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The median statistic
Deterministic Approaches

A randomized approach

Median

Definition

The median of an array A of n distinct elements, where n is an odd number is A[ n+1
2 ], after A

has been sorted. This definition differs from the book definition.

Note

The median is an important clustering statistic that is used as a reference point in a number of
practical applications.

Note

The oddness of n and the distinctness of the elements of A are simplifying assumptions. Our
algorithm will work even if these assumptions are relaxed.
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The median statistic
Deterministic Approaches

A randomized approach

Deterministic Approaches

Sorting

Simply sort the array A in O(n · logn) time and then return A[ n+1
2 ].

The bucketing approach

(i) Break the array into n
5 groups of 5 elements each. Call the buckets b1,b2, . . .b n

5
.

(ii) Find the median of each bucket.

(iii) Recursively find the median of medians. Call the median of medians p.

(iv) Use p as a pivot to split the array into two sub-arrays L and G, which respectively contain
the elements of A that are smaller than p and larger thatn p.

(v) Recurse on the appropriate piece.
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The median statistic
Deterministic Approaches

A randomized approach

Analysis

Analysis

Let T (n) denote the time taken by the median finding algorithm.

(i) Step (i) takes c1 ·n time, for some constant c1.

(ii) Step (ii) takes c2 ·n time, for some constant c2.

(iii) Step (iii) takes T ( n
5 ) time.

(iv) Step (iv) takes c3 ·n time, for some constant c3.

(v) Step (v) takes T ( 7·n
10 ) time. Why?

Accordingly, we have,

T (n) ≤ c ·n+T (
n
5
)+T (

7 ·n
10

)

∈ O(n).

Note

Will the above analysis work when the bucket size is 3? 7? The key observation is that recursive
calls need to be performed on pieces whose cumulative size is at most (1− ε) ·n, for some
ε > 0.
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The median statistic
Deterministic Approaches

A randomized approach

Randomized Selection

Principal Ideas

A random sample R of A reveals sufficient information about its median m, w.h.p.

R contains markers d and u, such that d ≤m ≤ u, w.h.p.

From the random sample and the markers, we can construct a set C, such that C is of small
size and contains the median w.h.p.

The set C can be sorted to determine the median.
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The median statistic
Deterministic Approaches

A randomized approach

The Lazy Select Algorithm

Function LAZY-SELECT-MEDIAN(A)

1: Construct a set R, by choosing n
3
4 elements from A, uniformly and at random.

2: Sort R using some optimal sorting algorithm.
3: Let d be the ( 1

2 n
3
4 −
√

n)th smallest element of R.

4: Let u be the ( 1
2 n

3
4 +
√

n)th smallest element of R.
5: Construct C = {x : x ∈ A, d ≤ x ≤ u}. Also compute ld = |{x ∈ A : x < d}| and
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Correctness

Theorem

The LAZY-SELECT-MEDIAN() algorithm runs in linear time and it if it does not output Fail, it
returns the median of A.

Modes of failure

(i) Set C does not contain the median. (Exclusion error).

(ii) Set C is too large. (Size error).

We will argue that the probability of each of the above events occurring in a run, is at most
O(n−

1
4 ). Hence with probability at least 1−O(n−

1
4 ), the algorithm correctly outputs the median,

on a given run.
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Exclusion error

Observations

Exclusion error can occur in one of two ways, viz., (a) ld > n
2 , and (b) lu > n

2 . We will focus
on deriving bounds for (a); the bounds for (b) can be derived in identical fashion.

ld > n
2 ⇒ |{x ∈ R : x ≤m}|< ( 1

2 ·n
3
4 −
√

n). (Why?) If not, the median would be between
d and u!

Let E1 denote the above event. We will show that P(E1)≤ 1
4 ·n

− 1
4 .

Analysis

Let

Xi =

{
1, if the i th element of R is less than or equal to the median
0, otherwise

Clearly,

P(Xi = 1) =
n+1

2

n

=
1
2
+

1
2 ·n

We thus see that each Xi is a Bernoulli random variable with parameter p = 1
2 +

1
2·n .
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Exclusion error (contd.)

Analysis (contd.)

Let Y1 = |{x ∈ R : x ≤m}|. Clearly,

Y1 =
n

3
4

∑
i=1

Xi

It follows that Y1 is a binomial random variable with parameters n
3
4 and 1

2 +
1

2·n . It follows that,

E[Y1] =
n

3
4

∑
i=1

Xi

=
1
2
·n

3
4 +

1
2
·n−

1
4

Var[Y1] = n
3
4 ·Var[Xi ]

<
1
4

n
3
4
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Applying Chebyshev’s inequality, we have,

P(E1) = P(Y1 < (
1
2
·n

3
4 −
√

n))

= P((
1
2
·n

3
4 −Y1)>

√
n)

≤ P((
1
2
·n

3
4 +

1
2
·n−

1
4 −Y1)>

√
n)

= P((E[Y1]−Y1)>
√

n)

≤ P(|E[Y1]−Y1|>
√

n)

≤ Var[Y1]

(
√

n)2

≤
1
4 ·n

3
4

n

≤ 1
4
·n−

1
4

Let E2 denote the event that lu > n
2 . Arguing in identical fashion as above, we can show that

P(E2)≤ 1
4 ·n

− 1
4 .
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Size error

Analysis

Let Z denote the event that |C|> 4 ·n 3
4 . Observe that one of the following two events must

occur:

(i) At least 2 ·n 3
4 of the elements of C are greater than the median m (call this event Z1),

(ii) At least 2 ·n 3
4 of the elements of C are smaller than the median m (call this event Z2).

We shall show that P(Z1)≤ 1
4 ·n

− 1
4 . It follows that P(Z2)≤ 1

4 ·n
− 1

4 , by symmetry. Hence,

P(Z)≤ P(Z1)+P(Z2)≤ 1
2 ·n

− 1
4 .

Assume that Z1 has occurred. This means that, u has rank at least 1
2 ·n+2 ·n 3

4 in A. Recall that

u is the element of rank 1
2 ·n

3
4 +
√

n in R.

Consider the set L of the largest 1
2 ·n−2 ·n 3

4 elements of A. How many samples of R are there

in L? At least n
3
4 − ( 1

2 ·n
3
4 +
√

n) = 1
2 ·n

3
4 −
√

n.
Thus, P(Z1) is precisely the probability that the number of samples of R in L is at least
1
2 ·n

3
4 −
√

n.
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Size error (contd.)

Analysis (contd.)

Let

Xi =

{
1, if the i th sample of R is in L
0, otherwise

Clearly,

P(Xi = 1) =
|L|
n

We thus see that each Xi is a Bernoulli random variable with parameter p = 1
2 −2 ·n− 1

4 .

Observe that the total number of samples of R which are in L is given by: X = ∑
n

3
4

i=1 Xi . Clearly X

is a binomial random variable with parameters n
3
4 and p.
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It follows that,

E[X ] =
1
2
·n

3
4 −2 ·

√
n

Var[X ] = n
3
4 ·p · (1−p)

<
1
4
·n

3
4

Applying Chebyshev’s inequality, we conclude that,

P(Z1) = P(X ≥ (
1
2
·n

3
4 −
√

n))

= P((X − 1
2
·n

3
4 )≥−

√
n)

= P((X − (
1
2
·n

3
4 −2 ·

√
n))≥

√
n)

= P((X −E[X ])≥
√

n)

≤ P(|X −E[X ]| ≥
√

n)
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