Balls and Bins (Preliminaries)

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

28 February, 2012

Outline

2 Balls into Bins

The Poisson Distribution

- Some important lemmas
- Connection to Binomial Distribution
- Connection to Balls and Bins

Overview

Main issues

We will study the experiment of throwing *m* balls into *n* bins,

Overview

Main issues

We will study the experiment of throwing m balls into n bins, each bin being chosen independently and uniformly at random.

Overview

Main issues

We will study the experiment of throwing *m* balls into *n* bins, each bin being chosen independently and uniformly at random. Several questions regarding the above random process will be examined.

Overview

Main issues

We will study the experiment of throwing *m* balls into *n* bins, each bin being chosen independently and uniformly at random. Several questions regarding the above random process will be examined. The analysis will use techniques developed thus far.

The Birthday Paradox

Experiment

Subramani Balls and Bins

Experiment

Suppose there are 30 people in a room.

Experiment

Suppose there are 30 people in a room. Let A denote the event that some two people share a birthday and A^c denote the complement event.

Experiment

Suppose there are 30 people in a room. Let *A* denote the event that some two people share a birthday and A^c denote the complement event. Which event is more likely: *A* or A^c ?

Experiment

Suppose there are 30 people in a room. Let *A* denote the event that some two people share a birthday and A^c denote the complement event. Which event is more likely: *A* or A^c ?

Model Assumptions

Experiment

Suppose there are 30 people in a room. Let *A* denote the event that some two people share a birthday and A^c denote the complement event. Which event is more likely: *A* or A^c ?

Model Assumptions

(i) Each year has exactly 365 days.

Experiment

Suppose there are 30 people in a room. Let *A* denote the event that some two people share a birthday and A^c denote the complement event. Which event is more likely: *A* or A^c ?

Model Assumptions

- (i) Each year has exactly 365 days.
- (ii) Each person is equally likely to be born on any day.

Experiment

Suppose there are 30 people in a room. Let *A* denote the event that some two people share a birthday and A^c denote the complement event. Which event is more likely: *A* or A^c ?

Model Assumptions

- (i) Each year has exactly 365 days.
- (ii) Each person is equally likely to be born on any day.
- (iii) No twins or triplets or multiple people sharing the same birthday, from a pre-experiment perspective.

Direct Counting

Direct Counting

Analysis

Subramani Balls and Bins

Analysis

Analysis

We count configurations in which two people do not share a birthday.

• Total number of birthday configurations for the 30 people is

Analysis

We count configurations in which two people do not share a birthday.

• Total number of birthday configurations for the 30 people is 365³⁰.

Analysis

- Total number of birthday configurations for the 30 people is 365³⁰.
- In how many ways can you choose 30 distinct days from 365 days?

Analysis

- Total number of birthday configurations for the 30 people is 365³⁰.
- In how many ways can you choose 30 distinct days from 365 days? C(365, 30).

Analysis

- Total number of birthday configurations for the 30 people is 365³⁰.
- In how many ways can you choose 30 distinct days from 365 days? C(365, 30).
- In how many ways can you assign the selected 30 days to the 30 people in the room?

Analysis

- Total number of birthday configurations for the 30 people is 365³⁰.
- In how many ways can you choose 30 distinct days from 365 days? C(365, 30).
- In how many ways can you assign the selected 30 days to the 30 people in the room? 30!.

Analysis

- Total number of birthday configurations for the 30 people is 365³⁰.
- **Q** In how many ways can you choose 30 distinct days from 365 days? C(365, 30).
- In how many ways can you assign the selected 30 days to the 30 people in the room? 30!.
- The probability that no two people share the same birthday is:

Analysis

- Total number of birthday configurations for the 30 people is 365³⁰.
- **Q** In how many ways can you choose 30 distinct days from 365 days? C(365, 30).
- In how many ways can you assign the selected 30 days to the 30 people in the room? 30!.
- Solution The probability that no two people share the same birthday is:

$$q = \frac{C(365,30) \cdot 30!}{365^{30}}$$

Analysis

We count configurations in which two people do not share a birthday.

- Total number of birthday configurations for the 30 people is 365³⁰.
- **Q** In how many ways can you choose 30 distinct days from 365 days? C(365, 30).
- In how many ways can you assign the selected 30 days to the 30 people in the room? 30!.
- The probability that no two people share the same birthday is:

$$q = \frac{C(365, 30) \cdot 30!}{365^{30}}$$

The required probability is therefore:

Analysis

We count configurations in which two people do not share a birthday.

- Total number of birthday configurations for the 30 people is 365³⁰.
- **Q** In how many ways can you choose 30 distinct days from 365 days? C(365, 30).
- In how many ways can you assign the selected 30 days to the 30 people in the room? 30!.
- The probability that no two people share the same birthday is:

$$q = \frac{C(365, 30) \cdot 30!}{365^{30}}$$

• The required probability is therefore: (1 - q).

Sophisticated counting

Sophisticated counting

Analysis

Sophisticated counting

Analysis

We can compute the above probability by considering one person at a time.

Sophisticated counting

Analysis

We can compute the above probability by considering one person at a time. Consider an arbitrary order of the 30 people.

Sophisticated counting

Analysis

We can compute the above probability by considering one person at a time.

Consider an arbitrary order of the 30 people. Observe that the probability that the second person has a birthday that is distinct from the first person is: $(1 - \frac{1}{265})$.
Analysis

We can compute the above probability by considering one person at a time.

Consider an arbitrary order of the 30 people. Observe that the probability that the second person has a birthday that is distinct from the first person is: $(1 - \frac{1}{365})$.

Using the intersection lemma, we know that the probability that the k^{th} person has a birthday that is distinct from the first (k - 1) birthdays, assuming that the first (k - 1) people have distinct birthdays is:

Analysis

We can compute the above probability by considering one person at a time.

Consider an arbitrary order of the 30 people. Observe that the probability that the second person has a birthday that is distinct from the first person is: $(1 - \frac{1}{365})$.

Using the intersection lemma, we know that the probability that the k^{th} person has a birthday that is distinct from the first (k-1) birthdays, assuming that the first (k-1) people have distinct birthdays is: $(1 - \frac{(k-1)}{365})$.

Analysis

We can compute the above probability by considering one person at a time.

Consider an arbitrary order of the 30 people. Observe that the probability that the second person has a birthday that is distinct from the first person is: $(1 - \frac{1}{365})$.

Using the intersection lemma, we know that the probability that the k^{th} person has a birthday that is distinct from the first (k-1) birthdays, assuming that the first (k-1) people have distinct birthdays is: $(1 - \frac{(k-1)}{365})$.

It follows that the probability that all 30 people have distinct birthdays is:

Analysis

We can compute the above probability by considering one person at a time.

Consider an arbitrary order of the 30 people. Observe that the probability that the second person has a birthday that is distinct from the first person is: $(1 - \frac{1}{365})$.

Using the intersection lemma, we know that the probability that the k^{th} person has a birthday that is distinct from the first (k-1) birthdays, assuming that the first (k-1) people have distinct birthdays is: $(1 - \frac{(k-1)}{365})$.

It follows that the probability that all 30 people have distinct birthdays is:

$$q = \prod_{i=1}^{29} (1 - \frac{i}{365})$$

Analysis

We can compute the above probability by considering one person at a time.

Consider an arbitrary order of the 30 people. Observe that the probability that the second person has a birthday that is distinct from the first person is: $(1 - \frac{1}{365})$.

Using the intersection lemma, we know that the probability that the k^{th} person has a birthday that is distinct from the first (k-1) birthdays, assuming that the first (k-1) people have distinct birthdays is: $(1 - \frac{(k-1)}{365})$.

It follows that the probability that all 30 people have distinct birthdays is:

$$q = \prod_{i=1}^{29} (1 - \frac{i}{365})$$

The required probability is therefore (1 - q).

Analysis

We can compute the above probability by considering one person at a time.

Consider an arbitrary order of the 30 people. Observe that the probability that the second person has a birthday that is distinct from the first person is: $(1 - \frac{1}{365})$.

Using the intersection lemma, we know that the probability that the k^{th} person has a birthday that is distinct from the first (k-1) birthdays, assuming that the first (k-1) people have distinct birthdays is: $(1 - \frac{(k-1)}{365})$.

It follows that the probability that all 30 people have distinct birthdays is:

$$q = \prod_{i=1}^{29} (1 - \frac{i}{365})$$

The required probability is therefore (1 - q). Detailed calculations show $q \approx 0.2987$, i.e., there is a better than 70% chance that two people share a birthday, when 30 people are in a room.

Analysis

We can compute the above probability by considering one person at a time.

Consider an arbitrary order of the 30 people. Observe that the probability that the second person has a birthday that is distinct from the first person is: $(1 - \frac{1}{365})$.

Using the intersection lemma, we know that the probability that the k^{th} person has a birthday that is distinct from the first (k-1) birthdays, assuming that the first (k-1) people have distinct birthdays is: $(1 - \frac{(k-1)}{365})$.

It follows that the probability that all 30 people have distinct birthdays is:

$$q = \prod_{i=1}^{29} (1 - \frac{i}{365})$$

The required probability is therefore (1 - q). Detailed calculations show $q \approx 0.2987$, i.e., there is a better than 70% chance that two people share a birthday, when 30 people are in a room. Likewise, only 23 people need to be in the room, before the probability that two people share a birthday is more than $\frac{1}{2}$.

The Birthday Paradox Balls into Bins The Poisson Distribution

General Approach

Analysis

Assuming that there are *m* people and *n* possible birthdays.

Analysis

Assuming that there are *m* people and *n* possible birthdays. Recall that $1 - \frac{k}{n} \approx e^{-\frac{k}{n}}$, when k << n.

Analysis

Analysis

$$\Pi_{j=1}^{m-1}(1-\frac{j}{n})$$

Analysis

$$\Pi_{j=1}^{m-1}(1-rac{j}{n}) \quad \approx \quad \Pi_{j=1}^{m-1}e^{-rac{j}{n}}$$

Analysis

Assuming that there are *m* people and *n* possible birthdays. Recall that $1 - \frac{k}{n} \approx e^{-\frac{k}{n}}$, when k << n. The probability that all *m* people have distinct birthdays is:

$$\Pi_{j=1}^{m-1}(1-\frac{j}{n}) \approx \Pi_{j=1}^{m-1}e^{-\frac{j}{n}}$$

=

Analysis

$$\Pi_{j=1}^{m-1} (1 - \frac{j}{n}) \approx \Pi_{j=1}^{m-1} e^{-\frac{j}{n}} = e^{-\sum_{j=1}^{m-1} \frac{j}{n}}$$

Analysis

$$\Pi_{j=1}^{m-1} (1 - \frac{j}{n}) \approx \Pi_{j=1}^{m-1} e^{-\frac{j}{n}}$$
$$= e^{-\sum_{j=1}^{m-1} \frac{j}{n}}$$
$$= e^{\frac{-m(m-1)}{2\cdot n}}$$

Analysis

Assuming that there are *m* people and *n* possible birthdays. Recall that $1 - \frac{k}{n} \approx e^{-\frac{k}{n}}$, when k << n. The probability that all *m* people have distinct birthdays is:

$$\Pi_{j=1}^{m-1} (1 - \frac{j}{n}) \approx \Pi_{j=1}^{m-1} e^{-\frac{j}{n}}$$
$$= e^{-\sum_{j=1}^{m-1} \frac{j}{n}}$$
$$= e^{\frac{-m(m-1)}{2\cdot n}}$$

 \approx

Analysis

$$\Pi_{j=1}^{m-1}(1-\frac{j}{n}) \approx \Pi_{j=1}^{m-1}e^{-\frac{j}{n}} = e^{-\sum_{j=1}^{m-1}\frac{j}{n}} = e^{-\frac{m-1}{2n}} = e^{-\frac{m-(m-1)}{2n}} \approx e^{-\frac{m^2}{2n}}$$

Analysis

Assuming that there are *m* people and *n* possible birthdays. Recall that $1 - \frac{k}{n} \approx e^{-\frac{k}{n}}$, when k << n. The probability that all *m* people have distinct birthdays is:

$$\Pi_{j=1}^{m-1}(1-\frac{j}{n}) \approx \Pi_{j=1}^{m-1}e^{-\frac{j}{n}}$$

$$= e^{-\sum_{j=1}^{m-1}\frac{j}{n}}$$

$$= e^{-\frac{m(m-1)}{2\cdot n}}$$

$$\approx e^{-\frac{m^2}{2\cdot n}}$$

Hence, the value for m, at which the probability that all m people have distinct birthdays is $\frac{1}{2}$ is

Analysis

Assuming that there are *m* people and *n* possible birthdays. Recall that $1 - \frac{k}{n} \approx e^{-\frac{k}{n}}$, when k << n. The probability that all *m* people have distinct birthdays is:

$$\Pi_{j=1}^{m-1}(1-\frac{j}{n}) \approx \Pi_{j=1}^{m-1}e^{-\frac{j}{n}}$$

$$= e^{-\sum_{j=1}^{m-1}\frac{j}{n}}$$

$$= e^{-\frac{m(m-1)}{2n}}$$

$$\approx e^{-\frac{m^2}{2n}}$$

Hence, the value for *m*, at which the probability that all *m* people have distinct birthdays is $\frac{1}{2}$ is $m = \sqrt{2 \cdot n \cdot \ln 2}$.

Analysis

Assuming that there are *m* people and *n* possible birthdays. Recall that $1 - \frac{k}{n} \approx e^{-\frac{k}{n}}$, when k << n. The probability that all *m* people have distinct birthdays is:

$$\Pi_{j=1}^{m-1}(1-\frac{j}{n}) \approx \Pi_{j=1}^{m-1}e^{-\frac{j}{n}}$$

$$= e^{-\sum_{j=1}^{m-1}\frac{j}{n}}$$

$$= e^{-\frac{m(m-1)}{2n}}$$

$$\approx e^{-\frac{m^2}{2n}}$$

Hence, the value for *m*, at which the probability that all *m* people have distinct birthdays is $\frac{1}{2}$ is $m = \sqrt{2 \cdot n \cdot \ln 2}$. Check what you get, when n = 365!

The Birthday Paradox Balls into Bins The Poisson Distribution

Intuitive bounds

Analysis

A more intuitive (although looser) bound can be obtained by using the union lemma.

Analysis

A more intuitive (although looser) bound can be obtained by using the union lemma. Let E_k be the event that the k^{th} person's birthday does not match the birthdays of any of the first (k-1) people.

Analysis

Analysis

Analysis

A more intuitive (although looser) bound can be obtained by using the union lemma. Let E_k be the event that the k^{th} person's birthday does not match the birthdays of any of the first (k-1) people. It follows that the event of the first k people failing to have distinct birthdays is: $\vec{E_1} \cup \vec{E_2} \dots \cup \vec{E_k}$. The probability of this event is :

 $P(\bar{E_1} \cup \bar{E_2} \dots \cup \bar{E_k}) \leq$

Analysis

$$P(\overline{E}_1 \cup \overline{E}_2 \dots \cup \overline{E}_k) \leq \sum_{i=1}^k P(\overline{E}_i)$$

Analysis

$$P(\bar{E}_1 \cup \bar{E}_2 \dots \cup \bar{E}_k) \leq \sum_{i=1}^k P(\bar{E}_i)$$
$$\leq \sum_{i=1}^k \frac{i-1}{n}$$

Analysis

$$P(\bar{E}_1 \cup \bar{E}_2 \dots \cup \bar{E}_k) \leq \sum_{i=1}^{k} P(\bar{E}_i)$$
$$\leq \sum_{i=1}^{k} \frac{i-1}{n}$$
$$= \frac{k \cdot (k-1)}{2 \cdot n}$$

Analysis

A more intuitive (although looser) bound can be obtained by using the union lemma. Let E_k be the event that the k^{th} person's birthday does not match the birthdays of any of the first (k-1) people. It follows that the event of the first k people failing to have distinct birthdays is: $\vec{E_1} \cup \vec{E_2} \dots \cup \vec{E_k}$. The probability of this event is :

$$P(\bar{E}_1 \cup \bar{E}_2 \dots \cup \bar{E}_k) \leq \sum_{i=1}^{k} P(\bar{E}_i)$$
$$\leq \sum_{i=1}^{k} \frac{i-1}{n}$$
$$= \frac{k \cdot (k-1)}{2 \cdot n}$$

If $k \leq \sqrt{n}$, this probability is less than $\frac{1}{2}$.

Analysis

A more intuitive (although looser) bound can be obtained by using the union lemma. Let E_k be the event that the k^{th} person's birthday does not match the birthdays of any of the first (k-1) people. It follows that the event of the first k people failing to have distinct birthdays is: $\vec{E_1} \cup \vec{E_2} \dots \cup \vec{E_k}$. The probability of this event is :

$$P(\bar{E}_1 \cup \bar{E}_2 \dots \cup \bar{E}_k) \leq \sum_{i=1}^{k} P(\bar{E}_i)$$
$$\leq \sum_{i=1}^{k} \frac{i-1}{n}$$
$$= \frac{k \cdot (k-1)}{2 \cdot n}$$

If $k \le \sqrt{n}$, this probability is less than $\frac{1}{2}$. Thus with \sqrt{n} people, the probability that all birthdays are distinct is at least $\frac{1}{2}$.

Analysis

A more intuitive (although looser) bound can be obtained by using the union lemma. Let E_k be the event that the k^{th} person's birthday does not match the birthdays of any of the first (k-1) people. It follows that the event of the first k people failing to have distinct birthdays is: $\vec{E_1} \cup \vec{E_2} \dots \cup \vec{E_k}$. The probability of this event is :

$$P(\bar{E}_1 \cup \bar{E}_2 \dots \cup \bar{E}_k) \leq \sum_{i=1}^{k} P(\bar{E}_i)$$
$$\leq \sum_{i=1}^{k} \frac{i-1}{n}$$
$$= \frac{k \cdot (k-1)}{2 \cdot n}$$

If $k \le \sqrt{n}$, this probability is less than $\frac{1}{2}$. Thus with \sqrt{n} people, the probability that all birthdays are distinct is at least $\frac{1}{2}$.

The Birthday Paradox Balls into Bins The Poisson Distribution

Intuitive bounds (contd.)

Intuitive bounds (contd.)

Analysis (contd.)

Assume that the first \sqrt{n} people all have distinct birthdays.

Intuitive bounds (contd.)

Analysis (contd.)

Assume that the first \sqrt{n} people all have distinct birthdays. What is the probability that each succeeding person has a birthday that matches one of the first \sqrt{n} people?
Analysis (contd.)

Assume that the first \sqrt{n} people all have distinct birthdays. What is the probability that each succeeding person has a birthday that matches one of the first \sqrt{n} people? $\frac{1}{\sqrt{n}}$.

Analysis (contd.)

Analysis (contd.)

$$(1-\frac{1}{\sqrt{n}})^{\sqrt{n}}$$

Analysis (contd.)

$$(1-rac{1}{\sqrt{n}})^{\sqrt{n}} < rac{1}{e}$$

Analysis (contd.)

$$(1-\frac{1}{\sqrt{n}})^{\sqrt{n}} < \frac{1}{\epsilon}$$

Analysis (contd.)

Assume that the first \sqrt{n} people all have distinct birthdays. What is the probability that each succeeding person has a birthday that matches one of the first \sqrt{n} people? $\frac{1}{\sqrt{n}}$. Hence, the probability that the next \sqrt{n} people all have different birthdays from the first \sqrt{n} people is at most:

$$(1 - \frac{1}{\sqrt{n}})^{\sqrt{n}} < \frac{1}{e}$$
$$< \frac{1}{2}$$

Hence, once there are $2 \cdot \sqrt{n}$ people, the probability is at most $\frac{1}{e}$, that the birthdays will be distinct.

The basic model

The basic model

Measure of Interest

Consider the problem of throwing *m* balls into *n* bins, uniformly and at random.

Measure of Interest

Consider the problem of throwing m balls into n bins, uniformly and at random. The maximum load is defined as the maximum number of balls in any bin.

Measure of Interest

Consider the problem of throwing m balls into n bins, uniformly and at random. The maximum load is defined as the maximum number of balls in any bin. We will attempt to bound this quantity.

Measure of Interest

Consider the problem of throwing m balls into n bins, uniformly and at random. The maximum load is defined as the maximum number of balls in any bin. We will attempt to bound this quantity.

Lemma

When *m* balls are thrown independently and uniformly at random into *n* bins, the probability that the maximum load is more than $3 \cdot \frac{\ln n}{\ln \ln n}$ is at most $\frac{1}{n}$ for *n* sufficiently large.

Measure of Interest

Consider the problem of throwing m balls into n bins, uniformly and at random. The maximum load is defined as the maximum number of balls in any bin. We will attempt to bound this quantity.

Lemma

When *m* balls are thrown independently and uniformly at random into *n* bins, the probability that the maximum load is more than $3 \cdot \frac{\ln n}{\ln \ln n}$ is at most $\frac{1}{n}$ for *n* sufficiently large.

Note

$$\frac{k^k}{k!} < \sum_{i=0}^{\infty} \frac{k^i}{i!}$$

Measure of Interest

Consider the problem of throwing m balls into n bins, uniformly and at random. The maximum load is defined as the maximum number of balls in any bin. We will attempt to bound this quantity.

Lemma

When *m* balls are thrown independently and uniformly at random into *n* bins, the probability that the maximum load is more than $3 \cdot \frac{\ln n}{\ln \ln n}$ is at most $\frac{1}{n}$ for *n* sufficiently large.

Note

$$\frac{k^k}{k!} < \sum_{i=0}^{\infty} \frac{k^i}{i!} = e^k$$

Measure of Interest

Consider the problem of throwing m balls into n bins, uniformly and at random. The maximum load is defined as the maximum number of balls in any bin. We will attempt to bound this quantity.

Lemma

When *m* balls are thrown independently and uniformly at random into *n* bins, the probability that the maximum load is more than $3 \cdot \frac{\ln n}{\ln \ln n}$ is at most $\frac{1}{n}$ for *n* sufficiently large.

Note

$$\frac{k^{k}}{k!} < \sum_{i=0}^{\infty} \frac{k^{i}}{i!}$$
$$= e^{k}$$
$$k! > (\frac{k}{e})^{k}$$

Balls and Bins (contd.)

Balls and Bins (contd.)

Balls and Bins (contd.)

Proof.

• Focus on a specific bin, say bin 1.

Balls and Bins (contd.)

Proof.

• Focus on a specific bin, say bin 1.

- Focus on a specific bin, say bin 1.
- What is the probability that this bin receives at least *M* balls?

- Focus on a specific bin, say bin 1.
- What is the probability that this bin receives at least M balls? At most $C(n, M) \cdot (\frac{1}{n})^M$.

- Focus on a specific bin, say bin 1.
- What is the probability that this bin receives at least *M* balls? At most $C(n, M) \cdot (\frac{1}{n})^M$. (Why?)

- Focus on a specific bin, say bin 1.
- What is the probability that this bin receives at least M balls? At most C(n, M) · (¹/_n)^M. (Why?)
- But this is bounded above by $\left(\frac{\theta}{M}\right)^M$.

- Focus on a specific bin, say bin 1.
- What is the probability that this bin receives at least M balls? At most C(n, M) · (¹/_n)^M. (Why?)
- But this is bounded above by $\left(\frac{e}{M}\right)^M$.
- Applying the union bound, we can conclude that the probability that any bin receives at least M ≥ 3 · lnn balls is at most:

- Focus on a specific bin, say bin 1.
- What is the probability that this bin receives at least M balls? At most C(n, M) · (¹/_n)^M. (Why?)
- But this is bounded above by $\left(\frac{e}{M}\right)^M$.
- Applying the union bound, we can conclude that the probability that any bin receives at least M ≥ 3 · lnn balls is at most:

$$n \cdot (rac{e}{M})^M \leq n \cdot (rac{e \cdot \ln \ln n}{3 \cdot \ln n})^{rac{3 \cdot \ln n}{\ln \ln n}}$$

Proof.

- Focus on a specific bin, say bin 1.
- What is the probability that this bin receives at least M balls? At most C(n, M) · (¹/_n)^M. (Why?)
- But this is bounded above by $\left(\frac{e}{M}\right)^M$.
- Applying the union bound, we can conclude that the probability that any bin receives at least M ≥ 3 · lnn balls is at most:

$$(\frac{e}{M})^M \leq n \cdot (\frac{e \cdot \ln \ln n}{3 \cdot \ln n})^{\frac{3 \cdot \ln n}{\ln \ln n}}$$

 $\leq \frac{1}{n}$, for *n* sufficiently large

Bucket Sort

Bucket Sort

Main ideas

Subramani Balls and Bins

Bucket Sort

Main ideas

• Used to sort integers only.

- Used to sort integers only.
- Breaks the $\Omega(n \cdot \log n)$ bound for comparison based sorting.

- Used to sort integers only.
- Breaks the $\Omega(n \cdot \log n)$ bound for comparison based sorting.
- We assume that we have a set of n = 2^m elements, each element being an integer chosen uniformly from the range [0,2^k), where k ≥ m.

- Used to sort integers only.
- Breaks the $\Omega(n \cdot \log n)$ bound for comparison based sorting.
- We assume that we have a set of n = 2^m elements, each element being an integer chosen uniformly from the range [0,2^k), where k ≥ m.
- In stage 1, place into the jth bucket all elements whose first m binary digits correspond to the number j.

- Used to sort integers only.
- Breaks the $\Omega(n \cdot \log n)$ bound for comparison based sorting.
- We assume that we have a set of n = 2^m elements, each element being an integer chosen uniformly from the range [0,2^k), where k ≥ m.
- In stage 1, place into the jth bucket all elements whose first m binary digits correspond to the number j. How much time?

- Used to sort integers only.
- Breaks the $\Omega(n \cdot \log n)$ bound for comparison based sorting.
- We assume that we have a set of n = 2^m elements, each element being an integer chosen uniformly from the range [0,2^k), where k ≥ m.
- In stage 1, place into the jth bucket all elements whose first m binary digits correspond to the number j. How much time? O(n).

- Used to sort integers only.
- Breaks the $\Omega(n \cdot \log n)$ bound for comparison based sorting.
- We assume that we have a set of n = 2^m elements, each element being an integer chosen uniformly from the range [0,2^k), where k ≥ m.
- In stage 1, place into the jth bucket all elements whose first m binary digits correspond to the number j. How much time? O(n).
- Sort each bucket in quadratic time and concatenate all the lists together.

- Used to sort integers only.
- Breaks the $\Omega(n \cdot \log n)$ bound for comparison based sorting.
- We assume that we have a set of n = 2^m elements, each element being an integer chosen uniformly from the range [0,2^k), where k ≥ m.
- In stage 1, place into the jth bucket all elements whose first m binary digits correspond to the number j. How much time? O(n).
- Sort each bucket in quadratic time and concatenate all the lists together. How much time?

- Used to sort integers only.
- Breaks the $\Omega(n \cdot \log n)$ bound for comparison based sorting.
- We assume that we have a set of n = 2^m elements, each element being an integer chosen uniformly from the range [0,2^k), where k ≥ m.
- In stage 1, place into the jth bucket all elements whose first m binary digits correspond to the number j. How much time? O(n).
- Sort each bucket in quadratic time and concatenate all the lists together. How much time? $O(n^2)$.
The Birthday Paradox Balls into Bins The Poisson Distribution

Bucket Sort (Analysis)

Main Ideas

• Let X_i denote the number of elements in Bucket i.

Main Ideas

 Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.
- The expected time spent in the second stage is

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.
- The expected time spent in the second stage is

$$\mathbf{E}[\sum_{i=1}^{n} c \cdot X_{i}^{2}]$$

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.
- The expected time spent in the second stage is

$$\mathbf{E}[\sum_{i=1}^n c \cdot X_i^2] =$$

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.
- The expected time spent in the second stage is

$$\mathbf{E}[\sum_{i=1}^{n} c \cdot X_i^2] \quad = \quad c \cdot \mathbf{E}[\sum_{i=1}^{n} X_i^2]$$

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.
- The expected time spent in the second stage is

$$\mathbf{E}[\sum_{i=1}^{n} c \cdot X_i^2] \quad = \quad c \cdot \mathbf{E}[\sum_{i=1}^{n} X_i^2]$$

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.
- The expected time spent in the second stage is

$$\mathbf{E}[\sum_{i=1}^{n} c \cdot X_{i}^{2}] = c \cdot \mathbf{E}[\sum_{i=1}^{n} X_{i}^{2}]$$
$$= c \cdot n \cdot \mathbf{E}[X_{1}^{2}]$$

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.
- The expected time spent in the second stage is

$$\mathbf{E}[\sum_{i=1}^{n} c \cdot X_{i}^{2}] = c \cdot \mathbf{E}[\sum_{i=1}^{n} X_{i}^{2}]$$
$$= c \cdot n \cdot \mathbf{E}[X_{1}^{2}]$$

Main Ideas

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.
- The expected time spent in the second stage is

$$\mathbf{E}[\sum_{i=1}^{n} c \cdot X_{i}^{2}] = c \cdot \mathbf{E}[\sum_{i=1}^{n} X_{i}^{2}]$$
$$= c \cdot n \cdot \mathbf{E}[X_{1}^{2}]$$

• But X_1 is a binomial random variable with parameters *n* and $\frac{1}{n}$.

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.
- The expected time spent in the second stage is

$$\mathbf{E}[\sum_{i=1}^{n} c \cdot X_i^2] = c \cdot \mathbf{E}[\sum_{i=1}^{n} X_i^2]$$
$$= c \cdot n \cdot \mathbf{E}[X_1^2]$$

- But X_1 is a binomial random variable with parameters *n* and $\frac{1}{n}$.
- Therefore, $\mathbf{E}[X_1^2] =$

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.
- The expected time spent in the second stage is

$$\mathbf{E}[\sum_{i=1}^{n} c \cdot X_i^2] = c \cdot \mathbf{E}[\sum_{i=1}^{n} X_i^2]$$
$$= c \cdot n \cdot \mathbf{E}[X_1^2]$$

- But X_1 is a binomial random variable with parameters *n* and $\frac{1}{n}$.
- Therefore, $\mathbf{E}[X_1^2] = 2 \frac{1}{n}$

- Let X_i denote the number of elements in Bucket i. Therefore, the total time spent in sorting bucket i, is c · X_i²
- The total time spent in the second stage is $\sum_{i=1}^{n} c \cdot X_i^2$.
- The expected time spent in the second stage is

$$\mathbf{E}[\sum_{i=1}^{n} c \cdot X_i^2] = c \cdot \mathbf{E}[\sum_{i=1}^{n} X_i^2]$$
$$= c \cdot n \cdot \mathbf{E}[X_1^2]$$

- But X_1 is a binomial random variable with parameters *n* and $\frac{1}{n}$.
- Therefore, $\mathbf{E}[X_1^2] = 2 \frac{1}{n} < 2$.

The Poisson Distribution

The Poisson Distribution

Definition

A discrete Poisson random variable *X* with parameter $\mu > 0$ is given by the following probability distribution on j = 0, 1, 2, ...

The Poisson Distribution

Definition

A discrete Poisson random variable X with parameter $\mu > 0$ is given by the following probability distribution on j = 0, 1, 2, ...

$$P(X=j) =$$

The Poisson Distribution

Definition

A discrete Poisson random variable *X* with parameter $\mu > 0$ is given by the following probability distribution on j = 0, 1, 2, ...

$$P(X=j)=\frac{e^{-\mu}\cdot\mu^j}{j!}$$

The Poisson Distribution

Definition

A discrete Poisson random variable X with parameter $\mu > 0$ is given by the following probability distribution on j = 0, 1, 2, ...

$$P(X=j)=\frac{e^{-\mu}\cdot\mu^j}{j!}$$

Exercise

The Poisson Distribution

Definition

A discrete Poisson random variable X with parameter $\mu > 0$ is given by the following probability distribution on j = 0, 1, 2, ...

$$P(X=j)=\frac{\mathrm{e}^{-\mu}\cdot\mu^j}{j!}$$

Exercise

(i) Show that the definition leads to proper probability distribution.

The Poisson Distribution

Definition

A discrete Poisson random variable X with parameter $\mu > 0$ is given by the following probability distribution on j = 0, 1, 2, ...

$$P(X=j)=\frac{\mathrm{e}^{-\mu}\cdot\mu^j}{j!}$$

Exercise

- (i) Show that the definition leads to proper probability distribution.
- (ii) What is $\mathbf{E}[X]$, when X is a Poisson random variable?

Outline

The Birthday Paradox

Balls into Bins

The Poisson Distribution

- Some important lemmas
- Connection to Binomial Distribution
- Connection to Balls and Bins

The sum lemma

The sum lemma

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random variable.

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random variable.

Proof.

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random variable.

Proof.

Let X and Y denote two Poisson random variables with means μ_1 and μ_2 respectively. Observe that,

P(X+Y=j) =

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random variable.

Proof.

$$P(X+Y=j) = \sum_{k=0}^{j} P((X=k) \cap (Y=j-k))$$

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random variable.

Proof.

Let X and Y denote two Poisson random variables with means μ_1 and μ_2 respectively. Observe that,

$$P(X + Y = j) = \sum_{k=0}^{j} P((X = k) \cap (Y = j - k))$$

=

The sum lemma

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random variable.

Proof.

$$P(X + Y = j) = \sum_{k=0}^{j} P((X = k) \cap (Y = j - k))$$
$$= \sum_{k=0}^{j} \frac{e^{-\mu_1} \cdot \mu_1^k}{k!} \cdot \frac{e^{-\mu_2} \cdot \mu_2^{j-k}}{(j-k)!}$$

The sum lemma

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random variable.

Proof.

$$P(X + Y = j) = \sum_{k=0}^{j} P((X = k) \cap (Y = j - k))$$

=
$$\sum_{k=0}^{j} \frac{e^{-\mu_1} \cdot \mu_1^k}{k!} \cdot \frac{e^{-\mu_2} \cdot \mu_2^{j-k}}{(j-k)!}$$

=
$$\frac{e^{-(\mu_1 + \mu_2)}}{j!} \cdot \sum_{k=0}^{j} \frac{j!}{k! \cdot (j-k)!} \mu_1^k \cdot \mu_2^{(j-k)}$$

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random variable.

Proof.

$$P(X + Y = j) = \sum_{k=0}^{j} P((X = k) \cap (Y = j - k))$$

=
$$\sum_{k=0}^{j} \frac{e^{-\mu_1} \cdot \mu_1^k}{k!} \cdot \frac{e^{-\mu_2} \cdot \mu_2^{j-k}}{(j-k)!}$$

=
$$\frac{e^{-(\mu_1 + \mu_2)}}{j!} \cdot \sum_{k=0}^{j} \frac{j!}{k! \cdot (j-k)!} \mu_1^k \cdot \mu_2^{(j-k)}$$

=
$$\frac{e^{-(\mu_1 + \mu_2)} \cdot (\mu_1 + \mu_2)^j}{j!},$$

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random variable.

Proof.

$$P(X+Y=j) = \sum_{k=0}^{j} P((X=k) \cap (Y=j-k))$$

$$= \sum_{k=0}^{j} \frac{e^{-\mu_{1}} \cdot \mu_{1}^{k}}{k!} \cdot \frac{e^{-\mu_{2}} \cdot \mu_{2}^{j-k}}{(j-k)!}$$

$$= \frac{e^{-(\mu_{1}+\mu_{2})}}{j!} \cdot \sum_{k=0}^{j} \frac{j!}{k! \cdot (j-k)!} \mu_{1}^{k} \cdot \mu_{2}^{(j-k)}$$

$$= \frac{e^{-(\mu_{1}+\mu_{2})} \cdot (\mu_{1}+\mu_{2})^{j}}{j!}, \text{Binomial expansion of } (\mu_{1}+\mu_{2})^{j}.$$

Lemma

The sum of a finite number of independent Poisson random variables is a Poisson random variable.

Proof.

Let X and Y denote two Poisson random variables with means μ_1 and μ_2 respectively. Observe that,

$$P(X + Y = j) = \sum_{k=0}^{j} P((X = k) \cap (Y = j - k))$$

$$= \sum_{k=0}^{j} \frac{e^{-\mu_{1}} \cdot \mu_{1}^{k}}{k!} \cdot \frac{e^{-\mu_{2}} \cdot \mu_{2}^{j-k}}{(j-k)!}$$

$$= \frac{e^{-(\mu_{1} + \mu_{2})}}{j!} \cdot \sum_{k=0}^{j} \frac{j!}{k! \cdot (j-k)!} \mu_{1}^{k} \cdot \mu_{2}^{(j-k)}$$

$$= \frac{e^{-(\mu_{1} + \mu_{2})} \cdot (\mu_{1} + \mu_{2})^{j}}{j!}, \text{Binomial expansion of } (\mu_{1} + \mu_{2})^{j}.$$

Use induction for arbitrary number of variables.

The Birthday Paradox Balls into Bins he Poisson Distribution

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Moment Generating Function

The Birthday Paradox Balls into Bins The Poisson Distribution

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Moment Generating Function

Lemma

The moment generating function of a Poisson random variable with parameter μ is $M_x(t) = e^{\mu \cdot (e^t - 1)}$.
Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Moment Generating Function

Lemma

The moment generating function of a Poisson random variable with parameter μ is $M_x(t) = e^{\mu \cdot (e^t - 1)}$.

Proof.

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Moment Generating Function

Lemma

The moment generating function of a Poisson random variable with parameter μ is $M_x(t) = e^{\mu \cdot (e^t - 1)}$.

Proof.

$$E[e^{tX}] =$$

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Moment Generating Function

Lemma

The moment generating function of a Poisson random variable with parameter μ is $M_x(t) = e^{\mu \cdot (e^t - 1)}$.

Proof.

$$\mathbf{E}[\mathbf{e}^{tX}] = \sum_{k=0}^{\infty} \frac{\mathbf{e}^{-\mu} \cdot \mu^k}{k!} \cdot \mathbf{e}^{tk}$$

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Moment Generating Function

Lemma

The moment generating function of a Poisson random variable with parameter μ is $M_x(t) = e^{\mu \cdot (e^t - 1)}$.

Proof.

For any t,

$$\mathbf{E}[\mathbf{e}^{tX}] = \sum_{k=0}^{\infty} \frac{\mathbf{e}^{-\mu} \cdot \mu^k}{k!} \cdot \mathbf{e}^{tk}$$

=

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Moment Generating Function

Lemma

The moment generating function of a Poisson random variable with parameter μ is $M_x(t) = e^{\mu \cdot (e^t - 1)}$.

Proof.

$$\mathbf{E}[\mathbf{e}^{tX}] = \sum_{k=0}^{\infty} \frac{\mathbf{e}^{-\mu} \cdot \mu^k}{k!} \cdot \mathbf{e}^{tk}$$
$$= \mathbf{e}^{\mu \cdot (\mathbf{e}^{t} - 1)}$$

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Chernoff Bounds

Chernoff Bounds

Theorem

Let X be a Poisson random variable with parameter μ .

Chernoff Bounds

Theorem

Let X be a Poisson random variable with parameter μ .

• If $x > \mu$, then

Chernoff Bounds

Theorem

Let X be a Poisson random variable with parameter μ .

• If $x > \mu$, then

$$\mathsf{P}(X \ge x) \le rac{\mathrm{e}^{-\mu} \cdot (\mathrm{e} \cdot \mu)^x}{x^x}$$

Chernoff Bounds

Theorem

Let X be a Poisson random variable with parameter μ .

• If $x > \mu$, then

$$P(X \ge x) \le rac{\mathrm{e}^{-\mu} \cdot (\mathrm{e} \cdot \mu)^x}{x^x}$$

• If $x < \mu$, then

Chernoff Bounds

Theorem

Let X be a Poisson random variable with parameter μ .

• If $x > \mu$, then

$$P(X \ge x) \le \frac{e^{-\mu} \cdot (e \cdot \mu)^x}{x^x}$$

• If $x < \mu$, then

$$P(X \leq x) \leq \frac{e^{-\mu} \cdot (e \cdot \mu)^x}{x^x}$$

Proof of Chernoff bounds

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Proof of Chernoff bounds

Proof.

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Proof of Chernoff bounds

Proof.

$$P(X \ge x) =$$

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Proof of Chernoff bounds

Proof.

$$P(X \ge x) = P(e^{t \cdot X} \ge e^{t \cdot x})$$

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Proof of Chernoff bounds

Proof.

For any t > 0 and $x > \mu$,

$$\mathsf{P}(X \ge x) \quad = \quad \mathsf{P}(e^{t \cdot X} \ge e^{t \cdot x})$$

 \leq

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Proof of Chernoff bounds

Proof.

$$\begin{array}{ll} \mathsf{P}(X \ge x) & = & \mathsf{P}(\mathsf{e}^{t \cdot X} \ge \mathsf{e}^{t \cdot x}) \\ & \leq & \frac{\mathsf{E}[\mathsf{e}^{t \cdot X}}{\mathsf{e}^{t \cdot x}}] \end{array}$$

Proof of Chernoff bounds

Proof.

For any t > 0 and $x > \mu$,

$$\begin{array}{ll} \mathsf{P}(X \geq x) & = & \mathsf{P}(\mathbf{e}^{t \cdot X} \geq \mathbf{e}^{t \cdot x}) \\ & \leq & \frac{\mathsf{E}[\mathbf{e}^{t \cdot X}}{\mathbf{e}^{t \cdot x}}] \end{array}$$

Plug in the mgf of the Poisson distribution to get,

Proof of Chernoff bounds

Proof.

For any t > 0 and $x > \mu$,

$$\begin{array}{ll} \mathsf{P}(X \geq x) & = & \mathsf{P}(\mathbf{e}^{t \cdot X} \geq \mathbf{e}^{t \cdot x}) \\ & \leq & \frac{\mathsf{E}[\mathbf{e}^{t \cdot X}}{\mathbf{e}^{t \cdot x}}] \end{array}$$

Plug in the mgf of the Poisson distribution to get,

$$P(X \ge x) \le e^{\mu \cdot (e^t - 1 - x \cdot t)}$$

Proof of Chernoff bounds

Proof.

For any t > 0 and $x > \mu$,

$$\begin{array}{ll} \mathsf{P}(X \geq x) & = & \mathsf{P}(\mathbf{e}^{t \cdot X} \geq \mathbf{e}^{t \cdot x}) \\ & \leq & \frac{\mathsf{E}[\mathbf{e}^{t \cdot X}}{\mathbf{e}^{t \cdot x}}] \end{array}$$

Plug in the mgf of the Poisson distribution to get,

$$P(X \ge x) \le e^{\mu \cdot (e^t - 1 - x \cdot t)}$$

Choose $t = \ln(\frac{x}{\mu}) > 0$, to get,

Proof of Chernoff bounds

Proof.

For any t > 0 and $x > \mu$,

$$\begin{array}{ll} \mathsf{P}(X \geq x) & = & \mathsf{P}(\mathbf{e}^{t \cdot X} \geq \mathbf{e}^{t \cdot x}) \\ & \leq & \frac{\mathsf{E}[\mathbf{e}^{t \cdot X}}{\mathbf{e}^{t \cdot x}}] \end{array}$$

Plug in the mgf of the Poisson distribution to get,

$$P(X \ge x) \le e^{\mu \cdot (e^t - 1 - x \cdot t)}$$

Choose $t = \ln(\frac{x}{\mu}) > 0$, to get,

$$P(X \ge x) \le \frac{e^{-\mu} \cdot (e \cdot \mu)^x}{x^x}$$

Proof of Chernoff bounds

Proof.

For any t > 0 and $x > \mu$,

$$\begin{array}{ll} \mathcal{P}(X \geq x) & = & \mathcal{P}(e^{t \cdot X} \geq e^{t \cdot x}) \\ & \leq & \frac{\mathsf{E}[e^{t \cdot X}}{e^{t \cdot x}}] \end{array}$$

Plug in the mgf of the Poisson distribution to get,

$$P(X \ge x) \le e^{\mu \cdot (e^t - 1 - x \cdot t)}$$

Choose $t = \ln(\frac{x}{\mu}) > 0$, to get,

$$P(X \ge x) \le \frac{e^{-\mu} \cdot (e \cdot \mu)^x}{x^x}$$

The complementary bound can be derived in similar fashion.

Outline

The Birthday Paradox

Balls into Bins

The Poisson Distribution

- Some important lemmas
- Connection to Binomial Distribution
- Connection to Balls and Bins

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Limit of the Binomial Distribution

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Limit of the Binomial Distribution

Theorem

Let X_n denote a binomial random variable with parameters n and p, where p is a function of n and $\lim_{n\to\infty} n \cdot p = \lambda$ is a constant that is independent of n.

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Limit of the Binomial Distribution

Theorem

Let X_n denote a binomial random variable with parameters n and p, where p is a function of n and $\lim_{n\to\infty} n \cdot p = \lambda$ is a constant that is independent of n. Then, for any fixed k,

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Limit of the Binomial Distribution

Theorem

Let X_n denote a binomial random variable with parameters n and p, where p is a function of n and $\lim_{n\to\infty} n \cdot p = \lambda$ is a constant that is independent of n. Then, for any fixed k,

$$\lim_{n\to\infty}P(X_n=k)$$

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Limit of the Binomial Distribution

Theorem

Let X_n denote a binomial random variable with parameters n and p, where p is a function of n and $\lim_{n\to\infty} n \cdot p = \lambda$ is a constant that is independent of n. Then, for any fixed k,

$$\lim_{n\to\infty} P(X_n=k) = \frac{e^{\lambda} \cdot \lambda^k}{k!}$$

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Limit of the Binomial Distribution

Theorem

Let X_n denote a binomial random variable with parameters n and p, where p is a function of n and $\lim_{n\to\infty} n \cdot p = \lambda$ is a constant that is independent of n. Then, for any fixed k,

$$\lim_{n\to\infty} P(X_n=k) = \frac{e^{\lambda} \cdot \lambda^k}{k!}$$

Note

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Limit of the Binomial Distribution

Theorem

Let X_n denote a binomial random variable with parameters n and p, where p is a function of n and $\lim_{n\to\infty} n \cdot p = \lambda$ is a constant that is independent of n. Then, for any fixed k,

$$\lim_{n\to\infty} P(X_n=k) = \frac{e^{\lambda} \cdot \lambda^k}{k!}$$

Note

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Limit of the Binomial Distribution

Theorem

Let X_n denote a binomial random variable with parameters n and p, where p is a function of n and $\lim_{n\to\infty} n \cdot p = \lambda$ is a constant that is independent of n. Then, for any fixed k,

$$\lim_{n\to\infty} P(X_n=k) = \frac{e^{\lambda} \cdot \lambda^k}{k!}$$

Note

• If $|x| \le 1$,

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Limit of the Binomial Distribution

Theorem

Let X_n denote a binomial random variable with parameters n and p, where p is a function of n and $\lim_{n\to\infty} n \cdot p = \lambda$ is a constant that is independent of n. Then, for any fixed k,

$$\lim_{n\to\infty} P(X_n=k) = \frac{e^{\lambda} \cdot \lambda^k}{k!}$$

Note

• If
$$|x| \le 1$$
, $e^x \cdot (1-x^2) \le (1+x) \le e^x$.

Limit of the Binomial Distribution

Theorem

Let X_n denote a binomial random variable with parameters n and p, where p is a function of n and $\lim_{n\to\infty} n \cdot p = \lambda$ is a constant that is independent of n. Then, for any fixed k,

$$\lim_{n\to\infty} P(X_n=k) = \frac{e^{\lambda} \cdot \lambda^k}{k!}$$

Note

• If
$$|x| \le 1$$
, $e^x \cdot (1 - x^2) \le (1 + x) \le e^x$.
• $(1 - p)^k \ge (1 - p \cdot k)$, for $k \ge 0$.

ome important lemmas onnection to Binomial Distribution onnection to Balls and Bins

The Birthday Paradox	Some important lemmas
Balls into Bins	
	Connection to Balls and Bins

Proof

Proof.

$$P(X_n = k) =$$

The Birthday Paradox	Some important lemmas
Balls into Bins	
	Connection to Balls and Bins

Proof

Proof.

$P(X_n = k) =$	$C(n,k) \cdot p^k \cdot (1-p)^{n-k}$
----------------	--------------------------------------
The Birthday Paradox	Some important lemmas
----------------------	------------------------------
Balls into Bins	
	Connection to Balls and Bins

Proof.

$$P(X_n = k) = C(n,k) \cdot p^k \cdot (1-p)^{n-k}$$

 \leq

The Birthday Paradox	Some important lemmas
Balls into Bins	
	Connection to Balls and Bins

$$P(X_n = k) = C(n,k) \cdot p^k \cdot (1-p)^{n-k}$$

$$\leq \frac{n^k}{k!} \cdot p^k \cdot \frac{(1-p)^n}{(1-p)^k}$$

The Birthday Paradox	Some important lemmas
Balls into Bins	
	Connection to Balls and Bins

Proof.

$$P(X_n = k) = C(n,k) \cdot p^k \cdot (1-p)^{n-k}$$

$$\leq \frac{n^k}{k!} \cdot p^k \cdot \frac{(1-p)^n}{(1-p)^k}$$

 \leq

The Birthday Paradox	Some important lemmas
Balls into Bins	
	Connection to Balls and Bins

$$P(X_n = k) = C(n,k) \cdot p^k \cdot (1-p)^{n-k}$$

$$\leq \frac{n^k}{k!} \cdot p^k \cdot \frac{(1-p)^n}{(1-p)^k}$$

$$\leq \frac{(n \cdot p)^k}{k!} \cdot \frac{e^{-p \cdot n}}{1-p \cdot k}$$

Proof

$$\begin{aligned} P(X_n = k) &= C(n,k) \cdot p^k \cdot (1-p)^{n-k} \\ &\leq \frac{n^k}{k!} \cdot p^k \cdot \frac{(1-p)^n}{(1-p)^k} \\ &\leq \frac{(n \cdot p)^k}{k!} \cdot \frac{e^{-p \cdot n}}{1-p \cdot k} \\ &= \frac{e^{-p \cdot n} \cdot (n \cdot p)^k}{k!} \cdot \frac{1}{1-p \cdot k} \end{aligned}$$

Proof

$$\begin{aligned} P(X_n = k) &= C(n,k) \cdot p^k \cdot (1-p)^{n-k} \\ &\leq \frac{n^k}{k!} \cdot p^k \cdot \frac{(1-p)^n}{(1-p)^k} \\ &\leq \frac{(n \cdot p)^k}{k!} \cdot \frac{e^{-p \cdot n}}{1-p \cdot k} \\ &= \frac{e^{-p \cdot n} \cdot (n \cdot p)^k}{k!} \cdot \frac{1}{1-p \cdot k} \end{aligned}$$

The Birthday Paradox	Some important lemmas
Balls into Bins	
	Connection to Balls and Bins

Proof.

$$P(X_n = k) = C(n,k) \cdot p^k \cdot (1-p)^{n-k}$$

$$\leq \frac{n^k}{k!} \cdot p^k \cdot \frac{(1-p)^n}{(1-p)^k}$$

$$\leq \frac{(n \cdot p)^k}{k!} \cdot \frac{e^{-p \cdot n}}{1-p \cdot k}$$

$$= \frac{e^{-p \cdot n} \cdot (n \cdot p)^k}{k!} \cdot \frac{1}{1-p \cdot k}$$

The Birthday Paradox	Some important lemmas
Balls into Bins	
	Connection to Balls and Bins

Proof.

$$P(X_n = k) = C(n,k) \cdot p^k \cdot (1-p)^{n-k}$$

$$\leq \frac{n^k}{k!} \cdot p^k \cdot \frac{(1-p)^n}{(1-p)^k}$$

$$\leq \frac{(n \cdot p)^k}{k!} \cdot \frac{e^{-p \cdot n}}{1-p \cdot k}$$

$$= \frac{e^{-p \cdot n} \cdot (n \cdot p)^k}{k!} \cdot \frac{1}{1-p \cdot k}$$

Proof

Proof.

$$\begin{aligned} P(X_n = k) &= C(n,k) \cdot p^k \cdot (1-p)^{n-k} \\ &\leq \frac{n^k}{k!} \cdot p^k \cdot \frac{(1-p)^n}{(1-p)^k} \\ &\leq \frac{(n \cdot p)^k}{k!} \cdot \frac{e^{-p \cdot n}}{1-p \cdot k} \\ &= \frac{e^{-p \cdot n} \cdot (n \cdot p)^k}{k!} \cdot \frac{1}{1-p \cdot k} \end{aligned}$$

$$P(X_n = k) \geq$$

Proof

Proof.

$$P(X_n = k) = C(n,k) \cdot p^k \cdot (1-p)^{n-k}$$

$$\leq \frac{n^k}{k!} \cdot p^k \cdot \frac{(1-p)^n}{(1-p)^k}$$

$$\leq \frac{(n \cdot p)^k}{k!} \cdot \frac{e^{-p \cdot n}}{1-p \cdot k}$$

$$= \frac{e^{-p \cdot n} \cdot (n \cdot p)^k}{k!} \cdot \frac{1}{1-p \cdot k}$$

$$P(X_n = k) \geq \frac{(n-k+1)^k}{k!} \cdot p^k \cdot (1-p)^n$$

Proof

Proof.

$$P(X_n = k) = C(n,k) \cdot p^k \cdot (1-p)^{n-k}$$

$$\leq \frac{n^k}{k!} \cdot p^k \cdot \frac{(1-p)^n}{(1-p)^k}$$

$$\leq \frac{(n \cdot p)^k}{k!} \cdot \frac{e^{-p \cdot n}}{1-p \cdot k}$$

$$= \frac{e^{-p \cdot n} \cdot (n \cdot p)^k}{k!} \cdot \frac{1}{1-p \cdot k}$$

$$P(X_n = k) \geq \frac{(n-k+1)^k}{k!} \cdot p^k \cdot (1-p)^n$$

 \geq

Proof

Proof.

$$P(X_n = k) = C(n,k) \cdot p^k \cdot (1-p)^{n-k}$$

$$\leq \frac{n^k}{k!} \cdot p^k \cdot \frac{(1-p)^n}{(1-p)^k}$$

$$\leq \frac{(n \cdot p)^k}{k!} \cdot \frac{e^{-p \cdot n}}{1-p \cdot k}$$

$$= \frac{e^{-p \cdot n} \cdot (n \cdot p)^k}{k!} \cdot \frac{1}{1-p \cdot k}$$

$$P(X_n = k) \geq \frac{(n-k+1)^k}{k!} \cdot p^k \cdot (1-p)^n$$

$$\geq \frac{e^{-p \cdot n} \cdot ((n-k+1) \cdot p)^k}{k!} \cdot (1-p^2 \cdot n)$$

Proof (contd.)

The Birthday Paradox Balls into Bins The Poisson Distribution Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Proof (contd.)

Proof.

Subramani Balls and Bins

Proof (contd.)

Proof.

Combining the above two inequalities gives us,

$$\frac{e^{-p\cdot n}\cdot ((n-k+1)\cdot p)^k}{k!}\cdot (1-p^2\cdot n)\leq$$

Proof (contd.)

Proof.

Combining the above two inequalities gives us,

$$\frac{\mathrm{e}^{-p\cdot n}\cdot ((n-k+1)\cdot p)^k}{k!}\cdot (1-p^2\cdot n)\leq P(X_n=k)\leq$$

Proof (contd.)

Proof.

Combining the above two inequalities gives us,

$$\frac{e^{-p \cdot n} \cdot ((n-k+1) \cdot p)^k}{k!} \cdot (1-p^2 \cdot n) \le P(X_n=k) \le \frac{e^{-p \cdot n} \cdot (n \cdot p)^k}{k!} \cdot \frac{1}{1-p \cdot k}$$

Proof (contd.)

Proof.

Combining the above two inequalities gives us,

$$\frac{e^{-p\cdot n}\cdot ((n-k+1)\cdot p)^k}{k!}\cdot (1-p^2\cdot n) \leq P(X_n=k) \leq \frac{e^{-p\cdot n}\cdot (n\cdot p)^k}{k!}\cdot \frac{1}{1-p\cdot k}$$

As *n* tends to ∞ , both the lower limit and the upper limit converge to $\frac{e^{-\lambda} \cdot \lambda^k}{k!}$.

Outline

The Birthday Paradox

Balls into Bins

The Poisson Distribution

- Some important lemmas
- Connection to Binomial Distribution
- Connection to Balls and Bins

Balls and Bins revisited

Balls and Bins revisited

Number of balls in a bin

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty?

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m$

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$.

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$. This probability is the same for all bins.

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$. This probability is the same for all bins. Let X_i be 1, if the *j*th bin is empty and 0, otherwise.

Subramani Balls and Bins

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$. This probability is the same for all bins. Let X_i be 1, if the *j*th bin is empty and 0, otherwise. Clearly, $E[X_i] =$

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$. This probability is the same for all bins. Let X_j be 1, if the *j*th bin is empty and 0, otherwise.Clearly, $E[X_i] = (1 - \frac{1}{n})^m$.

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$. This probability is the same for all bins.

Let X_j be 1, if the j^{th} bin is empty and 0, otherwise.Clearly, $E[X_j] = (1 - \frac{1}{n})^m$. Let X be a random variable that represents the number of empty bins.

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$. This probability is the same for all bins.

Let X_j be 1, if the j^{th} bin is empty and 0, otherwise.Clearly, $E[X_j] = (1 - \frac{1}{n})^m$. Let X be a random variable that represents the number of empty bins.

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$. This probability is the same for all bins.

Let X_j be 1, if the j^{th} bin is empty and 0, otherwise. Clearly, $E[X_j] = (1 - \frac{1}{n})^m$. Let X be a random variable that represents the number of empty bins.

$$\mathbf{E}[X] = \mathbf{E}[\sum_{i=1}^{n} X_i]$$

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$. This probability is the same for all bins.

Let X_j be 1, if the j^{th} bin is empty and 0, otherwise. Clearly, $E[X_j] = (1 - \frac{1}{n})^m$. Let X be a random variable that represents the number of empty bins.

$$\mathbf{E}[X] = \mathbf{E}[\sum_{i=1}^{n} X_i]$$

=

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$. This probability is the same for all bins.

Let X_j be 1, if the j^{th} bin is empty and 0, otherwise.Clearly, $E[X_j] = (1 - \frac{1}{n})^m$. Let X be a random variable that represents the number of empty bins.

$$\mathbf{E}[X] = \mathbf{E}[\sum_{i=1}^{n} X_i]$$
$$= \sum_{i=1}^{n} \mathbf{E}[X_i]$$

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$. This probability is the same for all bins.

Let X_j be 1, if the j^{th} bin is empty and 0, otherwise.Clearly, $E[X_j] = (1 - \frac{1}{n})^m$. Let X be a random variable that represents the number of empty bins.

$$\mathbf{E}[X] = \mathbf{E}[\sum_{i=1}^{n} X_i]$$
$$= \sum_{i=1}^{n} \mathbf{E}[X_i]$$

 \approx

Balls and Bins revisited

Number of balls in a bin

What is the probability that a given bin is empty? $(1 - \frac{1}{n})^m \approx e^{-\frac{m}{n}}$. This probability is the same for all bins.

Let X_j be 1, if the j^{th} bin is empty and 0, otherwise.Clearly, $E[X_j] = (1 - \frac{1}{n})^m$. Let X be a random variable that represents the number of empty bins.

$$\mathbf{E}[X] = \mathbf{E}[\sum_{i=1}^{n} X_i]$$
$$= \sum_{i=1}^{n} \mathbf{E}[X_i]$$
$$\approx n \cdot \mathbf{e}^{-\frac{m}{n}}$$

The Birthday Paradox Balls into Bins be Poisson Distribution ome important lemmas connection to Binomial Distribution connection to Balls and Bins

Balls and Bins revisited (contd.)
The Birthday Paradox Balls into Bins he Poisson Distribution ome important lemmas connection to Binomial Distribution connection to Balls and Bins

Balls and Bins revisited (contd.)

Generalization

Subramani Balls and Bins

The Birthday Paradox Balls into Bins he Poisson Distribution ome important lemmas connection to Binomial Distribution connection to Balls and Bins

Balls and Bins revisited (contd.)

Generalization

What is the probability that a given bin has r balls?

The Birthday Paradox Balls into Bins Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Balls and Bins revisited (contd.)

Generalization

What is the probability that a given bin has *r* balls? $C(m,r) \cdot (\frac{1}{n})^r \cdot (1-\frac{1}{n})^{m-r}$.

The Birthday Paradox Balls into Bins The Poisson Distribution Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Balls and Bins revisited (contd.)

Generalization

What is the probability that a given bin has *r* balls? $C(m,r) \cdot (\frac{1}{n})^r \cdot (1-\frac{1}{n})^{m-r}$.

This can be simplified to

The Birthday Paradox Balls into Bins The Poisson Distribution Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Balls and Bins revisited (contd.)

Generalization

What is the probability that a given bin has *r* balls? $C(m,r) \cdot (\frac{1}{n})^r \cdot (1-\frac{1}{n})^{m-r}$.

This can be simplified to $p_r \approx \frac{e^{-\frac{m}{n}} \cdot (\frac{m}{n})^r}{r!}$.

Some important lemmas Connection to Binomial Distribution Connection to Balls and Bins

Balls and Bins revisited (contd.)

Generalization

What is the probability that a given bin has *r* balls? $C(m,r) \cdot (\frac{1}{n})^r \cdot (1-\frac{1}{n})^{m-r}$.

This can be simplified to $p_r \approx \frac{e^{-\frac{m}{n}} \cdot (\frac{m}{n})^r}{r!}$. In other words, the number of balls in a specific bin is Poisson distributed with mean $\frac{m}{n}$.