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Recap
The Poisson Approximation

Applications to Hashing

Recap

Main issues

The experiment of throwing m balls into n bins, each bin being chosen independently and
uniformly at random.Several questions regarding the above random process were examined,
such as expected maximum load, expected number of balls in a bin, expected number of empty
bins, and expected number of bins with r balls. We also examined the Poisson random variable
and its applications to Balls and Bins questions.
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The Poisson Approximation

Main Issues

Is bin emptiness events independent?

We know that if m balls are thrown uniformly and independently into n bins, the distribution
is approximately Poisson with mean m

n .

We wish to approximate the load at each bin with independent Poisson random variables.

We will show that this can be achieved by provable bounds.

Note

There is a difference between throwing m balls randomly and assigning each bin a number of
balls that is Poisson distributed with mean m

n . However, if you use Poisson distribution and end
with m balls, the distributions are identical!
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Theorem I

Theorem

Let X (m)
i , 1≤ i ≤ n be the number of balls in the i th bin. Let Y (m)

i , 1≤ i ≤ n denote independent
Poisson random variables with mean m

n .

The distribution of (Y (m)
1 , . . . ,Y (m)

n ) conditioned on ∑i Y (m)
i = k is the same as (X (k)

1 , . . . ,X (k)
n ).

Subramani Balls and Bins



Recap
The Poisson Approximation

Applications to Hashing
Some theorems and lemmas

Theorem I

Theorem

Let X (m)
i , 1≤ i ≤ n be the number of balls in the i th bin.

Let Y (m)
i , 1≤ i ≤ n denote independent

Poisson random variables with mean m
n .

The distribution of (Y (m)
1 , . . . ,Y (m)

n ) conditioned on ∑i Y (m)
i = k is the same as (X (k)

1 , . . . ,X (k)
n ).

Subramani Balls and Bins



Recap
The Poisson Approximation

Applications to Hashing
Some theorems and lemmas

Theorem I

Theorem

Let X (m)
i , 1≤ i ≤ n be the number of balls in the i th bin. Let Y (m)

i , 1≤ i ≤ n denote independent
Poisson random variables with mean m

n .

The distribution of (Y (m)
1 , . . . ,Y (m)

n ) conditioned on ∑i Y (m)
i = k is the same as (X (k)

1 , . . . ,X (k)
n ).

Subramani Balls and Bins



Recap
The Poisson Approximation

Applications to Hashing
Some theorems and lemmas

Theorem I

Theorem

Let X (m)
i , 1≤ i ≤ n be the number of balls in the i th bin. Let Y (m)

i , 1≤ i ≤ n denote independent
Poisson random variables with mean m

n .

The distribution of (Y (m)
1 , . . . ,Y (m)

n ) conditioned on ∑i Y (m)
i = k is the same as (X (k)

1 , . . . ,X (k)
n ).

Subramani Balls and Bins



Recap
The Poisson Approximation

Applications to Hashing
Some theorems and lemmas

Theorem II

Theorem

Let f (x1,x2, . . . ,xn) denote a nonnegative function. Then,

E[f (X (m)
1 , . . . ,X (m)

n )]≤ e ·
√

m ·E[f (Y (m)
1 , . . . ,Y (m)

n )]

Corollary

Any event that takes place with probability p in the Poisson case, takes place with probability at
most p ·e ·

√
m in the exact case.
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Theorem

Let f (x1,x2, . . . ,xn) denote a nonnegative function, such that E[f (X (m)
1 , . . . ,X (m)

n )] is either
monotonically increasing or monotonically decreasing in m. Then,

E[f (X (m)
1 , . . . ,X (m)

n )]≤ 2 ·E[f (Y (m)
1 , . . . ,Y (m)

n )]

Corollary

Let ∆ be an event whose probability is either monotonically increasing or decreasing in the
number of balls. If ∆ has probability p in the Poisson case, then it has probability at most 2 ·p in
the exact case.

Lemma

When n balls are thrown independently into n bins, the maximum load is at least lnn
ln lnn with

probability at least (1− 1
n ), for sufficiently large n.
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Chain Hashing

Main Issues

The password checking problem.

The Hashing Approach and Hash functions. f : U→ [0, n−1].

Chain Hashing.

Assumption: Hash function maps words into bins in random fashion.

For each x ∈ U, the probability that f (x) = j is 1
n , and the values of f (x) for each x are

independent of each other.

Search approach.

If the word is not in dictionary, expected time is m
n , otherwise, expected time is 1 + m−1

n .

Choosing n = m, gives constant expected search time.

When n = m, the maximum load is Θ( lnn
ln lnn ), w.h.p.; faster than binary search.

Wasted space.
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Bit String Hashing

Main Issues

Goal is to save space instead of time.

Assume that passwords are restricted to 64 bits and that a hash function maps words into
32 bits.

Fingerprinting and false positives.

The approximate set membership problem:
Given a set S = {s1,s2, . . . ,sm} of m elements from a large universe U, we would like to
represent elements in such a way, as to efficiently answer queries of the form “Is x ∈ S”?
The disallowed passwords correspond to S. We also want to be space efficient and are
willing to tolerate some error.

Assume that we use b bits to create a fingerprint. The probability that an acceptable
password has a fingerprint that is different from any specific password is (1− 1

2b ).
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Bit String Hashing (contd.)

Main Issues (contd.)

Since S has size m, what is the probability that an acceptable password fingerprint will
match the fingerprints of one of the elements of S? 1− (1− 1

2b )m ≥ 1−e
−m
2·b .

Since we want the probability of a false positive to be less than c, we need,

1−e
−m
2·b ≤ c

⇒ e
−m
2·b ≥ 1− c

⇒ b ≥ log2
m

ln 1
1−c

If we choose b = 2 · log2 m, the probability of a false positive is: 1− (1− 1
m2 )m < 1

m .

If our dictionary has 216 words, using 32 bits when hashing, leads to an error probability of at
most 1

65,536 .
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Bloom Filters

Main Issues

Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a
better trade-off? Bloom filters!

A Bloom filter consists of an array of n bits, A[0] to A[n−1], initially set to 0.

k hash function h1, h2, . . . , hk with range {0, . . . ,n−1} are used.

We wish to represent a set S = {s1,s2, . . . ,sm} of m elements.

Set A[hi (s)] to 1, for each 1≤ i ≤ k and each s ∈ S.

How to check if x ∈ S? Check all locations A[hi (x)], 1≤ i ≤ k .

How could we go wrong? False positives.
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Analyzing error probability

Analysis

What is the probability that a specific bit is 0, after the preprocessing? (1− 1
n )k ·m = e−

k ·m
n .

Assume that a fraction p = e−
k ·m

n of the entries are still 0, after S has been hashed into the
Bloom filter.

The probability of a false positive is then precisely the probability that all the hash functions
map the input string x 6∈ S, to 1, which is,

(1− (1− 1
n

)k ·m)k = (1−e−
k ·m

n )k

= f ()

Optimizing for k , we get k = ln2 and f ≈ (0.6185)
m
n .
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Breaking Symmetry

Main Issues

Resource contention.

Sequential ordering.

The Hashing approach. Hash each user identifier into b bits.

How likely that two users will have the same hash value? Fix one user. What is the
probability that some other user obtains the same hash value?

1− (1− 1
2b )n−1 ≤ n−1

2b

By the union bound, the probability that any user has the same hash values as the fixed
user is n·(n−1)

2b . In order to guarantee success with probability (1− 1
n ), choose

b = 3 · logn2.

Can also be used for the leader election problem.
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