Balls and Bins (Advanced)

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

6 March, 2012

- Recap
- 2 The Poisson Approximation
 - Some theorems and lemmas

- Recap
- The Poisson Approximation
 - Some theorems and lemmas
- Applications to Hashing
 - Chain Hashing
 - Bit String Hashing
 - Bloom Filters
 - Breaking Symmetry

Main issues

The experiment of throwing m balls into n bins,

Main issues

The experiment of throwing m balls into n bins, each bin being chosen independently and uniformly at random.

Main issues

The experiment of throwing m balls into n bins, each bin being chosen independently and uniformly at random. Several questions regarding the above random process were examined,

Main issues

The experiment of throwing m balls into n bins, each bin being chosen independently and uniformly at random. Several questions regarding the above random process were examined, such as expected maximum load,

Main issues

The experiment of throwing m balls into n bins, each bin being chosen independently and uniformly at random. Several questions regarding the above random process were examined, such as expected maximum load, expected number of balls in a bin,

Main issues

The experiment of throwing m balls into n bins, each bin being chosen independently and uniformly at random. Several questions regarding the above random process were examined, such as expected maximum load, expected number of balls in a bin, expected number of empty bins, and

Main issues

The experiment of throwing m balls into n bins, each bin being chosen independently and uniformly at random. Several questions regarding the above random process were examined, such as expected maximum load, expected number of balls in a bin, expected number of empty bins, and expected number of bins with r balls.

Main issues

The experiment of throwing m balls into n bins, each bin being chosen independently and uniformly at random. Several questions regarding the above random process were examined, such as expected maximum load, expected number of balls in a bin, expected number of empty bins, and expected number of bins with r balls. We also examined the Poisson random variable and its applications to Balls and Bins questions.

Main Issues

• Is bin emptiness events independent?

- Is bin emptiness events independent?
- We know that if m balls are thrown uniformly and independently into n bins, the distribution is approximately Poisson with mean $\frac{m}{n}$.

- Is bin emptiness events independent?
- We know that if m balls are thrown uniformly and independently into n bins, the distribution is approximately Poisson with mean $\frac{m}{n}$.
- We wish to approximate the load at each bin with independent Poisson random variables.

- Is bin emptiness events independent?
- We know that if m balls are thrown uniformly and independently into n bins, the distribution is approximately Poisson with mean $\frac{m}{n}$.
- We wish to approximate the load at each bin with independent Poisson random variables.
- We will show that this can be achieved by provable bounds.

Main Issues

- Is bin emptiness events independent?
- We know that if m balls are thrown uniformly and independently into n bins, the distribution is approximately Poisson with mean $\frac{m}{n}$.
- We wish to approximate the load at each bin with independent Poisson random variables.
- We will show that this can be achieved by provable bounds.

Note

There is a difference between throwing m balls randomly and assigning each bin a number of balls that is Poisson distributed with mean $\frac{m}{n}$.

Main Issues

- Is bin emptiness events independent?
- We know that if m balls are thrown uniformly and independently into n bins, the distribution is approximately Poisson with mean $\frac{m}{n}$.
- We wish to approximate the load at each bin with independent Poisson random variables.
- We will show that this can be achieved by provable bounds.

Note

There is a difference between throwing m balls randomly and assigning each bin a number of balls that is Poisson distributed with mean $\frac{m}{n}$. However, if you use Poisson distribution and end with m balls, the distributions are identical!

- Recap
- 2 The Poisson Approximation
 - Some theorems and lemmas
- Applications to Hashing
 - Chain Hashing
 - Bit String Hashing
 - Bloom Filters
 - Breaking Symmetry

Theorem

Let $X_i^{(m)}$, $1 \le i \le n$ be the number of balls in the i^{th} bin.

Theorem

Let $X_i^{(m)}$, $1 \le i \le n$ be the number of balls in the i^{th} bin. Let $Y_i^{(m)}$, $1 \le i \le n$ denote independent Poisson random variables with mean $\frac{m}{n}$.

Theorem

Let $X_i^{(m)}$, $1 \le i \le n$ be the number of balls in the i^{th} bin. Let $Y_i^{(m)}$, $1 \le i \le n$ denote independent Poisson random variables with mean $\frac{m}{n}$.

The distribution of $(Y_1^{(m)}, \dots, Y_n^{(m)})$ conditioned on $\sum_i Y_i^{(m)} = k$ is the same as $(X_1^{(k)}, \dots, X_n^{(k)})$.

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function.

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function. Then,

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function. Then,

$$\mathbf{E}[f(X_1^{(m)},...,X_n^{(m)})] \le e \cdot \sqrt{m} \cdot \mathbf{E}[f(Y_1^{(m)},...,Y_n^{(m)})]$$

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function. Then,

$$\mathbf{E}[f(X_1^{(m)},\ldots,X_n^{(m)})] \le e \cdot \sqrt{m} \cdot \mathbf{E}[f(Y_1^{(m)},\ldots,Y_n^{(m)})]$$

Corollary

Any event that takes place with probability p in the Poisson case, takes place with probability at most

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function. Then,

$$\mathbf{E}[f(X_1^{(m)},...,X_n^{(m)})] \le e \cdot \sqrt{m} \cdot \mathbf{E}[f(Y_1^{(m)},...,Y_n^{(m)})]$$

Corollary

Any event that takes place with probability p in the Poisson case, takes place with probability at most $p \cdot e \cdot \sqrt{m}$ in the exact case.

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function,

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function, such that $\mathbf{E}[f(X_1^{(m)}, ..., X_n^{(m)})]$ is either monotonically increasing or monotonically decreasing in m.

Theorem III

Theorem

Let $f(x_1, x_2, \dots, x_n)$ denote a nonnegative function, such that $\mathbf{E}[f(X_1^{(m)}, \dots, X_n^{(m)})]$ is either monotonically increasing or monotonically decreasing in m. Then,

Theorem III

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function, such that $\mathbf{E}[f(X_1^{(m)}, ..., X_n^{(m)})]$ is either monotonically increasing or monotonically decreasing in m. Then,

$$\mathbf{E}[f(X_1^{(m)},\ldots,X_n^{(m)})] \le 2 \cdot \mathbf{E}[f(Y_1^{(m)},\ldots,Y_n^{(m)})]$$

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function, such that $\mathbf{E}[f(X_1^{(m)}, ..., X_n^{(m)})]$ is either monotonically increasing or monotonically decreasing in m. Then,

$$\mathbf{E}[f(X_1^{(m)},\ldots,X_n^{(m)})] \leq 2 \cdot \mathbf{E}[f(Y_1^{(m)},\ldots,Y_n^{(m)})]$$

Corollary

Let Δ be an event whose probability is either monotonically increasing or decreasing in the number of balls.

Theorem III

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function, such that $\mathbf{E}[f(X_1^{(m)}, ..., X_n^{(m)})]$ is either monotonically increasing or monotonically decreasing in m. Then,

$$\mathbf{E}[f(X_1^{(m)},\ldots,X_n^{(m)})] \le 2 \cdot \mathbf{E}[f(Y_1^{(m)},\ldots,Y_n^{(m)})]$$

Corollary

Let Δ be an event whose probability is either monotonically increasing or decreasing in the number of balls. If Δ has probability p in the Poisson case, then it has probability at most

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function, such that $\mathbf{E}[f(X_1^{(m)}, ..., X_n^{(m)})]$ is either monotonically increasing or monotonically decreasing in m. Then,

$$\mathbf{E}[f(X_1^{(m)},\ldots,X_n^{(m)})] \le 2 \cdot \mathbf{E}[f(Y_1^{(m)},\ldots,Y_n^{(m)})]$$

Corollary

Let Δ be an event whose probability is either monotonically increasing or decreasing in the number of balls. If Δ has probability p in the Poisson case, then it has probability at most $2 \cdot p$ in the exact case.

Theorem

Let $f(x_1, x_2, ..., x_n)$ denote a nonnegative function, such that $\mathbf{E}[f(X_1^{(m)}, ..., X_n^{(m)})]$ is either monotonically increasing or monotonically decreasing in m. Then,

$$\mathbf{E}[f(X_1^{(m)},\ldots,X_n^{(m)})] \le 2 \cdot \mathbf{E}[f(Y_1^{(m)},\ldots,Y_n^{(m)})]$$

Corollary

Let Δ be an event whose probability is either monotonically increasing or decreasing in the number of balls. If Δ has probability p in the Poisson case, then it has probability at most $2 \cdot p$ in the exact case.

Lemma

When n balls are thrown independently into n bins, the maximum load is at least $\frac{\ln n}{\ln \ln n}$ with probability at least $(1-\frac{1}{n})$, for sufficiently large n.

Outline

- 1 Recap
- 2 The Poisson Approximation
 - Some theorems and lemmas
- Applications to Hashing
 - Chain Hashing
 - Bit String Hashing
 - Bloom Filters
 - Breaking Symmetry

Main Issues

• The password checking problem.

- The password checking problem.
- The Hashing Approach and Hash functions.

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.
- Assumption: Hash function maps words into bins in random fashion.

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.
- Assumption: Hash function maps words into bins in random fashion.
- For each $x \in U$, the probability that f(x) = j is $\frac{1}{n}$,

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.
- Assumption: Hash function maps words into bins in random fashion.
- For each $x \in U$, the probability that f(x) = j is $\frac{1}{n}$, and

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.
- Assumption: Hash function maps words into bins in random fashion.
- For each $x \in U$, the probability that f(x) = j is $\frac{1}{n}$, and the values of f(x) for each x are independent of each other.

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.
- Assumption: Hash function maps words into bins in random fashion.
- For each $x \in U$, the probability that f(x) = j is $\frac{1}{n}$, and the values of f(x) for each x are independent of each other.
- Search approach.

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.
- Assumption: Hash function maps words into bins in random fashion.
- For each $x \in U$, the probability that f(x) = j is $\frac{1}{n}$, and the values of f(x) for each x are independent of each other.
- Search approach.
- If the word is not in dictionary, expected time is $\frac{m}{n}$,

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.
- Assumption: Hash function maps words into bins in random fashion.
- For each $x \in U$, the probability that f(x) = j is $\frac{1}{n}$, and the values of f(x) for each x are independent of each other.
- Search approach.
- If the word is not in dictionary, expected time is $\frac{m}{n}$, otherwise, expected time is $1 + \frac{m-1}{n}$.

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.
- Assumption: Hash function maps words into bins in random fashion.
- For each $x \in U$, the probability that f(x) = j is $\frac{1}{n}$, and the values of f(x) for each x are independent of each other.
- Search approach.
- If the word is not in dictionary, expected time is $\frac{m}{n}$, otherwise, expected time is $1 + \frac{m-1}{n}$.
- Choosing n = m, gives constant expected search time.

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.
- Assumption: Hash function maps words into bins in random fashion.
- For each $x \in U$, the probability that f(x) = j is $\frac{1}{n}$, and the values of f(x) for each x are independent of each other.
- Search approach.
- If the word is not in dictionary, expected time is $\frac{m}{n}$, otherwise, expected time is $1 + \frac{m-1}{n}$.
- Choosing n = m, gives constant expected search time.
- When n = m, the maximum load is $\Theta(\frac{\ln n}{\ln \ln n})$, w.h.p.;

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.
- Assumption: Hash function maps words into bins in random fashion.
- For each $x \in U$, the probability that f(x) = j is $\frac{1}{n}$, and the values of f(x) for each x are independent of each other.
- Search approach.
- If the word is not in dictionary, expected time is $\frac{m}{n}$, otherwise, expected time is $1 + \frac{m-1}{n}$.
- Choosing n = m, gives constant expected search time.
- When n = m, the maximum load is $\Theta(\frac{\ln n}{\ln \ln n})$, w.h.p.; faster than binary search.

- The password checking problem.
- The Hashing Approach and Hash functions. $f: U \rightarrow [0, n-1]$.
- Chain Hashing.
- Assumption: Hash function maps words into bins in random fashion.
- For each $x \in U$, the probability that f(x) = j is $\frac{1}{n}$, and the values of f(x) for each x are independent of each other.
- Search approach.
- If the word is not in dictionary, expected time is $\frac{m}{n}$, otherwise, expected time is $1 + \frac{m-1}{n}$.
- Choosing n = m, gives constant expected search time.
- When n = m, the maximum load is $\Theta(\frac{\ln n}{\ln \ln n})$, w.h.p.; faster than binary search.
- Wasted space.

Outline

- 1 Recap
- 2 The Poisson Approximation
 - Some theorems and lemmas
- Applications to Hashing
 - Chain Hashing
 - Bit String Hashing
 - Bloom Filters
 - Breaking Symmetry

ain Hashing String Hashing Soom Filters eaking Symmetry

Bit String Hashing

Main Issues

• Goal is to save space instead of time.

- Goal is to save space instead of time.
- Assume that passwords are restricted to 64 bits and that a hash function maps words into 32 bits.

- Goal is to save space instead of time.
- Assume that passwords are restricted to 64 bits and that a hash function maps words into 32 bits.
- Fingerprinting and false positives.

- Goal is to save space instead of time.
- Assume that passwords are restricted to 64 bits and that a hash function maps words into 32 bits.
- Fingerprinting and false positives.
- The approximate set membership problem:

Main Issues

- Goal is to save space instead of time.
- Assume that passwords are restricted to 64 bits and that a hash function maps words into 32 bits.
- Fingerprinting and false positives.
- The approximate set membership problem: Given a set $S = \{s_1, s_2, ..., s_m\}$ of m elements from a large universe U,

Subramani

- Goal is to save space instead of time.
- Assume that passwords are restricted to 64 bits and that a hash function maps words into 32 bits.
- Fingerprinting and false positives.
- The approximate set membership problem:
 Given a set S = {s₁, s₂,..., s_m} of m elements from a large universe U, we would like to represent elements in such a way,

- Goal is to save space instead of time.
- Assume that passwords are restricted to 64 bits and that a hash function maps words into 32 bits.
- Fingerprinting and false positives.
- The approximate set membership problem:
 - Given a set $S = \{s_1, s_2, \dots, s_m\}$ of m elements from a large universe U, we would like to represent elements in such a way, as to efficiently answer queries of the form "Is $x \in S$ "?

Main Issues

- Goal is to save space instead of time.
- Assume that passwords are restricted to 64 bits and that a hash function maps words into 32 bits.
- Fingerprinting and false positives.
- The approximate set membership problem:

Given a set $S = \{s_1, s_2, \dots, s_m\}$ of m elements from a large universe U, we would like to represent elements in such a way, as to efficiently answer queries of the form "Is $x \in S$ "? The disallowed passwords correspond to S.

Main Issues

- Goal is to save space instead of time.
- Assume that passwords are restricted to 64 bits and that a hash function maps words into 32 bits.
- Fingerprinting and false positives.
- The approximate set membership problem:

Given a set $S = \{s_1, s_2, \ldots, s_m\}$ of m elements from a large universe U, we would like to represent elements in such a way, as to efficiently answer queries of the form "Is $x \in S$ "? The disallowed passwords correspond to S. We also want to be space efficient and are willing to tolerate some error.

- Goal is to save space instead of time.
- Assume that passwords are restricted to 64 bits and that a hash function maps words into 32 bits.
- Fingerprinting and false positives.
- The approximate set membership problem: Given a set S = {s₁, s₂,...,s_m} of m elements from a large universe U, we would like to represent elements in such a way, as to efficiently answer queries of the form "Is x ∈ S"? The disallowed passwords correspond to S. We also want to be space efficient and are willing to tolerate some error.
- Assume that we use b bits to create a fingerprint.

- Goal is to save space instead of time.
- Assume that passwords are restricted to 64 bits and that a hash function maps words into 32 bits.
- Fingerprinting and false positives.
- The approximate set membership problem: Given a set S = {s₁, s₂,...,s_m} of m elements from a large universe U, we would like to represent elements in such a way, as to efficiently answer queries of the form "Is x ∈ S"? The disallowed passwords correspond to S. We also want to be space efficient and are willing to tolerate some error.
- Assume that we use b bits to create a fingerprint. The probability that an acceptable
 password has a fingerprint that is different from any specific password is

Bit String Hashing

- Goal is to save space instead of time.
- Assume that passwords are restricted to 64 bits and that a hash function maps words into 32 bits.
- Fingerprinting and false positives.
- The approximate set membership problem: Given a set S = {s₁, s₂,...,s_m} of m elements from a large universe U, we would like to represent elements in such a way, as to efficiently answer queries of the form "Is x ∈ S"? The disallowed passwords correspond to S. We also want to be space efficient and are willing to tolerate some error.
- Assume that we use *b* bits to create a fingerprint. The probability that an acceptable password has a fingerprint that is different from any specific password is $\left(1 \frac{1}{2D}\right)$.

Main Issues (contd.)

Since S has size m, what is the probability that an acceptable password fingerprint will
match the fingerprints of one of the elements of S?

Main Issues (contd.)

• Since S has size m, what is the probability that an acceptable password fingerprint will match the fingerprints of one of the elements of S? $1 - (1 - \frac{1}{2^b})^m$

Main Issues (contd.)

• Since S has size m, what is the probability that an acceptable password fingerprint will match the fingerprints of one of the elements of S? $1-(1-\frac{1}{2^b})^m \geq 1-e^{\frac{-m}{2^b}}$.

- Since S has size m, what is the probability that an acceptable password fingerprint will match the fingerprints of one of the elements of S? $1 (1 \frac{1}{2^b})^m \ge 1 e^{\frac{-m}{2^b}}$.
- Since we want the probability of a false positive to be less than c, we need,

- Since S has size m, what is the probability that an acceptable password fingerprint will match the fingerprints of one of the elements of S? $1 (1 \frac{1}{2^b})^m \ge 1 e^{\frac{-m}{2^b}}$.
- Since we want the probability of a false positive to be less than c, we need,

$$1-e^{\frac{-m}{2\cdot b}} \leq c$$

- Since *S* has size *m*, what is the probability that an acceptable password fingerprint will match the fingerprints of one of the elements of S? $1 (1 \frac{1}{2b})^m \ge 1 e^{\frac{-m}{2b}}$.
- Since we want the probability of a false positive to be less than c, we need,

$$1 - e^{\frac{-m}{2 \cdot b}} \leq c$$

$$\Rightarrow e^{\frac{-m}{2 \cdot b}} \geq 1 - c$$

- Since S has size m, what is the probability that an acceptable password fingerprint will match the fingerprints of one of the elements of S? $1 (1 \frac{1}{2^{b}})^{m} \ge 1 e^{\frac{-m}{2^{b}}}$.
- Since we want the probability of a false positive to be less than c, we need,

$$\begin{array}{rcl}
1 - e^{\frac{-m}{2b}} & \leq & c \\
\Rightarrow e^{\frac{-m}{2b}} & \geq & 1 - c \\
\Rightarrow b & \geq & \log_2 \frac{m}{\ln \frac{1}{1 - c}}
\end{array}$$

Main Issues (contd.)

- Since S has size m, what is the probability that an acceptable password fingerprint will match the fingerprints of one of the elements of S? $1 (1 \frac{1}{2^{b}})^{m} \ge 1 e^{\frac{-m}{2^{b}}}$.
- Since we want the probability of a false positive to be less than c, we need,

$$\begin{array}{rcl} 1 - e^{\frac{-m}{2-b}} & \leq & c \\ \Rightarrow e^{\frac{-m}{2-b}} & \geq & 1 - c \\ \Rightarrow b & \geq & \log_2 \frac{m}{\ln \frac{1}{1-c}} \end{array}$$

• If we choose $b = 2 \cdot \log_2 m$, the probability of a false positive is:

Main Issues (contd.)

- Since S has size m, what is the probability that an acceptable password fingerprint will match the fingerprints of one of the elements of S? $1 (1 \frac{1}{2^{b}})^{m} \ge 1 e^{\frac{-m}{2^{b}}}$.
- Since we want the probability of a false positive to be less than c, we need,

$$\begin{array}{rcl} 1 - e^{\frac{-m}{2 \cdot b}} & \leq & c \\ \Rightarrow e^{\frac{-m}{2 \cdot b}} & \geq & 1 - c \\ \Rightarrow b & \geq & \log_2 \frac{m}{\ln \frac{1}{1 - c}} \end{array}$$

• If we choose $b = 2 \cdot \log_2 m$, the probability of a false positive is: $1 - (1 - \frac{1}{m^2})^m$

Main Issues (contd.)

- Since S has size m, what is the probability that an acceptable password fingerprint will match the fingerprints of one of the elements of S? $1 (1 \frac{1}{2^{b}})^{m} \ge 1 e^{\frac{-m}{2^{b}}}$.
- Since we want the probability of a false positive to be less than c, we need,

$$\begin{array}{rcl} 1 - e^{\frac{-m}{2D}} & \leq & c \\ \Rightarrow e^{\frac{-m}{2D}} & \geq & 1 - c \\ \Rightarrow b & \geq & \log_2 \frac{m}{\ln \frac{1}{1 - c}} \end{array}$$

• If we choose $b=2\cdot \log_2 m$, the probability of a false positive is: $1-\left(1-\frac{1}{m^2}\right)^m<\frac{1}{m}$.

If our dictionary has 2^{16} words, using 32 bits when hashing, leads to an error probability of at most $\frac{1}{65,536}$.

Outline

- 1 Recap
- 2 The Poisson Approximation
 - Some theorems and lemmas
- Applications to Hashing
 - Chain Hashing
 - Bit String Hashing
 - Bloom Filters
 - Breaking Symmetry

Chain Hashing
Bit String Hashing
Bloom Filters
Breaking Symmetry

Bloom Filters

Main Issues

• Chain hashing optimizes time,

Main Issues

• Chain hashing optimizes time, while bit string hashing optimizes space.

Main Issues

 Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a better trade-off?

Main Issues

 Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a better trade-off? Bloom filters!

- Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a better trade-off? Bloom filters!
- A Bloom filter consists of an array of n bits, A[0] to A[n-1],

- Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a better trade-off? Bloom filters!
- A Bloom filter consists of an array of n bits, A[0] to A[n-1], initially set to 0.

- Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a better trade-off? Bloom filters!
- A Bloom filter consists of an array of n bits, A[0] to A[n-1], initially set to 0.
- k hash function h_1, h_2, \ldots, h_k with range $\{0, \ldots, n-1\}$ are used.

- Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a better trade-off? Bloom filters!
- A Bloom filter consists of an array of n bits, A[0] to A[n-1], initially set to 0.
- k hash function h_1, h_2, \ldots, h_k with range $\{0, \ldots, n-1\}$ are used.
- We wish to represent a set $S = \{s_1, s_2, \dots, s_m\}$ of m elements.

- Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a better trade-off? Bloom filters!
- A Bloom filter consists of an array of n bits, A[0] to A[n-1], initially set to 0.
- k hash function h_1, h_2, \ldots, h_k with range $\{0, \ldots, n-1\}$ are used.
- We wish to represent a set $S = \{s_1, s_2, ..., s_m\}$ of m elements.
- Set $A[h_i(s)]$ to 1, for each $1 \le i \le k$ and each $s \in S$.

- Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a better trade-off? Bloom filters!
- A Bloom filter consists of an array of n bits, A[0] to A[n-1], initially set to 0.
- k hash function h_1, h_2, \ldots, h_k with range $\{0, \ldots, n-1\}$ are used.
- We wish to represent a set $S = \{s_1, s_2, \dots, s_m\}$ of m elements.
- Set $A[h_i(s)]$ to 1, for each $1 \le i \le k$ and each $s \in S$.
- How to check if $x \in S$?

- Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a better trade-off? Bloom filters!
- A Bloom filter consists of an array of n bits, A[0] to A[n-1], initially set to 0.
- k hash function h_1, h_2, \ldots, h_k with range $\{0, \ldots, n-1\}$ are used.
- We wish to represent a set $S = \{s_1, s_2, \dots, s_m\}$ of m elements.
- Set $A[h_i(s)]$ to 1, for each $1 \le i \le k$ and each $s \in S$.
- How to check if $x \in S$? Check all locations $A[h_i(x)]$, $1 \le i \le k$.

- Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a better trade-off? Bloom filters!
- A Bloom filter consists of an array of n bits, A[0] to A[n-1], initially set to 0.
- k hash function h_1, h_2, \ldots, h_k with range $\{0, \ldots, n-1\}$ are used.
- We wish to represent a set $S = \{s_1, s_2, \dots, s_m\}$ of m elements.
- Set $A[h_i(s)]$ to 1, for each $1 \le i \le k$ and each $s \in S$.
- How to check if $x \in S$? Check all locations $A[h_i(x)]$, $1 \le i \le k$.
- How could we go wrong?

- Chain hashing optimizes time, while bit string hashing optimizes space. Can we get a better trade-off? Bloom filters!
- A Bloom filter consists of an array of n bits, A[0] to A[n-1], initially set to 0.
- k hash function h_1, h_2, \ldots, h_k with range $\{0, \ldots, n-1\}$ are used.
- We wish to represent a set $S = \{s_1, s_2, \dots, s_m\}$ of m elements.
- Set $A[h_i(s)]$ to 1, for each $1 \le i \le k$ and each $s \in S$.
- How to check if $x \in S$? Check all locations $A[h_i(x)]$, $1 \le i \le k$.
- How could we go wrong? False positives.

Analysis

• What is the probability that a specific bit is 0, after the preprocessing?

Analysis

• What is the probability that a specific bit is 0, after the preprocessing? $(1-\frac{1}{n})^{k \cdot m}$

Analysis

• What is the probability that a specific bit is 0, after the preprocessing? $(1-\frac{1}{n})^{k\cdot m}=e^{-\frac{k\cdot m}{n}}$.

- What is the probability that a specific bit is 0, after the preprocessing? $(1-\frac{1}{n})^{k\cdot m}=e^{-\frac{k\cdot m}{n}}$.
- Assume that a fraction $p=e^{-\frac{k.m}{n}}$ of the entries are still 0, after S has been hashed into the Bloom filter.

- What is the probability that a specific bit is 0, after the preprocessing? $(1-\frac{1}{n})^{k \cdot m} = e^{-\frac{k \cdot m}{n}}$.
- Assume that a fraction $p=e^{-\frac{k\cdot m}{n}}$ of the entries are still 0, after S has been hashed into the Bloom filter.
- The probability of a false positive is then precisely the probability that all the hash functions map the input string $x \notin S$, to 1,

- What is the probability that a specific bit is 0, after the preprocessing? $(1-\frac{1}{n})^{k \cdot m} = e^{-\frac{k \cdot m}{n}}$.
- Assume that a fraction $p=e^{-\frac{k\cdot m}{n}}$ of the entries are still 0, after S has been hashed into the Bloom filter.
- The probability of a false positive is then precisely the probability that all the hash functions map the input string $x \notin S$, to 1, which is,

- What is the probability that a specific bit is 0, after the preprocessing? $(1-\frac{1}{n})^{k\cdot m}=e^{-\frac{k\cdot m}{n}}$.
- Assume that a fraction $p=e^{-\frac{k\cdot m}{n}}$ of the entries are still 0, after S has been hashed into the Bloom filter.
- The probability of a false positive is then precisely the probability that all the hash functions map the input string $x \notin S$, to 1, which is,

$$(1-(1-\frac{1}{n})^{k\cdot m})^k$$

- What is the probability that a specific bit is 0, after the preprocessing? $(1-\frac{1}{n})^{k\cdot m}=e^{-\frac{k\cdot m}{n}}$.
- Assume that a fraction $p=e^{-\frac{k\cdot m}{n}}$ of the entries are still 0, after S has been hashed into the Bloom filter.
- The probability of a false positive is then precisely the probability that all the hash functions map the input string $x \notin S$, to 1, which is,

$$(1-(1-\frac{1}{n})^{k\cdot m})^k = (1-e^{-\frac{k\cdot m}{n}})^k$$

- What is the probability that a specific bit is 0, after the preprocessing? $(1-\frac{1}{n})^{k\cdot m}=e^{-\frac{k\cdot m}{n}}$.
- Assume that a fraction $p=e^{-\frac{k\cdot m}{n}}$ of the entries are still 0, after S has been hashed into the Bloom filter.
- The probability of a false positive is then precisely the probability that all the hash functions map the input string $x \notin S$, to 1, which is,

$$(1-(1-\frac{1}{n})^{k\cdot m})^k = (1-e^{-\frac{k\cdot m}{n}})^k$$

= $f()$

Analysis

- What is the probability that a specific bit is 0, after the preprocessing? $(1-\frac{1}{n})^{k\cdot m}=e^{-\frac{k\cdot m}{n}}$.
- Assume that a fraction $p=e^{-\frac{k \cdot m}{n}}$ of the entries are still 0, after S has been hashed into the Bloom filter.
- The probability of a false positive is then precisely the probability that all the hash functions map the input string $x \notin S$, to 1, which is,

$$(1-(1-\frac{1}{n})^{k \cdot m})^k = (1-e^{-\frac{k \cdot m}{n}})^k$$

= $f()$

• Optimizing for k, we get $k = \ln 2$ and $f \approx (0.6185)^{\frac{m}{n}}$.

Outline

- 1 Recap
- 2 The Poisson Approximation
 - Some theorems and lemmas
- Applications to Hashing
 - Chain Hashing
 - Bit String Hashing
 - Bloom Filters
 - Breaking Symmetry

Main Issues	

Main Issues

• Resource contention.

- Resource contention.
- Sequential ordering.

- Resource contention.
- Sequential ordering.
- The Hashing approach.

- Resource contention.
- Sequential ordering.
- The Hashing approach. Hash each user identifier into *b* bits.

- Resource contention.
- Sequential ordering.
- The Hashing approach. Hash each user identifier into b bits.
- How likely that two users will have the same hash value?

- Resource contention.
- Sequential ordering.
- The Hashing approach. Hash each user identifier into b bits.
- How likely that two users will have the same hash value? Fix one user.

- Resource contention.
- Sequential ordering.
- The Hashing approach. Hash each user identifier into *b* bits.
- How likely that two users will have the same hash value? Fix one user. What is the probability that some other user obtains the same hash value?

- Resource contention.
- Sequential ordering.
- The Hashing approach. Hash each user identifier into b bits.
- How likely that two users will have the same hash value? Fix one user. What is the probability that some other user obtains the same hash value?

$$1-(1-\frac{1}{2^b})^{n-1}$$

- Resource contention.
- Sequential ordering.
- The Hashing approach. Hash each user identifier into b bits.
- How likely that two users will have the same hash value? Fix one user. What is the probability that some other user obtains the same hash value?

$$1-(1-\frac{1}{2^b})^{n-1}\leq \frac{n-1}{2^b}$$

- Resource contention.
- Sequential ordering.
- The Hashing approach. Hash each user identifier into b bits.
- How likely that two users will have the same hash value? Fix one user. What is the probability that some other user obtains the same hash value?

$$1-(1-\frac{1}{2^b})^{n-1}\leq \frac{n-1}{2^b}$$

By the union bound, the probability that any user has the same hash values as the fixed user is

- Resource contention.
- Sequential ordering.
- The Hashing approach. Hash each user identifier into b bits.
- How likely that two users will have the same hash value? Fix one user. What is the probability that some other user obtains the same hash value?

$$1-(1-\frac{1}{2^b})^{n-1}\leq \frac{n-1}{2^b}$$

By the union bound, the probability that any user has the same hash values as the fixed user is $\frac{n\cdot (n-1)}{2b}$.

- Resource contention.
- Sequential ordering.
- The Hashing approach. Hash each user identifier into b bits.
- How likely that two users will have the same hash value? Fix one user. What is the probability that some other user obtains the same hash value?

$$1-(1-\frac{1}{2^b})^{n-1}\leq \frac{n-1}{2^b}$$

By the union bound, the probability that any user has the same hash values as the fixed user is $\frac{n\cdot(n-1)}{2^b}$. In order to guarantee success with probability $(1-\frac{1}{n})$, choose b=

- Resource contention.
- Sequential ordering.
- The Hashing approach. Hash each user identifier into b bits.
- How likely that two users will have the same hash value? Fix one user. What is the probability that some other user obtains the same hash value?

$$1-(1-\frac{1}{2^b})^{n-1}\leq \frac{n-1}{2^b}$$

By the union bound, the probability that any user has the same hash values as the fixed user is $\frac{n\cdot(n-1)}{2^b}$. In order to guarantee success with probability $(1-\frac{1}{n})$, choose $b=3\cdot\log_{P^2}$.

- Resource contention.
- Sequential ordering.
- The Hashing approach. Hash each user identifier into b bits.
- How likely that two users will have the same hash value? Fix one user. What is the probability that some other user obtains the same hash value?

$$1-(1-\frac{1}{2^b})^{n-1}\leq \frac{n-1}{2^b}$$

By the union bound, the probability that any user has the same hash values as the fixed user is $\frac{n\cdot(n-1)}{2^b}$. In order to guarantee success with probability $(1-\frac{1}{n})$, choose $b=3\cdot\log_{P^2}$.

Can also be used for the leader election problem.