thus
the stationary distribution � can be followed.

It has to be mentioned that the reduction of the state
space X to Xcon leads to occasional construction of ille-
gal unconnected subgraphs by deletion of bridge nodes.
Thus connectivity has to be checked and if necessary tran-
sitions have to be reversed. The connectivity-test of the
new sample is performed by depth-first-search requiring
O(n′ + k′) = O(n′ · davg) additional operation time per
transition. Furthermore a list of adjacent nodes N(x) has to
be set up in O(n′ · davg) time. The updating of this neigh-
borhood takes O(davg). Thus the complexity of Chaining in
addition to mere Metropolis is O(n′ ·davg +#it ·n′ ·davg).
In particular, Chaining is attractive when graph properties of
the subgraph sample are expensive to compute, as Chaining
decreases the overall number of iterations.

4 Sample Evaluation

Before testing our sampling algorithm, we have to an-
swer an important question: Which graph properties do
we consider and which distance or similarity measures do
we employ to measure the discrepancy between properties
of the sample graph and the original graph, and hence the
’quality’ of the subgraph sample?

It is important to bear the following in mind: Both our
graph properties and the similarity measures on them can be
used i) inside our subgraph sampling algorithms to guide us
to ’better’ subgraphs (usage for sampling) and ii) to evaluate
afterwards if the generated subgraph preserves properties of
the original graph well (usage for evaluation). Note that we
may use one property A for sampling, but employ a differ-
ent property B for evaluation of the subgraph sample (as
done in Section 5).

4.1 Graph properties
We used the following graph properties to guide our

Metropolis algorithms to find a solution to problem (1).
A well-known graph property is a graph’s degree dis-

tribution, with the degree of a node being the number of
its incident edges. Its popularity is certainly derived partly
from the fact that the degree distribution can be obtained in
O(n · davg) using adjacency lists, which is not more expen-
sive than the runtime effort for simply reading the graph.

The clustering coefficient Cv of a node v with degree
d(v) is defined as the number of edges actually existing
between neighbors of v divided by the maximum possible
number of such edges between its neighbors, d(v)(d(v) −
1)/2. We represent the clustering coefficients of a graph in
terms of a vector with values Cd (called clustering coeffi-
cient ‘distribution’ in [9]), where Cd is defined as the aver-
age Cv over all nodes v of degree d. The worst-case com-
plexity of determining this clustering coefficient vector is
O(n3), but can be determined efficiently on the real-world
sparse graphs in our experiments.

Besides these well-known topological properties, we
also consider the graphlet distribution of our graphs [14,
12]. Given a graph G, a k-graphlet is a connected and in-
duced subgraph of G of size k. We use the distribution of
3-, 4-, and 5-graphlets in our graphs. As a sparse graph has
O((dmax)k−1) graphlets [6] (with dmax being the maxi-
mum degree), we have to resort to sampling if we want
to determine the graphlet distribution efficiently. Towards
this end, we use a subgraph sampling algorithm by Wer-
nicke [17].

We use the aforementioned properties both for sampling
subgraphs and for evaluating the quality of the produced
sample afterwards. In addition, we used the following graph
properties exclusively for evaluation.

The diameter of a graph is the maximum shortest path
length between any pair of nodes in the graph, computable
in a worst-case runtime of O(n3).

4.2 Distance functions on graph proper-
ties

A proper way of measuring similarity between properties
of our original graph and its subgraph sample is a key com-
ponent of our approach and graph sampling in general. To-
wards this end, we employ the following distance function,
withM denoting the universe of the particular graph prop-
erty, for instance the set of all existing types of graphlets,
or the set of all existing node degrees. Let g = σ(G) de-
note the properties of the original graph, and s = σ(S) the
properties of the subgraph sample in the following.

Graphlets: Distributions with nominal measurement
scale like the graphlet distribution of the graph (g) and
sample (s) are compared using a double sided ver-
sion of the well known entropy-distance: Δ1(g, s) =
∑

i∈M
(g(i)−s(i))2

g(i)+s(i) . In our variant of this distance function,
we add the extra term s(i) to the denominator. The reason
is that in certain existing graph sampling algorithms (such
as RandomEdge) we are sampling non-induced subgraphs
from a graph. For this reason, it may happen that the sam-
ple contains graphlets which do not appear in the original
graph, as they are only non-induced subgraphs in the orig-
inal graph, but induced subgraphs in the sample. The extra
term s(i) then avoids division by zero. In the literature of

288288



graphlets [14] another distance measure has been proposed:
Δ(g, s) =

∑
i∈M | log g(i)

s(i) |We do not use this measure be-
cause of several weaknesses: First of all in the above case
of the sample containing a graphlet not existing in the orig-
inal graph the measure is undefined. Second the measure is
infinite if any sort of graphlet occurring in the graph does
not exist in the sample, which often occurs.

Degree distribution: We compare distributions with at
least ordinal measurement scale, such as the degree distri-
bution, using the Kolmogorov-Smirnov D-Statistics, which
corresponds to the maximum difference between the two
cumulative distribution functions FY of g and FY ′ of s
over the range of the random variables Y and Y ′ on M.
Y and Y ′ are distributed according to g and s respectively:
Δ2(g, s) = maxi∈M|FY (i)−FY ′(i)| = maxi∈M|P (Y ≤
i) − P (Y ′ ≤ i)|. It is derived from the Kolmogorov-
Smirnov test.

Clustering coefficient: The clustering coefficient (as
defined here) is a vector with values in [0, 1] and therefore
will be compared using the L1-norm. Higher L-norms in-
cluding L∞ are not suitable for our purposes because the
coefficient of a single degree should not dominate the dis-
tance. As we normalise the possible distances to [0, 1],
we are in fact calculating the average (absolute) differ-
ence in clustering coefficients over all degrees: Δ3(g, s) =∑

i∈M |g(i)−s(i)|
|M | .

Diameter: The diameter of the sample graph is mea-
sured as percent deviation from the original diameter. Thus
the sample-diameter can take values in [0, 1] and therefore
is comparable to the above distance measures.

5 Experimental evaluation
5.1 Datasets

We test our described algorithms on the following 5
datasets, each of them representing a single graph: Dob-
son&Doig (DD1BK0), which is a graph model of a
protein [3]; Autonomous systems (ASNOV 97), which
is a graph model of the Internet [2]; a Network of
trust (Epinions) from epinions.com, describing who
trusts whom in a social network; the yeast PPI network
(yeast20071104) which is a network of protein interac-
tions [16]; a Citation network (HEP − PH) describing
who cites whom in the discipline of high energy physics [1].
Crucial statistics of these datasets are shown in Table 5.1,
more detailed descriptions can be found in the appendix.

5.2 Experimental setting
Sampling On these 5 datasets, we ran 15 different sam-

pling strategies to generate a representative subgraph sam-
ple with n′ = 100 nodes each.1

1We have implemented all described algorithms in Java. All tests were
performed on a P4 with 2.6 GHz and 2 GB main memory.

dataset n k davg dmax comp

DD1BK0 329 2,100 12 22 1
ASNOV 97 3,082 5,281 3 600 1
Epinions 75,879 405,801 10 3,044 2
yeast20071104 4,932 17,346 7 283 32
HEP − PH 34,546 420,899 24 846 61

Table 1. Statistics on the real-world graphs used in our
experiments (n = number of nodes, k = number of edges,
davg = average degree, dmax = maximum degree, comp =
number of connected components).

These 15 approaches included 4 state-of-the-art meth-
ods for representative subgraph sampling (see Section 1.1):
RandomNode (RN ) and RandomEdge (RE), that ran-
domly sample nodes and edges from the graph, and Forest-
Fire, once for sampling induced subgraphs (FFi), once for
sampling non-induced subgraphs (FF ).

We compared these state-of-the-art methods to our novel
approaches to representative subgraph sampling: Metropo-
lis subgraph sampling (M ), and Chaining (CH). We ran
Metropolis once each for approximating the degree distribu-
tion (Md), the graphlet distribution (Mg), the clustering co-
efficient (Mc) and for the unweighted combination (Mdcg)
and a weighted combination (M10dcg) of these three 3 cri-
teria (described in Section 5.3).

We set �∗ as in equation (3) and determined the exponent
p by the rule of thumb from Section 3.3. For the two criteria
which gave the best results using Metropolis, namely de-
gree distribution (d) and weighted combination (10dcg), we
repeated the same experiments using Chaining (Chd and
Ch10dcg).

To assess the effect of Simulated Annealing both on
runtime and sample quality, we performed Metropolis and
Chaining using a Simulated Annealing Schedule, both for
the degree distribution (MSA

d and ChSA
d ) and the weighted

combination (MSA
10dcg and ChSA

10dcg).
We repeat each experiment 25 times to avoid random ef-

fects.
Evaluation To measure the quality of the sampled sub-

graphs, we compute their distance to the original graph
in terms of the degree distribution (degree), the diameter
(diam), the clustering coefficient (clust), and the graphlet
distribution (graphlet), employing the distance function
from Section 4.2. In addition, we compute the mean of these
4 distances, which gives us the average distance, denoted
by AV G. We also show the empirical standard deviation
of the average distance (SD). We report sample quality in
terms of these distances between the subgraph sample and
the original graph in Table 2 as averages over 25 repetitions
on all 5 datasets. Results for individual datasets and vari-
ance of sample quality are shown in the Appendix.

In addition to the quality of the sample, the runtime t

289289



(in seconds) of each algorithm is shown in the last column.
Because all proposed algorithms need to precompute some
graph properties, the amount of time (also in seconds) this
pre-calculation requires is stated as tprep. tread denotes the
time required to read the original graph and to set up its
adjacency list. trun is the runtime of the actual sampling
stage.

5.3 Parameter settings

Before we discuss our results, we provide the crucial pa-
rameter settings that allow the reproduction of our findings.

Forest Fire The quality of samples obtained by ForstFire
depend on the accurate choice of the forward burning prob-
ability pf . In [9] a forward burning probability pf > 0.6 is
proposed for sampling. This is consistent with our results
in initial test runs, hence we use pf = 0.7 (performing best
in these test runs).

Metropolis The number of iterations #it, which de-
scribes the maximum number of transitions performed by
the Markov Chain, is set to 10,000 and the exponent p is de-
termined via p = 10 · k

n log10 n, as described in Section 3.3.
When using a combination of degree distribution,

graphlet distribution and clustering coefficient, we consider
an unweighted sum of the distances on them (Mdcg), or a
weighted sum in which the distances on the degree distribu-
tion get 10 times more weight than those on graphlets and
clustering coefficient (M10dcg), as the degree distribution is
the criterion that reaches the best results on its own (see Sec-
tion 5.4). When using these weighted or unweighted com-
binations of three graph properties, we performed 20,000 it-
erations instead of 10,000 to be sure that the Markov Chain
will converge and the pre-calculation of 3 graph properties
was not in vain.

Chaining As Chaining remarkably speeds up conver-
gence, but requires additional runtime to check connected-
ness of samples, we only perform one third of the iterations
executed in standard Metropolis.

5.4 Results

Overall sample quality As can be seen from Table 2
(column AVG), 8 out of the 11 variants of our Metropolis
sampling algorithms outperform all existing state-of-the-art
sampling algorithms in terms of sample quality. They pre-
serve the graph properties of the original graph in a sub-
graph sample of size n′ = 100 better than all other meth-
ods. We further investigated the empirical standard devia-
tion (column SD) and observed that results of Metropolis
sampling (including its variants Simulated Annealing and
Chaining) on average show less variance than those of ex-
isting subgraph sampling algorithms.

Metropolis On 4 out of 5 of our datasets, Metropolis
sampling approximating the degree sequence (Md) outper-
forms all existing sampling algorithms. Dataset specific
results are shown in the appendix. The only dataset on

which our methods do not perform excellent is HEP-PH.
The problem for Metropolis is that the sample size is close
to the number of components on HEP (64 components vs.
100 nodes in sample), so samples spreading their nodes
uniformly over different components cannot really capture
graph properties well, and are hence rejected. All sampling
methods have similar problems with this dataset, but we still
ran tests on it, as it was used in the pioneering paper on sub-
graph sampling [9].

It is a remarkable fact that Md, although approximat-
ing the degree distribution of the original graph G only, is
able to approximate the clustering coefficient vector and the
graphlet distribution of G on average better than any of the
state-of-the-art methods. Even in terms of the approximat-
ing the diameter, it is second best only to FFi among the
existing methods.

In terms of runtime, we make two important observa-
tions: On the one hand, our methods require more run-
time than those in the literature, because they are comput-
ing properties of the original graph (tprep) and of the sub-
graph samples during sampling (part of trun). On the other
hand, our methods still exhibit attractive runtimes: Even
on the largest graph (Epinions, 75,879 nodes), our slowest
method (M10dcg) generates a high-quality subgraph sample
in roughly 367 seconds. Our fastest method MSA

d generates
a high-quality sample in 2 seconds on the same dataset.

There are interesting differences in runtime between dif-
ferent variants of our sampling approach. Md is faster
than the other variants of Metropolis (Mc, Mg , Mdcg, and
M10dcg), as the degree distribution can be computed more
efficiently than the other graph properties.

Chaining Chaining leads to a speed-up in runtime if its
computational overhead, that is guaranteeing connectedness
of subgraph samples, is smaller than its computational sav-
ings by speeding-up convergence. This speed-up is observ-
able if the graph properties that we want to approximate
and that have to be determined in each iteration of our sam-
pling procedure are rather expensive to compute (for in-
stance, a weighted combination of several properties such
as in Ch10dcg), but not for properties such as the degree
distribution that are efficient to compute.

Simulated Annealing In our empirical evaluation, Sim-
ulated Annealing led to a slightly lower runtime on average,
but also a slight loss in sample quality compared to basic
Metropolis. Still, it outperforms on average all state-of-the-
art methods with respect to sample quality without the need
to pick an exponent p.

Variation of exponent p For Metropolis and Chaining in
its standard version, the exponent p is a central parameter.
To assess its influence on sample quality, we vary p from
50 to 1,000 in steps of 50, and run Md on the Epinions
dataset using these values of p (and in addition for p = 25).
We achieve the smallest distance to the original graph (as

290290



degree diam clust graphlet AVG SD tread tprep trun t

RN 0.911 0.653 0.332 0.540 0.487 0.068 0.491 0.000 0.008 0.499
RE 0.725 0.633 0.389 0.500 0.449 0.066 0.491 0.000 0.009 0.500
FF 0.450 0.455 0.311 0.268 0.297 0.015 0.491 0.000 0.004 0.495
FFi 0.340 0.157 0.132 0.280 0.227 0.030 0.491 0.000 0.012 0.503
Md 0.105 0.247 0.121 0.143 0.154 0.015 0.491 0.001 3.096 3.587
Mc 0.814 0.498 0.072 0.287 0.418 0.052 0.491 5.227 2.857 8.575
Mg 0.788 0.531 0.405 0.177 0.475 0.026 0.491 64.572 4.430 69.493
Mdcg 0.544 0.326 0.069 0.072 0.253 0.019 0.491 69.237 35.088 104.816
M10dcg 0.164 0.220 0.063 0.084 0.132 0.015 0.491 62.365 110.277 173.133
MSA

d 0.147 0.252 0.121 0.156 0.169 0.014 0.491 0.001 2.613 3.104
MSA

10dcg 0.214 0.256 0.067 0.072 0.147 0.016 0.491 69.173 95.761 165.425
Chd 0.182 0.172 0.119 0.077 0.137 0.013 0.491 0.001 8.965 9.456
Ch10dcg 0.189 0.149 0.087 0.090 0.129 0.017 0.491 63.073 37.257 100.821
ChSA

d 0.204 0.139 0.139 0.086 0.142 0.018 0.491 0.000 8.830 9.321
ChSA

10dcg 0.221 0.181 0.111 0.065 0.148 0.019 0.491 62.993 32.923 96.407

Table 2. Distances between properties of subgraph sample and original graph (n′ = 100). Each row is a sampling strategy, each
column a graph property used for evaluation (left of the double bar). Numbers are distances between subgraph sample and original
graph (Left columns). Runtimes for each method are given in seconds (Right columns). All data shown is the average over 25
repetitions on all 5 datasets. For full details on all abbreviations see Section 5.2.

0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600 700 800 900 1000

D
is

ta
nc

e
be

tw
ee

n
S

an
d

G

Exponent p

AV G

Figure 1. Distance between sample graph and original
graph Epinions versus size of exponent p (Metropolis
Sampling Md; distance is measured in terms of average
over four graph properties from Section 4.1).

an average over several graph properties) for p = 350 (see
Figure 1). Small choices of p lead to higher distances to the
original graph’s properties, and choosing larger values of p
slowly increases the distance as well.

Our rule of thumb from Section 3.3 apparently makes
us pick values of p that let us outperform state-of-the-art
methods on our 5 datasets in the vast majority of test runs.
Note that if one wants to avoid setting p at all, one may
resort to Simulated Annealing.

Variation of iterations The impact of a duplication of
the number of performed iterations is relatively small and
very much depends on the type of investigated graph G.
Further information is given in the appendix.

n′
n

in % 5 10 20 30 50 75
Δd(FFi) 0.225 0.228 0.187 0.150 0.118 0.060
Δd(Md) 0.006 0.006 0.005 0.004 0.002 0.001
t(FFi) 0.508 0.514 0.538 0.639 0.825 1.506
t(Md) 3.296 5.741 16.626 22.374 40.960 54.366

Table 3. Distance between sample and original graph
ASNOV 97 in terms of degree distribution Δd for Forest Fire
(FFi) and Metropolis (Md), for various sample sizes n′/n.
Corresponding CPU runtime t is shown in seconds.

Variation of sample size So far, we have generated rep-
resentative subgraph samples with n′ = 100 nodes, which
approximate the original graph extremely well. Can we also
achieve these good results for larger subgraph samples?

We study this question on the Autonomous Systems
graph (ASNOV 97) by sampling subgraphs. Table 3 shows
the quality with respect to the degree distribution, while
Figure 2 shows the quality referring to the average of our
four graph properties used for evaluation. For both evalua-
tion criteria (degree and average) and for all different sam-
ple sizes, we observe that Metropolis (Md) generates sub-
graph samples that approximate the original graph’s proper-
ties better than the samples from induced ForestFire (FFi).

A thrilling result of the observations in Table 3 is that
samples constructed using Metropolis can outperform sam-
ples drawn by ForestFire in terms of sample quality, even
if they are ten times smaller (Metropolis Md: n′

n = 0.05,

Δ(Md) = 0.006; ForestFire: n′
n = 0.50, Δ(FFi) =

0.118). At the same time, for larger samples, our methods

291291



0

0.1

0.2

0 10 20 30 40 50 60 70 80 90

D
is

ta
nc

e
to

or
ig

in
al

gr
ap

h
(A

V
G

)

Subgraph Sample Size (in % of original graph size)

FFi

Md

Figure 2. Distance between sample graph and original
graph G (ASNOV 97) versus size of sample graph (Distance
is measured in terms of an average on the four graph prop-
erties from Section 4.1. Sample size is given as ratio n′/n).

10
20

30
40

50
60

70 0

10

20

30

40

50

0.05

0.1

0.15

Runtime in secRelative Sample Size (in % of original graph size)

D
is

ta
nc

e 
to

 O
rig

in
al

 G
ra

ph

Figure 3. Metropolis Sampling: Runtime vs. distance
ΔG,σ(S) vs. sample size. Original graph is ASNOV 97

(Distance is measured in terms of an average on the four
graph properties from Section 4.1)

.

require more runtime (see Table 3), as it gets more expen-
sive to compute the graph properties of larger samples and
the size of the sample search space increases. Thereby the
quality of the sample betters itself as shown in figure 3.

6 Conclusions

In this article, we have proposed novel approaches to rep-
resentative subgraph sampling. They are based on the key
idea to compute or approximate properties of the original
graph G, which are then to be approximated well by the
sample graph S. While existing sampling algorithms only
manage to produce good samples with a minimum size of
15% (of nodes of the original graph) [9], our algorithms suc-
ceed in constructing representative samples of much smaller

size (down to 0.14% on Epinions).
As a practical note: Among the different variants of our

approach, Metropolis graph sampling approximating the
degree distribution (Md) of the original graph offers the best
trade-off between runtime and sample quality. If runtime is
less of an issue, the Chaining variant, which approximates
degree distribution, clustering coefficient and graphlet dis-
tribution of the input graph (Ch10dcg), is the best choice.

References

[1] http://www.cs.cornell.edu/projects/kddcup/datasets.html.
[2] http://www.routeviews.org/.
[3] P. Dobson and A. Doig. Distinguishing enzymes structures

from non-enzymes without alignments. In Journal of Molec-
ular Biology, volume 330, pages 771–783, 2003.

[4] A. Gilbert and K. Levchenko. Compressing network graphs.
In Proceedings of the LinkKDD workshop at the 10th ACM
Conference on KDD, 2004.

[5] K. Hastings. Equation of state calculations by fast comput-
ing machines. In Biometrika. 57, pages 97–109, 1970.

[6] S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, and U. Alon. Sub-
graphs in random networks. Physical Rev. E, 68, 2003.

[7] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by
simulated annealing. In Science, Volume 220, Number 4598,
pages 671–680, 1983.

[8] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao, J. Cui,
and A. Percus. Reducing large internet topologies for faster
simulations. In Proceedings of the IFIP Networking, Water-
loo, Canada, 2005.

[9] J. Leskovec and C. Faloutsos. Sampling from large graphs.
In KDD, 2006.

[10] J. Leskovec and C. Faloutsos. Scalable modeling of real
graphs using kronecker multiplication. In ICML, pages 497–
504, New York, NY, USA, 2007. ACM.

[11] N. Metropolis, A. Rosenbluth, N. Rosenbluth, and A. Teller.
Equation of state calculations by fast computing machines.
In The Journal of Chemical Physics, Volume 21, Number 6,
pages 1087–1092, 1953.

[12] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon. Network motifs: Simple
building blocks of complex networks. Science, 298:824–
827, 2002.

[13] R. M. Neal. Probabilistic inference using Markov chain
Monte Carlo methods. Technical Report CRG-TR-93-1,
University of Toronto, 1993.

[14] N. Przulj, D. G. Corneil, and I. Jurisica. Modeling inter-
actome: scale-free or geometric? In Bioinformatics 2004
20(18), pages 3508–3515, 2004.

[15] D. Rafiei and S. Curial. Effectively visualizing large net-
works through sampling. In Proc. of the IEEE Visualization
Conference, 2005.

[16] L. Salwinski, C. Miller, A. Smith, J. Pettit, F.and Bowie, and
D. Eisenberg. The database of interacting proteins: 2004
update. 2004.

[17] S. Wernicke. Efficient detection of network motifs.
IEEE/ACM Trans. Comput. Biol. Bioinformatics, 3(4):347–
359, 2006.

292292


