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The Poisson Distribution

Overview

Main issues

We will study the experiment of throwing m balls into n bins, each bin being chosen
independently and uniformly at random.Several questions regarding the above random process
will be examined. The analysis will use techniques developed thus far.
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The Birthday Paradox

Experiment

Suppose there are 30 people in a room. Let A denote the event that some two people share a
birthday and Ac denote the complement event. Which event is more likely: A or Ac?

Model Assumptions

(i) Each year has exactly 365 days.

(ii) Each person is equally likely to be born on any day.

(iii) No twins or triplets or multiple people sharing the same birthday, from a pre-experiment
perspective.
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Analysis

We count configurations in which two people do not share a birthday.

1 Total number of birthday configurations for the 30 people is 36530 .

2 In how many ways can you choose 30 distinct days from 365 days? C(365,30).

3 In how many ways can you assign the selected 30 days to the 30 people in the room? 30!.

4 The probability that no two people share the same birthday is:

q =
C(365,30) ·30!

36530

5 The required probability is therefore: (1−q).
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We can compute the above probability by considering one person at a time.
Consider an arbitrary order of the 30 people. Observe that the probability that the second person
has a birthday that is distinct from the first person is: (1− 1

365 ).

Using the intersection lemma, we know that the probability that the k th person has a birthday that
is distinct from the first (k −1) birthdays, assuming that the first (k −1) people have distinct

birthdays is: (1− (k−1)
365 ).

It follows that the probability that all 30 people have distinct birthdays is:

q = Π29
i=1(1− i

365
)

The required probability is therefore (1−q). Detailed calculations show q ≈ 0.2987, i.e., there is
a better than 70% chance that two people share a birthday, when 30 people are in a room.
Likewise, only 23 people need to be in the room, before the probability that two people share a
birthday is more than 1

2 .
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Assuming that there are m people and n possible birthdays. Recall that 1− k
n ≈ e−

k
n , when

k << n. The probability that all m people have distinct birthdays is:

Πm−1
j=1 (1− j

n
) ≈ Πm−1

j=1 e−
j
n

= e−∑m−1
j=1

j
n

= e
−m·(m−1)

2·n

≈ e
−m2
2·n

Hence, the value for m, at which the probability that all m people have distinct birthdays is 1
2 is

m =
√

2 ·n · ln 2. Check what you get, when n = 365!
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Analysis (contd.)

Assume that the first
√

n people all have distinct birthdays.
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Analysis (contd.)

Assume that the first
√

n people all have distinct birthdays. What is the probability that each
succeeding person has a birthday that matches one of the first
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Assume that the first
√

n people all have distinct birthdays. What is the probability that each
succeeding person has a birthday that matches one of the first

√
n people? 1√

n
.

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Intuitive bounds (contd.)

Analysis (contd.)

Assume that the first
√

n people all have distinct birthdays. What is the probability that each
succeeding person has a birthday that matches one of the first

√
n people? 1√

n
. Hence, the

probability that the next
√

n people all have different birthdays from the first
√

n people is at most:

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Intuitive bounds (contd.)

Analysis (contd.)

Assume that the first
√

n people all have distinct birthdays. What is the probability that each
succeeding person has a birthday that matches one of the first

√
n people? 1√

n
. Hence, the

probability that the next
√

n people all have different birthdays from the first
√

n people is at most:

(1− 1√
n
)
√

n

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Intuitive bounds (contd.)

Analysis (contd.)

Assume that the first
√

n people all have distinct birthdays. What is the probability that each
succeeding person has a birthday that matches one of the first

√
n people? 1√

n
. Hence, the

probability that the next
√

n people all have different birthdays from the first
√

n people is at most:

(1− 1√
n
)
√

n
<

1

e

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Intuitive bounds (contd.)

Analysis (contd.)

Assume that the first
√

n people all have distinct birthdays. What is the probability that each
succeeding person has a birthday that matches one of the first

√
n people? 1√

n
. Hence, the

probability that the next
√

n people all have different birthdays from the first
√

n people is at most:

(1− 1√
n
)
√

n
<

1

e

<
1

2

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Intuitive bounds (contd.)

Analysis (contd.)

Assume that the first
√

n people all have distinct birthdays. What is the probability that each
succeeding person has a birthday that matches one of the first

√
n people? 1√

n
. Hence, the

probability that the next
√

n people all have different birthdays from the first
√

n people is at most:

(1− 1√
n
)
√

n
<

1

e

<
1

2

Hence, once there are 2 ·
√

n people, the probability is at most 1
e , that the birthdays will be

distinct.
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The basic model

Measure of Interest

Consider the problem of throwing m balls into n bins, uniformly and at random. The maximum
load is defined as the maximum number of balls in any bin. We will attempt to bound this quantity.

Lemma

When m balls are thrown independently and uniformly at random into n bins, the probability that
the maximum load is more than 3 · lnn

ln lnn is at most 1
n for n sufficiently large.
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Measure of Interest

Consider the problem of throwing m balls into n bins, uniformly and at random. The maximum
load is defined as the maximum number of balls in any bin. We will attempt to bound this quantity.

Lemma

When m balls are thrown independently and uniformly at random into n bins, the probability that
the maximum load is more than 3 · lnn

ln lnn is at most 1
n for n sufficiently large.

Note

kk

k!
<

∞

∑
i=0
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load is defined as the maximum number of balls in any bin. We will attempt to bound this quantity.
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The basic model

Measure of Interest

Consider the problem of throwing m balls into n bins, uniformly and at random. The maximum
load is defined as the maximum number of balls in any bin. We will attempt to bound this quantity.

Lemma

When m balls are thrown independently and uniformly at random into n bins, the probability that
the maximum load is more than 3 · lnn

ln lnn is at most 1
n for n sufficiently large.

Note

kk

k!
<

∞

∑
i=0

k i

i!

= ek

⇒ k! > (
k

e
)k
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Proof.

Focus on a specific bin, say bin 1.

What is the probability that this bin receives at least M balls?
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Proof.

Focus on a specific bin, say bin 1.

What is the probability that this bin receives at least M balls? At most C(n,M) · ( 1
n )M .
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Balls and Bins (contd.)

Proof.

Focus on a specific bin, say bin 1.

What is the probability that this bin receives at least M balls? At most C(n,M) · ( 1
n )M .

(Why?)
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Balls and Bins (contd.)

Proof.

Focus on a specific bin, say bin 1.

What is the probability that this bin receives at least M balls? At most C(n,M) · ( 1
n )M .

(Why?)

But this is bounded above by ( e
M )M .
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Balls and Bins (contd.)

Proof.

Focus on a specific bin, say bin 1.

What is the probability that this bin receives at least M balls? At most C(n,M) · ( 1
n )M .

(Why?)

But this is bounded above by ( e
M )M .

Applying the union bound, we can conclude that the probability that any bin receives at
least M ≥ 3 · lnn

ln lnn balls is at most:
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Balls and Bins (contd.)

Proof.

Focus on a specific bin, say bin 1.

What is the probability that this bin receives at least M balls? At most C(n,M) · ( 1
n )M .

(Why?)

But this is bounded above by ( e
M )M .

Applying the union bound, we can conclude that the probability that any bin receives at
least M ≥ 3 · lnn

ln lnn balls is at most:

n · ( e

M
)M ≤ n · (e · ln lnn

3 · ln n
)

3·lnn
ln ln n
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Balls and Bins (contd.)

Proof.

Focus on a specific bin, say bin 1.

What is the probability that this bin receives at least M balls? At most C(n,M) · ( 1
n )M .

(Why?)

But this is bounded above by ( e
M )M .

Applying the union bound, we can conclude that the probability that any bin receives at
least M ≥ 3 · lnn

ln lnn balls is at most:

n · ( e

M
)M ≤ n · (e · ln lnn

3 · ln n
)

3·lnn
ln ln n

≤ 1

n
, for n sufficiently large

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Bucket Sort

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Bucket Sort

Main ideas

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Bucket Sort

Main ideas

Used to sort integers only.

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Bucket Sort

Main ideas

Used to sort integers only.

Breaks the Ω(n · logn) bound for comparison based sorting.

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Bucket Sort

Main ideas

Used to sort integers only.

Breaks the Ω(n · logn) bound for comparison based sorting.

We assume that we have a set of n = 2m elements, each element being an integer chosen
uniformly from the range [0,2k ), where k ≥ m.
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Main ideas

Used to sort integers only.

Breaks the Ω(n · logn) bound for comparison based sorting.

We assume that we have a set of n = 2m elements, each element being an integer chosen
uniformly from the range [0,2k ), where k ≥ m.

In stage 1, place into the j th bucket all elements whose first m binary digits correspond to
the number j. How much time? O(n).

Sort each bucket in quadratic time and concatenate all the lists together.
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Used to sort integers only.

Breaks the Ω(n · logn) bound for comparison based sorting.

We assume that we have a set of n = 2m elements, each element being an integer chosen
uniformly from the range [0,2k ), where k ≥ m.

In stage 1, place into the j th bucket all elements whose first m binary digits correspond to
the number j. How much time? O(n).

Sort each bucket in quadratic time and concatenate all the lists together. How much time?
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Bucket Sort

Main ideas

Used to sort integers only.

Breaks the Ω(n · logn) bound for comparison based sorting.

We assume that we have a set of n = 2m elements, each element being an integer chosen
uniformly from the range [0,2k ), where k ≥ m.

In stage 1, place into the j th bucket all elements whose first m binary digits correspond to
the number j. How much time? O(n).

Sort each bucket in quadratic time and concatenate all the lists together. How much time?
O(n2).
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Let Xi denote the number of elements in Bucket i. Therefore, the total time spent in sorting
bucket i, is c ·X2

i

The total time spent in the second stage is ∑n
i=1 c ·X2

i .

The expected time spent in the second stage is

E[
n

∑
i=1

c ·X2
i ] = c ·E[

n

∑
i=1

X2
i ]

= c ·n ·E[X2
1 ]

But X1 is a binomial random variable with parameters n and 1
n .
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Main Ideas

Let Xi denote the number of elements in Bucket i. Therefore, the total time spent in sorting
bucket i, is c ·X2

i

The total time spent in the second stage is ∑n
i=1 c ·X2
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The expected time spent in the second stage is
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∑
i=1

c ·X2
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n

∑
i=1

X2
i ]

= c ·n ·E[X2
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But X1 is a binomial random variable with parameters n and 1
n .

Therefore, E[X2
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Bucket Sort (Analysis)

Main Ideas

Let Xi denote the number of elements in Bucket i. Therefore, the total time spent in sorting
bucket i, is c ·X2

i

The total time spent in the second stage is ∑n
i=1 c ·X2

i .

The expected time spent in the second stage is

E[
n

∑
i=1

c ·X2
i ] = c ·E[

n

∑
i=1

X2
i ]

= c ·n ·E[X2
1 ]

But X1 is a binomial random variable with parameters n and 1
n .

Therefore, E[X2
1 ] = 2− 1

n < 2.
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The Poisson Distribution

Definition

A discrete Poisson random variable X with parameter µ > 0 is given by the following probability
distribution on j = 0,1,2, . . .

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Some important lemmas
Connection to Binomial Distribution
Connection to Balls and Bins

The Poisson Distribution

Definition

A discrete Poisson random variable X with parameter µ > 0 is given by the following probability
distribution on j = 0,1,2, . . .

P(X = j) =

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Some important lemmas
Connection to Binomial Distribution
Connection to Balls and Bins

The Poisson Distribution

Definition

A discrete Poisson random variable X with parameter µ > 0 is given by the following probability
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e−µ ·µ j
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Definition

A discrete Poisson random variable X with parameter µ > 0 is given by the following probability
distribution on j = 0,1,2, . . .

P(X = j) =
e−µ ·µ j

j!

Exercise

(i) Show that the definition leads to proper probability distribution.
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The Poisson Distribution

Definition

A discrete Poisson random variable X with parameter µ > 0 is given by the following probability
distribution on j = 0,1,2, . . .

P(X = j) =
e−µ ·µ j

j!

Exercise

(i) Show that the definition leads to proper probability distribution.

(ii) What is E[X ], when X is a Poisson random variable?
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The sum lemma

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random
variable.
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The sum lemma

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random
variable.

Proof.

Let X and Y denote two Poisson random variables with means µ1 and µ2 respectively.
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Lemma
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The sum lemma

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random
variable.

Proof.

Let X and Y denote two Poisson random variables with means µ1 and µ2 respectively. Observe
that,

P(X +Y = j) =
j

∑
k=0

P((X = k)∩ (Y = j − k))
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Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random
variable.

Proof.

Let X and Y denote two Poisson random variables with means µ1 and µ2 respectively. Observe
that,

P(X +Y = j) =
j

∑
k=0

P((X = k)∩ (Y = j − k))

=

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution
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Connection to Binomial Distribution
Connection to Balls and Bins

The sum lemma

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random
variable.

Proof.

Let X and Y denote two Poisson random variables with means µ1 and µ2 respectively. Observe
that,

P(X +Y = j) =
j

∑
k=0

P((X = k)∩ (Y = j − k))

=
j

∑
k=0

e−µ1 ·µk
1

k!
· e−µ2 ·µ j−k

2

(j − k)!
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The sum lemma

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random
variable.

Proof.

Let X and Y denote two Poisson random variables with means µ1 and µ2 respectively. Observe
that,

P(X +Y = j) =
j

∑
k=0

P((X = k)∩ (Y = j − k))

=
j

∑
k=0

e−µ1 ·µk
1

k!
· e−µ2 ·µ j−k

2

(j − k)!

=
e−(µ1+µ2)

j!
·

j

∑
k=0

j!

k! · (j − k)!
µk

1 ·µ(j−k)
2
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The sum lemma

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random
variable.

Proof.

Let X and Y denote two Poisson random variables with means µ1 and µ2 respectively. Observe
that,

P(X +Y = j) =
j

∑
k=0

P((X = k)∩ (Y = j − k))

=
j

∑
k=0

e−µ1 ·µk
1

k!
· e−µ2 ·µ j−k

2

(j − k)!

=
e−(µ1+µ2)

j!
·

j

∑
k=0

j!

k! · (j − k)!
µk

1 ·µ(j−k)
2

=
e−(µ1+µ2) · (µ1 + µ2)

j

j!
,
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The sum lemma

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random
variable.

Proof.

Let X and Y denote two Poisson random variables with means µ1 and µ2 respectively. Observe
that,

P(X +Y = j) =
j

∑
k=0

P((X = k)∩ (Y = j − k))

=
j

∑
k=0

e−µ1 ·µk
1

k!
· e−µ2 ·µ j−k

2

(j − k)!

=
e−(µ1+µ2)

j!
·

j

∑
k=0

j!

k! · (j − k)!
µk

1 ·µ(j−k)
2

=
e−(µ1+µ2) · (µ1 + µ2)

j

j!
,Binomial expansion of(µ1 + µ2)

j
.
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The sum lemma

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random
variable.

Proof.

Let X and Y denote two Poisson random variables with means µ1 and µ2 respectively. Observe
that,

P(X +Y = j) =
j

∑
k=0

P((X = k)∩ (Y = j − k))

=
j

∑
k=0

e−µ1 ·µk
1

k!
· e−µ2 ·µ j−k

2

(j − k)!

=
e−(µ1+µ2)

j!
·

j

∑
k=0

j!

k! · (j − k)!
µk

1 ·µ(j−k)
2

=
e−(µ1+µ2) · (µ1 + µ2)

j

j!
,Binomial expansion of(µ1 + µ2)

j
.

Use induction for arbitrary number of variables.
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Moment Generating Function

Lemma

The moment generating function of a Poisson random variable with parameter µ is

Mx (t) = eµ ·(et−1).
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Moment Generating Function

Lemma

The moment generating function of a Poisson random variable with parameter µ is

Mx (t) = eµ ·(et−1).

Proof.

For any t ,
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Moment Generating Function

Lemma

The moment generating function of a Poisson random variable with parameter µ is

Mx (t) = eµ ·(et−1).

Proof.

For any t ,

E[etX ] =
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Moment Generating Function

Lemma

The moment generating function of a Poisson random variable with parameter µ is

Mx (t) = eµ ·(et−1).

Proof.

For any t ,

E[etX ] =
∞

∑
k=0

e−µ ·µk

k!
·etk
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Lemma

The moment generating function of a Poisson random variable with parameter µ is

Mx (t) = eµ ·(et−1).

Proof.

For any t ,

E[etX ] =
∞

∑
k=0

e−µ ·µk

k!
·etk

=
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Moment Generating Function

Lemma

The moment generating function of a Poisson random variable with parameter µ is

Mx (t) = eµ ·(et−1).

Proof.

For any t ,

E[etX ] =
∞

∑
k=0

e−µ ·µk

k!
·etk

= eµ ·(et−1)
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Theorem

Let X be a Poisson random variable with parameter µ .
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Theorem

Let X be a Poisson random variable with parameter µ .

1 If x > µ , then
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Chernoff Bounds

Theorem

Let X be a Poisson random variable with parameter µ .

1 If x > µ , then

P(X ≥ x) ≤ e−µ · (e ·µ)x

xx
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Chernoff Bounds

Theorem

Let X be a Poisson random variable with parameter µ .

1 If x > µ , then

P(X ≥ x) ≤ e−µ · (e ·µ)x

xx

2 If x < µ , then
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Chernoff Bounds

Theorem

Let X be a Poisson random variable with parameter µ .

1 If x > µ , then

P(X ≥ x) ≤ e−µ · (e ·µ)x

xx

2 If x < µ , then

P(X ≤ x) ≤ e−µ · (e ·µ)x

xx
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Proof.

For any t > 0 and x > µ ,
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For any t > 0 and x > µ ,

P(X ≥ x) =
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Proof of Chernoff bounds

Proof.

For any t > 0 and x > µ ,

P(X ≥ x) = P(et·X ≥ et·x )
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Proof.

For any t > 0 and x > µ ,

P(X ≥ x) = P(et·X ≥ et·x )

≤

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Some important lemmas
Connection to Binomial Distribution
Connection to Balls and Bins

Proof of Chernoff bounds

Proof.

For any t > 0 and x > µ ,

P(X ≥ x) = P(et·X ≥ et·x )

≤ E[et·X

et·x ]
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Proof of Chernoff bounds

Proof.

For any t > 0 and x > µ ,

P(X ≥ x) = P(et·X ≥ et·x )

≤ E[et·X

et·x ]

Plug in the mgf of the Poisson distribution to get,
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Proof of Chernoff bounds

Proof.

For any t > 0 and x > µ ,

P(X ≥ x) = P(et·X ≥ et·x )

≤ E[et·X

et·x ]

Plug in the mgf of the Poisson distribution to get,

P(X ≥ x) ≤ eµ ·(et−1−x·t)
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Proof of Chernoff bounds

Proof.

For any t > 0 and x > µ ,

P(X ≥ x) = P(et·X ≥ et·x )

≤ E[et·X

et·x ]

Plug in the mgf of the Poisson distribution to get,

P(X ≥ x) ≤ eµ ·(et−1−x·t)

Choose t = ln( x
µ ) > 0, to get,
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Proof of Chernoff bounds

Proof.

For any t > 0 and x > µ ,

P(X ≥ x) = P(et·X ≥ et·x )

≤ E[et·X

et·x ]

Plug in the mgf of the Poisson distribution to get,

P(X ≥ x) ≤ eµ ·(et−1−x·t)

Choose t = ln( x
µ ) > 0, to get,

P(X ≥ x) ≤ e−µ · (e ·µ)x

xx
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Proof of Chernoff bounds

Proof.

For any t > 0 and x > µ ,

P(X ≥ x) = P(et·X ≥ et·x )

≤ E[et·X

et·x ]

Plug in the mgf of the Poisson distribution to get,

P(X ≥ x) ≤ eµ ·(et−1−x·t)

Choose t = ln( x
µ ) > 0, to get,

P(X ≥ x) ≤ e−µ · (e ·µ)x

xx

The complementary bound can be derived in similar fashion.
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Limit of the Binomial Distribution

Theorem

Let Xn denote a binomial random variable with parameters n and p, where p is a function of n
and limn→∞ n ·p = λ is a constant that is independent of n.
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Let Xn denote a binomial random variable with parameters n and p, where p is a function of n
and limn→∞ n ·p = λ is a constant that is independent of n. Then, for any fixed k,
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Limit of the Binomial Distribution

Theorem

Let Xn denote a binomial random variable with parameters n and p, where p is a function of n
and limn→∞ n ·p = λ is a constant that is independent of n. Then, for any fixed k,

lim
n→∞

P(Xn = k)
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Limit of the Binomial Distribution

Theorem

Let Xn denote a binomial random variable with parameters n and p, where p is a function of n
and limn→∞ n ·p = λ is a constant that is independent of n. Then, for any fixed k,

lim
n→∞

P(Xn = k) =
eλ ·λ k

k!
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Theorem

Let Xn denote a binomial random variable with parameters n and p, where p is a function of n
and limn→∞ n ·p = λ is a constant that is independent of n. Then, for any fixed k,

lim
n→∞

P(Xn = k) =
eλ ·λ k

k!

Note
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Theorem

Let Xn denote a binomial random variable with parameters n and p, where p is a function of n
and limn→∞ n ·p = λ is a constant that is independent of n. Then, for any fixed k,

lim
n→∞

P(Xn = k) =
eλ ·λ k

k!

Note
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Limit of the Binomial Distribution

Theorem

Let Xn denote a binomial random variable with parameters n and p, where p is a function of n
and limn→∞ n ·p = λ is a constant that is independent of n. Then, for any fixed k,

lim
n→∞

P(Xn = k) =
eλ ·λ k

k!

Note

If |x | ≤ 1,
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Limit of the Binomial Distribution

Theorem

Let Xn denote a binomial random variable with parameters n and p, where p is a function of n
and limn→∞ n ·p = λ is a constant that is independent of n. Then, for any fixed k,

lim
n→∞

P(Xn = k) =
eλ ·λ k

k!

Note

If |x | ≤ 1, ex · (1− x2) ≤ (1+ x) ≤ ex .
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Limit of the Binomial Distribution

Theorem

Let Xn denote a binomial random variable with parameters n and p, where p is a function of n
and limn→∞ n ·p = λ is a constant that is independent of n. Then, for any fixed k,

lim
n→∞

P(Xn = k) =
eλ ·λ k

k!

Note

If |x | ≤ 1, ex · (1− x2) ≤ (1+ x) ≤ ex .

(1−p)k ≥ (1−p ·k), for k ≥ 0.
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P(Xn = k) =
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Proof

Proof.

P(Xn = k) = C(n,k) ·pk · (1−p)n−k
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Proof.

P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤
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Proof

Proof.

P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤ nk

k!
·pk · (1−p)n

(1−p)k
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P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤ nk

k!
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(1−p)k

≤
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Proof

Proof.

P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤ nk

k!
·pk · (1−p)n

(1−p)k

≤ (n ·p)k

k!
· e−p·n

1−p ·k
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Proof

Proof.

P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤ nk

k!
·pk · (1−p)n

(1−p)k

≤ (n ·p)k

k!
· e−p·n

1−p ·k

=
e−p·n · (n ·p)k

k!
· 1

1−p ·k
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P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤ nk

k!
·pk · (1−p)n

(1−p)k

≤ (n ·p)k

k!
· e−p·n

1−p ·k

=
e−p·n · (n ·p)k

k!
· 1

1−p ·k
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Proof

Proof.

P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤ nk

k!
·pk · (1−p)n

(1−p)k

≤ (n ·p)k

k!
· e−p·n

1−p ·k

=
e−p·n · (n ·p)k

k!
· 1

1−p ·k

Working similarly, we can show that,
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Proof.

P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤ nk

k!
·pk · (1−p)n

(1−p)k

≤ (n ·p)k

k!
· e−p·n

1−p ·k

=
e−p·n · (n ·p)k

k!
· 1

1−p ·k

Working similarly, we can show that,
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Proof

Proof.

P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤ nk

k!
·pk · (1−p)n

(1−p)k

≤ (n ·p)k

k!
· e−p·n

1−p ·k

=
e−p·n · (n ·p)k

k!
· 1

1−p ·k

Working similarly, we can show that,

P(Xn = k) ≥
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Proof

Proof.

P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤ nk

k!
·pk · (1−p)n

(1−p)k

≤ (n ·p)k

k!
· e−p·n

1−p ·k

=
e−p·n · (n ·p)k

k!
· 1

1−p ·k

Working similarly, we can show that,

P(Xn = k) ≥ (n− k +1)k

k!
·pk · (1−p)n
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Proof

Proof.

P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤ nk

k!
·pk · (1−p)n

(1−p)k

≤ (n ·p)k

k!
· e−p·n

1−p ·k

=
e−p·n · (n ·p)k

k!
· 1

1−p ·k

Working similarly, we can show that,

P(Xn = k) ≥ (n− k +1)k

k!
·pk · (1−p)n

≥
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Proof

Proof.

P(Xn = k) = C(n,k) ·pk · (1−p)n−k

≤ nk

k!
·pk · (1−p)n

(1−p)k

≤ (n ·p)k

k!
· e−p·n

1−p ·k

=
e−p·n · (n ·p)k

k!
· 1

1−p ·k

Working similarly, we can show that,

P(Xn = k) ≥ (n− k +1)k

k!
·pk · (1−p)n

≥ e−p·n · ((n− k +1) ·p)k

k!
· (1−p2 ·n)
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Proof.
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Proof (contd.)

Proof.

Combining the above two inequalities gives us,

e−p·n · ((n− k +1) ·p)k

k!
· (1−p2 ·n) ≤

Subramani Balls and Bins



The Birthday Paradox
Balls into Bins

The Poisson Distribution

Some important lemmas
Connection to Binomial Distribution
Connection to Balls and Bins

Proof (contd.)

Proof.

Combining the above two inequalities gives us,

e−p·n · ((n− k +1) ·p)k

k!
· (1−p2 ·n) ≤ P(Xn = k) ≤
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Proof (contd.)

Proof.

Combining the above two inequalities gives us,

e−p·n · ((n− k +1) ·p)k

k!
· (1−p2 ·n) ≤ P(Xn = k) ≤ e−p·n · (n ·p)k

k!
· 1

1−p ·k
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Proof (contd.)

Proof.

Combining the above two inequalities gives us,

e−p·n · ((n− k +1) ·p)k

k!
· (1−p2 ·n) ≤ P(Xn = k) ≤ e−p·n · (n ·p)k

k!
· 1

1−p ·k

As n tends to ∞, both the lower limit and the upper limit converge to e−λ ·λ k

k! .
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Generalization

What is the probability that a given bin has r balls? C(m, r) · ( 1
n )r · (1− 1

n )m−r .

This can be simplified to pr ≈ e−
m
n ·( m

n )r

r ! .
In other words, the number of balls in a specific bin is Poisson distributed with mean m

n .
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