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Main points

Probability spaces, Random Variable, Distribution of a random variable (pmf), Expected Value,
Variance.
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Polynomial Identities and the verification problem

Definition

A function f () of one variable x , is called a polynomial function, if it satisfies,

f (x) =
n

∑
i=0

an−i ·x
n−i

.
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Definition

A function f () of one variable x , is called a polynomial function, if it satisfies,

f (x) =
n

∑
i=0

an−i ·x
n−i

.

The above form of f () is called the canonical form.
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Polynomial Identities and the verification problem

Definition

A function f () of one variable x , is called a polynomial function, if it satisfies,

f (x) =
n

∑
i=0

an−i ·x
n−i

.

The above form of f () is called the canonical form.

Note

A univariate polynomial function can also be expressed in the form:

f (x) = Πn
i=1(ai x −bi)
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Polynomial Identities and the verification problem

Definition

A function f () of one variable x , is called a polynomial function, if it satisfies,

f (x) =
n

∑
i=0

an−i ·x
n−i

.

The above form of f () is called the canonical form.

Note

A univariate polynomial function can also be expressed in the form:

f (x) = Πn
i=1(ai x −bi)

This form is called the product form.

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Polynomial Representation

Representation

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Polynomial Representation

Representation

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Polynomial Representation

Representation

(i) Without loss of generality we will assume that the coefficient of xn is 1 in the polynomials
that we consider (both canonical form and product forms).
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Representation

(i) Without loss of generality we will assume that the coefficient of xn is 1 in the polynomials
that we consider (both canonical form and product forms).

(ii) Accordingly, a polynomial function in the canonical form can be written as:

f (x) = xn +an−1 ·x
n−1 +an−2 ·x

n−2 + . . .a0
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Polynomial Representation

Representation

(i) Without loss of generality we will assume that the coefficient of xn is 1 in the polynomials
that we consider (both canonical form and product forms).

(ii) Accordingly, a polynomial function in the canonical form can be written as:

f (x) = xn +an−1 ·x
n−1 +an−2 ·x

n−2 + . . .a0

and a polynomial function in product form can be written as:

g(x) = Πn
i=1(xi − ci)
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Given two polynomial functions f () and g() in canonical form and product form respectively, is
f () = g()?
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Problem

Given two polynomial functions f () and g() in canonical form and product form respectively, is
f () = g()?

Theorem

Every polynomial function has a unique canonical representation.
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1: Convert g() into canonical form.
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1: Convert g() into canonical form.
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Deterministic Approach

Function VERIFY-POLYNOMIAL-IDENTITY(f (), g())

1: Convert g() into canonical form.
2: Check if the coefficients of g() match up with the coefficients of f ().

Analysis

What is the running time? Θ(n2)! Can we do better?
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Randomized Approach

Function RANDOMIZED-VERIFY-POLYNOMIAL-IDENTITY(f (), g())

1: Pick an integer r uniformly from the interval {1,2, . . . ,2 ·n}.
2: Compute s = f (r) and t = g(r).
3: if (s = t) then
4: f () and g() are identical.
5: else
6: f () and g() are not identical.
7: end if
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1: Pick an integer r uniformly from the interval {1,2, . . . ,2 ·n}.
2: Compute s = f (r) and t = g(r).
3: if (s = t) then
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5: else
6: f () and g() are not identical.
7: end if

Running Time
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1: Pick an integer r uniformly from the interval {1,2, . . . ,2 ·n}.
2: Compute s = f (r) and t = g(r).
3: if (s = t) then
4: f () and g() are identical.
5: else
6: f () and g() are not identical.
7: end if

Running Time

O(n) for computing t . How much time for computing s?
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Function RANDOMIZED-VERIFY-POLYNOMIAL-IDENTITY(f (), g())

1: Pick an integer r uniformly from the interval {1,2, . . . ,2 ·n}.
2: Compute s = f (r) and t = g(r).
3: if (s = t) then
4: f () and g() are identical.
5: else
6: f () and g() are not identical.
7: end if

Running Time

O(n) for computing t . How much time for computing s? O(n2)? Actually Θ(n)!

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Correctness analysis

Correctness

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Correctness analysis

Correctness

(i) When f () = g(), does the randomized algorithm make a mistake?
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Correctness

(i) When f () = g(), does the randomized algorithm make a mistake?

(ii) When f () 6= g(), does the randomized algorithm make a mistake?
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Correctness

(i) When f () = g(), does the randomized algorithm make a mistake?

(ii) When f () 6= g(), does the randomized algorithm make a mistake?

(iii) What can you conclude when the randomized algorithm declares that f () 6= g()?
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(i) When f () = g(), does the randomized algorithm make a mistake?

(ii) When f () 6= g(), does the randomized algorithm make a mistake?

(iii) What can you conclude when the randomized algorithm declares that f () 6= g()?

(iv) What can you conclude when the randomized algorithm declares that f () = g()?
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Correctness

(i) When f () = g(), does the randomized algorithm make a mistake?

(ii) When f () 6= g(), does the randomized algorithm make a mistake?

(iii) What can you conclude when the randomized algorithm declares that f () 6= g()?

(iv) What can you conclude when the randomized algorithm declares that f () = g()?

Note

If the algorithm declares that f () 6= g(), then the algorithm is correct.
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Correctness analysis

Correctness

(i) When f () = g(), does the randomized algorithm make a mistake?

(ii) When f () 6= g(), does the randomized algorithm make a mistake?

(iii) What can you conclude when the randomized algorithm declares that f () 6= g()?

(iv) What can you conclude when the randomized algorithm declares that f () = g()?

Note

If the algorithm declares that f () 6= g(), then the algorithm is correct. If the algorithm declares
that f () = g(), then it is possible that f () 6= g().

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Correctness analysis

Correctness

(i) When f () = g(), does the randomized algorithm make a mistake?

(ii) When f () 6= g(), does the randomized algorithm make a mistake?

(iii) What can you conclude when the randomized algorithm declares that f () 6= g()?

(iv) What can you conclude when the randomized algorithm declares that f () = g()?

Note

If the algorithm declares that f () 6= g(), then the algorithm is correct. If the algorithm declares
that f () = g(), then it is possible that f () 6= g(). We need to bound the probability of this event.
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The values at which a polynomial function evaluates to zero are called its roots.
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Definition

The values at which a polynomial function evaluates to zero are called its roots.

Theorem

A polynomial of degree n has exactly n roots (not necessarily distinct).
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Definition

The values at which a polynomial function evaluates to zero are called its roots.

Theorem

A polynomial of degree n has exactly n roots (not necessarily distinct). (Fundamental theorem of
algebra).

Observation

Two distinct polynomials f () and g() can be equal only at the roots of the polynomial f()−g().
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Bounding the error probability

Definition

The values at which a polynomial function evaluates to zero are called its roots.

Theorem

A polynomial of degree n has exactly n roots (not necessarily distinct). (Fundamental theorem of
algebra).

Observation

Two distinct polynomials f () and g() can be equal only at the roots of the polynomial f()−g().
The polynomial f ()−g() has at most n distinct roots.
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Observation

The only way for the randomized algorithm to give an incorrect answer when f () 6= g(), is if the
integer r that it picked, is a root of the polynomial f()−g().
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Bounding the error probability (contd.)

Observation

The only way for the randomized algorithm to give an incorrect answer when f () 6= g(), is if the
integer r that it picked, is a root of the polynomial f()−g(). There can be at most n roots of
f ()−g() in the range {1,2, . . . ,2 ·n}.
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Observation

The only way for the randomized algorithm to give an incorrect answer when f () 6= g(), is if the
integer r that it picked, is a root of the polynomial f()−g(). There can be at most n roots of
f ()−g() in the range {1,2, . . . ,2 ·n}. Since r is chosen uniformly and at random,
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Bounding the error probability (contd.)

Observation

The only way for the randomized algorithm to give an incorrect answer when f () 6= g(), is if the
integer r that it picked, is a root of the polynomial f()−g(). There can be at most n roots of
f ()−g() in the range {1,2, . . . ,2 ·n}. Since r is chosen uniformly and at random, the probability
that r is a root of f ()−g() is at most n

2·n = 1
2 .
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Bounding the error probability (contd.)

Observation

The only way for the randomized algorithm to give an incorrect answer when f () 6= g(), is if the
integer r that it picked, is a root of the polynomial f()−g(). There can be at most n roots of
f ()−g() in the range {1,2, . . . ,2 ·n}. Since r is chosen uniformly and at random, the probability
that r is a root of f ()−g() is at most n

2·n = 1
2 .

Theorem

On “yes” instances, the randomized algorithm does not err. On “no” instances, the probability
that the algorithm errs is at most 1

2 .
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Given 2 square n×n matrices A and B, compute C = A ·B.

Assumption

We will assume that all entries in A and B belong to the set {0,1}.
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Matrix multiplication and Verification

Problem Statement

Given 2 square n×n matrices A and B, compute C = A ·B.

Assumption

We will assume that all entries in A and B belong to the set {0,1}.

Deterministic Approaches

(i) Naive.
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Matrix multiplication and Verification

Problem Statement

Given 2 square n×n matrices A and B, compute C = A ·B.

Assumption

We will assume that all entries in A and B belong to the set {0,1}.

Deterministic Approaches

(i) Naive.

(ii) Strassen.
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Matrix multiplication and Verification

Problem Statement

Given 2 square n×n matrices A and B, compute C = A ·B.

Assumption

We will assume that all entries in A and B belong to the set {0,1}.

Deterministic Approaches

(i) Naive.

(ii) Strassen.

How to verify Strassen?
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Randomized Approach

Function RANDOMIZED-VERIFY-MATRIX-PRODUCT(C,A,B)

1: Pick a vector r uniformly from the box {0,1}n .
2: Compute s = A ·B · r and t = C · r .
3: if (s = t) then
4: C is the product of A and B.
5: else
6: C is not the product of A and B.
7: end if
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A randomized approach to verification

Randomized Approach

Function RANDOMIZED-VERIFY-MATRIX-PRODUCT(C,A,B)

1: Pick a vector r uniformly from the box {0,1}n .
2: Compute s = A ·B · r and t = C · r .
3: if (s = t) then
4: C is the product of A and B.
5: else
6: C is not the product of A and B.
7: end if

Running Time
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A randomized approach to verification

Randomized Approach

Function RANDOMIZED-VERIFY-MATRIX-PRODUCT(C,A,B)

1: Pick a vector r uniformly from the box {0,1}n .
2: Compute s = A ·B · r and t = C · r .
3: if (s = t) then
4: C is the product of A and B.
5: else
6: C is not the product of A and B.
7: end if

Running Time

O(n2) for computing t . How much time for computing s?
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A randomized approach to verification

Randomized Approach

Function RANDOMIZED-VERIFY-MATRIX-PRODUCT(C,A,B)

1: Pick a vector r uniformly from the box {0,1}n .
2: Compute s = A ·B · r and t = C · r .
3: if (s = t) then
4: C is the product of A and B.
5: else
6: C is not the product of A and B.
7: end if

Running Time

O(n2) for computing t . How much time for computing s? O(n3 +n2 = n3)?
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A randomized approach to verification

Randomized Approach

Function RANDOMIZED-VERIFY-MATRIX-PRODUCT(C,A,B)

1: Pick a vector r uniformly from the box {0,1}n .
2: Compute s = A ·B · r and t = C · r .
3: if (s = t) then
4: C is the product of A and B.
5: else
6: C is not the product of A and B.
7: end if

Running Time

O(n2) for computing t . How much time for computing s? O(n3 +n2 = n3)? Actually O(n2)!
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Analysis

Observation

If A ·B = C, then the randomized algorithm does not err.
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Analysis

Observation

If A ·B = C, then the randomized algorithm does not err. If A ·B 6= C, then the randomized
algorithm could err, since it could be the case that A ·B · r = C · r, for the chosen r,
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Analysis

Observation

If A ·B = C, then the randomized algorithm does not err. If A ·B 6= C, then the randomized
algorithm could err, since it could be the case that A ·B · r = C · r, for the chosen r, but there
exists some other vector u, such that A ·B ·u 6= C ·u.
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Analysis

Observation

If A ·B = C, then the randomized algorithm does not err. If A ·B 6= C, then the randomized
algorithm could err, since it could be the case that A ·B · r = C · r, for the chosen r, but there
exists some other vector u, such that A ·B ·u 6= C ·u. We need to bound the probability of the
error, over the random choices made by the algorithm.
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Analysis

Observation

If A ·B = C, then the randomized algorithm does not err. If A ·B 6= C, then the randomized
algorithm could err, since it could be the case that A ·B · r = C · r, for the chosen r, but there
exists some other vector u, such that A ·B ·u 6= C ·u. We need to bound the probability of the
error, over the random choices made by the algorithm.

Main idea

We will show that if r is chosen uniformly from {0,1}n , then the probability that A ·B · r = C · r,
when A ·B 6= C is at most 1

2 .
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Analysis

Observation

If A ·B = C, then the randomized algorithm does not err. If A ·B 6= C, then the randomized
algorithm could err, since it could be the case that A ·B · r = C · r, for the chosen r, but there
exists some other vector u, such that A ·B ·u 6= C ·u. We need to bound the probability of the
error, over the random choices made by the algorithm.

Main idea

We will show that if r is chosen uniformly from {0,1}n , then the probability that A ·B · r = C · r,
when A ·B 6= C is at most 1

2 .

Lemma

There is no difference between choosing r uniformly from {0,1}n and choosing each of its
components uniformly over the set {0,1}.
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Analysis (contd.)

Bounding the error

(i) Assume that A ·B 6= C, but that A ·B · r = C · r.
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Analysis (contd.)

Bounding the error

(i) Assume that A ·B 6= C, but that A ·B · r = C · r.

(ii) Let D = A ·B−C.
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Analysis (contd.)

Bounding the error

(i) Assume that A ·B 6= C, but that A ·B · r = C · r.

(ii) Let D = A ·B−C. Can D be 0?

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Analysis (contd.)

Bounding the error

(i) Assume that A ·B 6= C, but that A ·B · r = C · r.

(ii) Let D = A ·B−C. Can D be 0?

(iii) Without loss of generality assume that the first element of the first row of D, i.e., d11 is not 0.
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Analysis (contd.)

Bounding the error

(i) Assume that A ·B 6= C, but that A ·B · r = C · r.

(ii) Let D = A ·B−C. Can D be 0?

(iii) Without loss of generality assume that the first element of the first row of D, i.e., d11 is not 0.

(iv) Since D · r = 0, it means that
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Analysis (contd.)

Bounding the error

(i) Assume that A ·B 6= C, but that A ·B · r = C · r.

(ii) Let D = A ·B−C. Can D be 0?

(iii) Without loss of generality assume that the first element of the first row of D, i.e., d11 is not 0.

(iv) Since D · r = 0, it means that ∑n
i=1 d1i · ri = 0.
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Analysis (contd.)

Bounding the error

(i) Assume that A ·B 6= C, but that A ·B · r = C · r.

(ii) Let D = A ·B−C. Can D be 0?

(iii) Without loss of generality assume that the first element of the first row of D, i.e., d11 is not 0.

(iv) Since D · r = 0, it means that ∑n
i=1 d1i · ri = 0.

(v) Therefore, r1 = −
∑n

j=2 dij ·rj
d11

.
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Analysis (contd.)

Bounding the error

(i) Assume that A ·B 6= C, but that A ·B · r = C · r.

(ii) Let D = A ·B−C. Can D be 0?

(iii) Without loss of generality assume that the first element of the first row of D, i.e., d11 is not 0.

(iv) Since D · r = 0, it means that ∑n
i=1 d1i · ri = 0.

(v) Therefore, r1 = −
∑n

j=2 dij ·rj
d11

.

(vi) Assume that r2, r3, . . . , rn are chosen before r1.

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Analysis (contd.)

Bounding the error

(i) Assume that A ·B 6= C, but that A ·B · r = C · r.

(ii) Let D = A ·B−C. Can D be 0?

(iii) Without loss of generality assume that the first element of the first row of D, i.e., d11 is not 0.

(iv) Since D · r = 0, it means that ∑n
i=1 d1i · ri = 0.

(v) Therefore, r1 = −
∑n

j=2 dij ·rj
d11

.

(vi) Assume that r2, r3, . . . , rn are chosen before r1. Thus the RHS is fixed and evaluated before
r1 is chosen.
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Analysis (contd.)

Bounding the error

(i) Assume that A ·B 6= C, but that A ·B · r = C · r.

(ii) Let D = A ·B−C. Can D be 0?

(iii) Without loss of generality assume that the first element of the first row of D, i.e., d11 is not 0.

(iv) Since D · r = 0, it means that ∑n
i=1 d1i · ri = 0.

(v) Therefore, r1 = −
∑n

j=2 dij ·rj
d11

.

(vi) Assume that r2, r3, . . . , rn are chosen before r1. Thus the RHS is fixed and evaluated before
r1 is chosen. Thus the probability that the value of r1 chosen will be equal to the RHS value
is at most 1

2 .
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Analysis (contd.)

Bounding the error

(i) Assume that A ·B 6= C, but that A ·B · r = C · r.

(ii) Let D = A ·B−C. Can D be 0?

(iii) Without loss of generality assume that the first element of the first row of D, i.e., d11 is not 0.

(iv) Since D · r = 0, it means that ∑n
i=1 d1i · ri = 0.

(v) Therefore, r1 = −
∑n

j=2 dij ·rj
d11

.

(vi) Assume that r2, r3, . . . , rn are chosen before r1. Thus the RHS is fixed and evaluated before
r1 is chosen. Thus the probability that the value of r1 chosen will be equal to the RHS value
is at most 1

2 .

Note

The above method of analysis is called the Principle of Deferred Decisons.
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Given an undirected graph G = 〈V,E〉,
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Definition

Given an undirected graph G = 〈V,E〉, a cut-set or cut is defined as some set of edges E′ ⊆ E,
whose removal disconnects G.
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The Min-cut problem on undirected unweighted graphs

Definition

Given an undirected graph G = 〈V,E〉, a cut-set or cut is defined as some set of edges E′ ⊆ E,
whose removal disconnects G. In other words, G = 〈V,E−E′〉 has at least 2 components.
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The Min-cut problem on undirected unweighted graphs

Definition

Given an undirected graph G = 〈V,E〉, a cut-set or cut is defined as some set of edges E′ ⊆ E,
whose removal disconnects G. In other words, G = 〈V,E−E′〉 has at least 2 components.

Problem Statement

Given an undirected graph G = 〈V,E〉, find a cut E′ ⊆ E, such that,
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The Min-cut problem on undirected unweighted graphs

Definition

Given an undirected graph G = 〈V,E〉, a cut-set or cut is defined as some set of edges E′ ⊆ E,
whose removal disconnects G. In other words, G = 〈V,E−E′〉 has at least 2 components.

Problem Statement

Given an undirected graph G = 〈V,E〉, find a cut E′ ⊆ E, such that, |E′| ≤ |E′′|, over all cuts
E′′ ⊆ E.
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The Min-cut problem on undirected unweighted graphs

Definition

Given an undirected graph G = 〈V,E〉, a cut-set or cut is defined as some set of edges E′ ⊆ E,
whose removal disconnects G. In other words, G = 〈V,E−E′〉 has at least 2 components.

Problem Statement

Given an undirected graph G = 〈V,E〉, find a cut E′ ⊆ E, such that, |E′| ≤ |E′′|, over all cuts
E′′ ⊆ E.

Max-Flow approach
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The Min-cut problem on undirected unweighted graphs

Definition

Given an undirected graph G = 〈V,E〉, a cut-set or cut is defined as some set of edges E′ ⊆ E,
whose removal disconnects G. In other words, G = 〈V,E−E′〉 has at least 2 components.

Problem Statement

Given an undirected graph G = 〈V,E〉, find a cut E′ ⊆ E, such that, |E′| ≤ |E′′|, over all cuts
E′′ ⊆ E.

Max-Flow approach

(i) Difference between s− t Min-cut and Global Min-cut.
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The Min-cut problem on undirected unweighted graphs

Definition

Given an undirected graph G = 〈V,E〉, a cut-set or cut is defined as some set of edges E′ ⊆ E,
whose removal disconnects G. In other words, G = 〈V,E−E′〉 has at least 2 components.

Problem Statement

Given an undirected graph G = 〈V,E〉, find a cut E′ ⊆ E, such that, |E′| ≤ |E′′|, over all cuts
E′′ ⊆ E.

Max-Flow approach

(i) Difference between s− t Min-cut and Global Min-cut.

(ii) Solving s− t Min-cut.
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The Min-cut problem on undirected unweighted graphs

Definition

Given an undirected graph G = 〈V,E〉, a cut-set or cut is defined as some set of edges E′ ⊆ E,
whose removal disconnects G. In other words, G = 〈V,E−E′〉 has at least 2 components.

Problem Statement

Given an undirected graph G = 〈V,E〉, find a cut E′ ⊆ E, such that, |E′| ≤ |E′′|, over all cuts
E′′ ⊆ E.

Max-Flow approach

(i) Difference between s− t Min-cut and Global Min-cut.

(ii) Solving s− t Min-cut.

(iii) Reducing Global Min-cut to s− t Min-cut.
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The Randomized approach

The Contract Operation

Function CONTRACT-EDGE(G, e)

1: {We will contract edge e in G.}
2: Let u and v denote the end-points of e.
3: Identify u and v into a single vertex.
4: Remove all self-loops.
5: Keep all parallel edges.
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The Randomized approach

The Contract Operation

Function CONTRACT-EDGE(G, e)

1: {We will contract edge e in G.}
2: Let u and v denote the end-points of e.
3: Identify u and v into a single vertex.
4: Remove all self-loops.
5: Keep all parallel edges.

Note

CONTRACT-EDGE() reduces the number of vertices in the graph by 1.
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The Randomized approach

The Contract Operation

Function CONTRACT-EDGE(G, e)

1: {We will contract edge e in G.}
2: Let u and v denote the end-points of e.
3: Identify u and v into a single vertex.
4: Remove all self-loops.
5: Keep all parallel edges.

Note

CONTRACT-EDGE() reduces the number of vertices in the graph by 1. So we can call
CONTRACT-EDGE() at most (n−2) times, before a cut of the graph is revealed, i.e.,
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The Randomized approach

The Contract Operation

Function CONTRACT-EDGE(G, e)

1: {We will contract edge e in G.}
2: Let u and v denote the end-points of e.
3: Identify u and v into a single vertex.
4: Remove all self-loops.
5: Keep all parallel edges.

Note

CONTRACT-EDGE() reduces the number of vertices in the graph by 1. So we can call
CONTRACT-EDGE() at most (n−2) times, before a cut of the graph is revealed, i.e., all the edges
are between two giant vertices.
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Randomized Min-cut

The Randomized Algorithm

Function RANDOMIZED MIN-CUT(G = 〈V,E〉)

1: while there are more than 2 vertices in G do
2: Pick an edge e uniformly and at random from the edge set E
3: CONTRACT-EDGE(G,e)
4: end while
5: Let a and b denote the last two vertices that remain.
6: Output the edges between a and b as the min-cut of G.
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Focus

Assume that G has a min-cut of size k .
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Analysis

Focus

Assume that G has a min-cut of size k . Note that there could be several min-cuts with size k .
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Analysis

Focus

Assume that G has a min-cut of size k . Note that there could be several min-cuts with size k .
Without loss of generality, we focus on a specific cut, say C.
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Analysis

Focus

Assume that G has a min-cut of size k . Note that there could be several min-cuts with size k .
Without loss of generality, we focus on a specific cut, say C. The only way that the randomized
algorithm produces the correct answer is if no edge of C was contracted during the (n−2)
iterations.
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Analysis

Focus

Assume that G has a min-cut of size k . Note that there could be several min-cuts with size k .
Without loss of generality, we focus on a specific cut, say C. The only way that the randomized
algorithm produces the correct answer is if no edge of C was contracted during the (n−2)
iterations. The question of interest then is:
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Analysis

Focus

Assume that G has a min-cut of size k . Note that there could be several min-cuts with size k .
Without loss of generality, we focus on a specific cut, say C. The only way that the randomized
algorithm produces the correct answer is if no edge of C was contracted during the (n−2)
iterations. The question of interest then is: What is the probability that C survived the (n−2)
edge contractions of the randomized algorithm?
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Analysis

Focus

Assume that G has a min-cut of size k . Note that there could be several min-cuts with size k .
Without loss of generality, we focus on a specific cut, say C. The only way that the randomized
algorithm produces the correct answer is if no edge of C was contracted during the (n−2)
iterations. The question of interest then is: What is the probability that C survived the (n−2)
edge contractions of the randomized algorithm?

Analytic observations
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Analysis

Focus

Assume that G has a min-cut of size k . Note that there could be several min-cuts with size k .
Without loss of generality, we focus on a specific cut, say C. The only way that the randomized
algorithm produces the correct answer is if no edge of C was contracted during the (n−2)
iterations. The question of interest then is: What is the probability that C survived the (n−2)
edge contractions of the randomized algorithm?

Analytic observations

Let Ei denote the event that no edge of C was contracted in iteration i.
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Analysis

Focus

Assume that G has a min-cut of size k . Note that there could be several min-cuts with size k .
Without loss of generality, we focus on a specific cut, say C. The only way that the randomized
algorithm produces the correct answer is if no edge of C was contracted during the (n−2)
iterations. The question of interest then is: What is the probability that C survived the (n−2)
edge contractions of the randomized algorithm?

Analytic observations

Let Ei denote the event that no edge of C was contracted in iteration i. Clearly, the event that we
are interested in is
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Analysis

Focus

Assume that G has a min-cut of size k . Note that there could be several min-cuts with size k .
Without loss of generality, we focus on a specific cut, say C. The only way that the randomized
algorithm produces the correct answer is if no edge of C was contracted during the (n−2)
iterations. The question of interest then is: What is the probability that C survived the (n−2)
edge contractions of the randomized algorithm?

Analytic observations

Let Ei denote the event that no edge of C was contracted in iteration i. Clearly, the event that we
are interested in is ∩n−2

i=1 Ei with associated probability P(∩n−2
i=1 Ei).

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Analysis

Focus

Assume that G has a min-cut of size k . Note that there could be several min-cuts with size k .
Without loss of generality, we focus on a specific cut, say C. The only way that the randomized
algorithm produces the correct answer is if no edge of C was contracted during the (n−2)
iterations. The question of interest then is: What is the probability that C survived the (n−2)
edge contractions of the randomized algorithm?

Analytic observations

Let Ei denote the event that no edge of C was contracted in iteration i. Clearly, the event that we
are interested in is ∩n−2

i=1 Ei with associated probability P(∩n−2
i=1 Ei). How do we compute this

probability?
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Analysis

Focus

Assume that G has a min-cut of size k . Note that there could be several min-cuts with size k .
Without loss of generality, we focus on a specific cut, say C. The only way that the randomized
algorithm produces the correct answer is if no edge of C was contracted during the (n−2)
iterations. The question of interest then is: What is the probability that C survived the (n−2)
edge contractions of the randomized algorithm?

Analytic observations

Let Ei denote the event that no edge of C was contracted in iteration i. Clearly, the event that we
are interested in is ∩n−2

i=1 Ei with associated probability P(∩n−2
i=1 Ei). How do we compute this

probability? By noting that
P(∩n−2

i=1 Ei) = P(E1) ·P(E2 | E1) ·P(E3 | E1 ∩E2) . . . ·P(En | ∩n−1
i=1 Ei)!
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Analytic Observations
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Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G?

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .
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Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .

(ii) What is P(E1)?
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Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .

(ii) What is P(E1)? ≥ (1− 2
n ).
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Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .

(ii) What is P(E1)? ≥ (1− 2
n ).

(iii) What is P(E2 |E1)?
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Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .

(ii) What is P(E1)? ≥ (1− 2
n ).

(iii) What is P(E2 |E1)? ≥ (1− 2
n−1 ).
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Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .

(ii) What is P(E1)? ≥ (1− 2
n ).

(iii) What is P(E2 |E1)? ≥ (1− 2
n−1 ).

(iv) What is P(Ei | ∩
i−1
j=1 Ej)?

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .

(ii) What is P(E1)? ≥ (1− 2
n ).

(iii) What is P(E2 |E1)? ≥ (1− 2
n−1 ).

(iv) What is P(Ei | ∩
i−1
j=1 Ej)? (1− 2

n−i+1 ).
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Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .

(ii) What is P(E1)? ≥ (1− 2
n ).

(iii) What is P(E2 |E1)? ≥ (1− 2
n−1 ).

(iv) What is P(Ei | ∩
i−1
j=1 Ej)? (1− 2

n−i+1 ).

(v) What is P(∩n−2
i=1 Ei)?
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Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .

(ii) What is P(E1)? ≥ (1− 2
n ).

(iii) What is P(E2 |E1)? ≥ (1− 2
n−1 ).

(iv) What is P(Ei | ∩
i−1
j=1 Ej)? (1− 2

n−i+1 ).

(v) What is P(∩n−2
i=1 Ei)? Πn−2

i=1 (1− 2
n−i+1 )
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Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .

(ii) What is P(E1)? ≥ (1− 2
n ).

(iii) What is P(E2 |E1)? ≥ (1− 2
n−1 ).

(iv) What is P(Ei | ∩
i−1
j=1 Ej)? (1− 2

n−i+1 ).

(v) What is P(∩n−2
i=1 Ei)? Πn−2

i=1 (1− 2
n−i+1 ) ≥ 2

n·(n−1) .
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Analysis (contd.)

Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .

(ii) What is P(E1)? ≥ (1− 2
n ).

(iii) What is P(E2 |E1)? ≥ (1− 2
n−1 ).

(iv) What is P(Ei | ∩
i−1
j=1 Ej)? (1− 2

n−i+1 ).

(v) What is P(∩n−2
i=1 Ei)? Πn−2

i=1 (1− 2
n−i+1 ) ≥ 2

n·(n−1) .

Note

The probability that the randomized algorithm produces the min-cut of the graph is at least
2

n·(n−1) .
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Note

The probability that the randomized algorithm produces the min-cut of the graph is at least
2

n·(n−1) . Hence, the probability that the algorithm does not produce the min-cut of the graph in

n · (n−1) · ln n independent runs is at most:
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n · (n−1) · ln n independent runs is at most:
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)n·(n−1)·lnn ≤ e−2·lnn
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(i) What is the minimum degree of a vertex in G? ≥ k .
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Note

The probability that the randomized algorithm produces the min-cut of the graph is at least
2

n·(n−1) . Hence, the probability that the algorithm does not produce the min-cut of the graph in

n · (n−1) · ln n independent runs is at most:

(1−
2

n · (n−1)
)n·(n−1)·lnn ≤ e−2·lnn (since (1− x) ≤ e−x )
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Analytic Observations

(i) What is the minimum degree of a vertex in G? ≥ k .

(ii) What is P(E1)? ≥ (1− 2
n ).

(iii) What is P(E2 |E1)? ≥ (1− 2
n−1 ).

(iv) What is P(Ei | ∩
i−1
j=1 Ej)? (1− 2

n−i+1 ).

(v) What is P(∩n−2
i=1 Ei)? Πn−2

i=1 (1− 2
n−i+1 ) ≥ 2

n·(n−1) .

Note

The probability that the randomized algorithm produces the min-cut of the graph is at least
2

n·(n−1) . Hence, the probability that the algorithm does not produce the min-cut of the graph in

n · (n−1) · ln n independent runs is at most:

(1−
2

n · (n−1)
)n·(n−1)·lnn ≤ e−2·lnn (since (1− x) ≤ e−x )

=
1

n2
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You are required to collect coupons in a series of iterations.

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Coupon Collector problems

Problem Statements

You are required to collect coupons in a series of iterations. Assume that each coupon belongs
to one of N types, where N is a fixed number.

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Coupon Collector problems

Problem Statements

You are required to collect coupons in a series of iterations. Assume that each coupon belongs
to one of N types, where N is a fixed number. The coupons are drawn uniformly and at random
from the N coupon types.

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Coupon Collector problems

Problem Statements

You are required to collect coupons in a series of iterations. Assume that each coupon belongs
to one of N types, where N is a fixed number. The coupons are drawn uniformly and at random
from the N coupon types. Several questions are of interest:

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Coupon Collector problems

Problem Statements

You are required to collect coupons in a series of iterations. Assume that each coupon belongs
to one of N types, where N is a fixed number. The coupons are drawn uniformly and at random
from the N coupon types. Several questions are of interest:

(i) For a fixed t ≥ N, what is the probability that at least t coupons need to be collected to
ensure that we have at least one coupon of each type?
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Problem Statements

You are required to collect coupons in a series of iterations. Assume that each coupon belongs
to one of N types, where N is a fixed number. The coupons are drawn uniformly and at random
from the N coupon types. Several questions are of interest:

(i) For a fixed t ≥ N, what is the probability that at least t coupons need to be collected to
ensure that we have at least one coupon of each type?

(ii) What is the expected number of coupons to be collected, to ensure that each coupon type
has been collected?
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Problem Statements

You are required to collect coupons in a series of iterations. Assume that each coupon belongs
to one of N types, where N is a fixed number. The coupons are drawn uniformly and at random
from the N coupon types. Several questions are of interest:

(i) For a fixed t ≥ N, what is the probability that at least t coupons need to be collected to
ensure that we have at least one coupon of each type?

(ii) What is the expected number of coupons to be collected, to ensure that each coupon type
has been collected?

(iii) Suppose you are given a K coupons (usually less than N). What is the expected number of
distinct coupon types in these K coupons?
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We focus on the following question: What is the expected number of coupons to be collected, to
ensure that each coupon type has been collected?

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Analysis

Analyzing one coupon collection problem

We focus on the following question: What is the expected number of coupons to be collected, to
ensure that each coupon type has been collected? Let X denote the total number of coupons to
be drawn, before we have at least one coupon of each of the N distinct types.

Subramani Sample Analyses



Recap
Verifying polynomial Identities
Verifying Matrix Multiplication

A Randomized Min-Cut Algorithm
Coupon Collector problems

Analysis

Analyzing one coupon collection problem

We focus on the following question: What is the expected number of coupons to be collected, to
ensure that each coupon type has been collected? Let X denote the total number of coupons to
be drawn, before we have at least one coupon of each of the N distinct types. Let Xi denote the
number of coupons that need to be drawn, after (i −1) distinct coupon types have been
collected, in order to draw a coupon of a type that has not been collected.
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be drawn, before we have at least one coupon of each of the N distinct types. Let Xi denote the
number of coupons that need to be drawn, after (i −1) distinct coupon types have been
collected, in order to draw a coupon of a type that has not been collected. If pi denotes the
probability of drawing a new coupon after (i −1) coupons have been collected, then clearly,
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Analyzing one coupon collection problem

We focus on the following question: What is the expected number of coupons to be collected, to
ensure that each coupon type has been collected? Let X denote the total number of coupons to
be drawn, before we have at least one coupon of each of the N distinct types. Let Xi denote the
number of coupons that need to be drawn, after (i −1) distinct coupon types have been
collected, in order to draw a coupon of a type that has not been collected. If pi denotes the
probability of drawing a new coupon after (i −1) coupons have been collected, then clearly,
pi = (1− i−1

N ) = N−i+1
N .

Now X = ∑N
i=1 Xi and hence E[X ] = ∑N

i=1 E[Xi ].
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We focus on the following question: What is the expected number of coupons to be collected, to
ensure that each coupon type has been collected? Let X denote the total number of coupons to
be drawn, before we have at least one coupon of each of the N distinct types. Let Xi denote the
number of coupons that need to be drawn, after (i −1) distinct coupon types have been
collected, in order to draw a coupon of a type that has not been collected. If pi denotes the
probability of drawing a new coupon after (i −1) coupons have been collected, then clearly,
pi = (1− i−1

N ) = N−i+1
N .

Now X = ∑N
i=1 Xi and hence E[X ] = ∑N

i=1 E[Xi ]. Observe that each Xi is a geometric random
variable with parameter pi .
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We focus on the following question: What is the expected number of coupons to be collected, to
ensure that each coupon type has been collected? Let X denote the total number of coupons to
be drawn, before we have at least one coupon of each of the N distinct types. Let Xi denote the
number of coupons that need to be drawn, after (i −1) distinct coupon types have been
collected, in order to draw a coupon of a type that has not been collected. If pi denotes the
probability of drawing a new coupon after (i −1) coupons have been collected, then clearly,
pi = (1− i−1

N ) = N−i+1
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i=1 Xi and hence E[X ] = ∑N

i=1 E[Xi ]. Observe that each Xi is a geometric random
variable with parameter pi . Therefore,
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Analyzing one coupon collection problem

We focus on the following question: What is the expected number of coupons to be collected, to
ensure that each coupon type has been collected? Let X denote the total number of coupons to
be drawn, before we have at least one coupon of each of the N distinct types. Let Xi denote the
number of coupons that need to be drawn, after (i −1) distinct coupon types have been
collected, in order to draw a coupon of a type that has not been collected. If pi denotes the
probability of drawing a new coupon after (i −1) coupons have been collected, then clearly,
pi = (1− i−1

N ) = N−i+1
N .

Now X = ∑N
i=1 Xi and hence E[X ] = ∑N

i=1 E[Xi ]. Observe that each Xi is a geometric random
variable with parameter pi . Therefore,

E[X ] =
N

∑
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=
N

∑
i=1

1

pi
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=
N

∑
i=1

N

N − i +1
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= N ·
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=
N

∑
i=1

N

N − i +1

= N ·
N

∑
i=1

1

i

= N ·HN

= N · ln N +Θ(N),
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=
N

∑
i=1

N

N − i +1

= N ·
N

∑
i=1

1

i

= N ·HN

= N · ln N +Θ(N), since HN = lnN +Θ(1)
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