Martingales

Naga Venkata Nitesh Tadepalli¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

17 April, 2012

• Doob Martingale

- Definition
- Doob Martingale

2 Stopping Times

- Introduction
- Martingale Stopping Theorem

- Doob Martingale

2 Stopping Times

- Introduction
- Martingale Stopping Theorem

<mark>Definition</mark> Doob Martingale

Outline

• Doob Martingale

2 Stopping Times

- Introduction
- Martingale Stopping Theorem

3 Wald's Equation

<mark>Definition</mark> Doob Martingale

Martingales

Definition

Nitesh Randomized Algorithms

Definition

A sequence of random variables Z_0, Z_1, \cdots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \ge 0$, the following conditions hold:

Definition

A sequence of random variables Z_0, Z_1, \cdots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \ge 0$, the following conditions hold:

(i) Z_n is a function of X_0, X_1, \ldots, X_n ;

Definition

A sequence of random variables Z_0, Z_1, \cdots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \ge 0$, the following conditions hold:

(i) Z_n is a function of X_0, X_1, \ldots, X_n ;

```
(ii) \mathbf{E}[|Z_n|] < \infty
```

Definition

A sequence of random variables Z_0, Z_1, \cdots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \ge 0$, the following conditions hold:

- (i) Z_n is a function of X_0, X_1, \ldots, X_n ;
- (ii) $\mathbf{E}[|Z_n|] < \infty$

(iii)
$$\mathbf{E}[Z_{n+1} \mid X_0, \dots, X_n] = Z_n$$

Definition

A sequence of random variables Z_0, Z_1, \cdots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \ge 0$, the following conditions hold:

- (i) Z_n is a function of X_0, X_1, \ldots, X_n ;
- (ii) $\mathbf{E}[|Z_n|] < \infty$

(iii)
$$\mathbf{E}[Z_{n+1} \mid X_0, \dots, X_n] = Z_n$$

A sequence of random variables Z_0, Z_1, \cdots is called martingale, when it is a martingale with respect to itself. That is, $\mathbf{E}[|Z_n|] < \infty$, and $\mathbf{E}[Z_{n+1} \mid Z_0, \dots, Z_n] = Z_n$.

Definition

A sequence of random variables Z_0, Z_1, \cdots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \ge 0$, the following conditions hold:

- (i) Z_n is a function of X_0, X_1, \ldots, X_n ;
- (ii) $\mathbf{E}[|Z_n|] < \infty$
- (iii) $\mathbf{E}[Z_{n+1} \mid X_0, ..., X_n] = Z_n$

A sequence of random variables Z_0, Z_1, \cdots is called martingale, when it is a martingale with respect to itself. That is, $\mathbf{E}[|Z_n|] < \infty$, and $\mathbf{E}[Z_{n+1} \mid Z_0, \dots, Z_n] = Z_n$.

Note

Definition

A sequence of random variables Z_0, Z_1, \cdots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \ge 0$, the following conditions hold:

- (i) Z_n is a function of X_0, X_1, \ldots, X_n ;
- (ii) $\mathbf{E}[|Z_n|] < \infty$
- (iii) $\mathbf{E}[Z_{n+1} \mid X_0, ..., X_n] = Z_n$

A sequence of random variables Z_0, Z_1, \cdots is called martingale, when it is a martingale with respect to itself. That is, $\mathbf{E}[|Z_n|] < \infty$, and $\mathbf{E}[Z_{n+1} \mid Z_0, \dots, Z_n] = Z_n$.

Note

• A Martingale can have a finite or a countably infinite number of elements.

Definition

A sequence of random variables Z_0, Z_1, \cdots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \ge 0$, the following conditions hold:

- (i) Z_n is a function of X_0, X_1, \ldots, X_n ;
- (ii) $\mathbf{E}[|Z_n|] < \infty$
- (iii) $\mathbf{E}[Z_{n+1} \mid X_0, ..., X_n] = Z_n$

A sequence of random variables Z_0, Z_1, \cdots is called martingale, when it is a martingale with respect to itself. That is, $\mathbf{E}[|Z_n|] < \infty$, and $\mathbf{E}[Z_{n+1} \mid Z_0, \dots, Z_n] = Z_n$.

Note

• A Martingale can have a finite or a countably infinite number of elements.

2 The indexing of the martingale sequence does not need to start at 0.

<mark>Definition</mark> Doob Martingale

Martingales

<mark>Definition</mark> Doob Martingale

Martingales

Example

<mark>Definition</mark> Doob Martingale

Martingales

Example

Consider a gambler who plays a sequence of fair games.

Example

Example

Example

$$\bullet \mathbf{E}[X_i] = 0$$

Example

$$\bullet \mathbf{E}[X_i] = \mathbf{0}$$

2
$$\mathbf{E}[Z_{i+1} | X_1, X_2, \dots, X_i] =$$

Example

•
$$E[X_i] = 0$$

2
$$\mathbf{E}[Z_{i+1} | X_1, X_2, \dots, X_i] = Z_i + \mathbf{E}[X_{i+1}] =$$

Example

•
$$E[X_i] = 0$$

2
$$\mathbf{E}[Z_{i+1} | X_1, X_2, \dots, X_i] = Z_i + \mathbf{E}[X_{i+1}] = Z_i$$

Example

Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the *i*th game(X_i is negative if the gambler loses), and let Z_i be the gambler's total winnings at the end of the *i*th game. Because each game is fair,

$$\bullet \mathbf{E}[X_i] = 0$$

2
$$\mathbf{E}[Z_{i+1} | X_1, X_2, \dots, X_i] = Z_i + \mathbf{E}[X_{i+1}] = Z_i$$

Thus, Z_1, Z_2, \ldots, Z_n is a martingale with respect to the sequence X_1, X_2, \ldots, X_n .

Example

Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the *i*th game(X_i is negative if the gambler loses), and let Z_i be the gambler's total winnings at the end of the *i*th game. Because each game is fair,

$$\bullet \mathbf{E}[X_i] = \mathbf{0}$$

2
$$\mathbf{E}[Z_{i+1} | X_1, X_2, \dots, X_i] = Z_i + \mathbf{E}[X_{i+1}] = Z_i$$

Thus, Z_1, Z_2, \ldots, Z_n is a martingale with respect to the sequence X_1, X_2, \ldots, X_n .

Note

Example

Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the *i*th game(X_i is negative if the gambler loses), and let Z_i be the gambler's total winnings at the end of the *i*th game. Because each game is fair,

$$\bullet \mathbf{E}[X_i] = 0$$

2
$$\mathbf{E}[Z_{i+1} | X_1, X_2, \dots, X_i] = Z_i + \mathbf{E}[X_{i+1}] = Z_i$$

Thus, Z_1, Z_2, \ldots, Z_n is a martingale with respect to the sequence X_1, X_2, \ldots, X_n .

Note

The sequence is a martingale regardless of the amount bet on each game, even if these amounts are dependent upon previous results.

Definition Doob Martingale

Outline

• Doob Martingale

2 Stopping Times

- Introduction
- Martingale Stopping Theorem

3 Wald's Equation

Definition Doob Martingale

Doob Martingale

Definition Doob Martingale

Doob Martingale

Doob martingale

Definition Doob Martingale

Doob Martingale

Doob martingale

A Doob martingale refers to a martingale constructed using the following general approach.

Definition Doob Martingale

Doob Martingale

Doob martingale

A Doob martingale refers to a martingale constructed using the following general approach.

Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then

Doob martingale

A Doob martingale refers to a martingale constructed using the following general approach.

Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = \mathbf{E}[Y \mid X_0, \ldots, X_i]$, $i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n , since

Doob martingale

A Doob martingale refers to a martingale constructed using the following general approach.

Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = \mathbf{E}[Y \mid X_0, \ldots, X_i]$, $i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n , since

$$\mathbf{E}[Z_{i+1} \mid X_0, \dots, X_i] =$$

Doob martingale

A Doob martingale refers to a martingale constructed using the following general approach.

Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = \mathbf{E}[Y \mid X_0, \ldots, X_i]$, $i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n , since

 $\mathbf{E}[Z_{i+1} \mid X_0, \dots, X_i] = \mathbf{E}[\mathbf{E}[Y \mid X_0, \dots, X_i, X_{i+1}] \mid X_0, \dots, X_i]$

Doob martingale

A Doob martingale refers to a martingale constructed using the following general approach.

Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = \mathbf{E}[Y \mid X_0, \ldots, X_i]$, $i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n , since

$$\mathbf{E}[Z_{i+1} \mid X_0, \dots, X_i] = \mathbf{E}[\mathbf{E}[Y \mid X_0, \dots, X_i, X_{i+1}] \mid X_0, \dots, X_i] \\ = \mathbf{E}[Y \mid X_0, \dots, X_i]$$

Doob martingale

A Doob martingale refers to a martingale constructed using the following general approach.

Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = \mathbf{E}[Y \mid X_0, \ldots, X_i]$, $i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n , since

$$\mathbf{E}[Z_{i+1} \mid X_0, \dots, X_i] = \mathbf{E}[\mathbf{E}[Y \mid X_0, \dots, X_i, X_{i+1}] \mid X_0, \dots, X_i] \\ = \mathbf{E}[Y \mid X_0, \dots, X_i] \\ = Z_i$$
Doob Martingale

Doob martingale

A Doob martingale refers to a martingale constructed using the following general approach.

Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = \mathbf{E}[Y \mid X_0, \ldots, X_i]$, $i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n , since

$$\mathbf{E}[Z_{i+1} \mid X_0, \dots, X_i] = \mathbf{E}[\mathbf{E}[Y \mid X_0, \dots, X_i, X_{i+1}] \mid X_0, \dots, X_i] \\ = \mathbf{E}[Y \mid X_0, \dots, X_i] \\ = Z_i$$

Note

 $\boldsymbol{E}[V \mid W] = \boldsymbol{E}[\boldsymbol{E}[V \mid U, W] \mid W]$

Definition Doob Martingale

Doob martingale

Definition Doob Martingale

Doob martingale

Observations

Nitesh Randomized Algorithms

Doob martingale

Observations

In most applications we start Doob martingale with $Z_0 = \mathbf{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y.

Doob martingale

Observations

In most applications we start Doob martingale with $Z_0 = \mathbf{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y. Consider that we want to estimate the value of Y,

Doob martingale

Observations

In most applications we start Doob martingale with $Z_0 = \mathbf{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y. Consider that we want to estimate the value of Y, whose value is a function of the values of the random variables X_1, \ldots, X_n .

Doob martingale

Observations

In most applications we start Doob martingale with $Z_0 = \mathbf{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y.

Doob martingale

Observations

In most applications we start Doob martingale with $Z_0 = \mathbf{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y.

$$I Z_0 = \mathbf{E}[Y]$$

Doob martingale

Observations

In most applications we start Doob martingale with $Z_0 = \mathbf{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y.

•
$$Z_0 = \mathbf{E}[Y]$$

• $Z_i = \mathbf{E}[Y \mid X_1, \dots X_i]$

Doob martingale

Observations

In most applications we start Doob martingale with $Z_0 = \mathbf{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y.

•
$$Z_0 = \mathbf{E}[Y]$$

• $Z_i = \mathbf{E}[Y | X_1, ..., X_i]$
• $Z_n = Y$, if Y is fully determined by $X_1, ..., X_n$

Definition Doob Martingale

Doob martingale - Examples

Definition Doob Martingale

Doob martingale - Examples

Edge exposure martingale

Definition Doob Martingale

Doob martingale - Examples

Edge exposure martingale

Let G be a random graph from $G_{n,p}$.

Definition Doob Martingale

Doob martingale - Examples

Edge exposure martingale

Let *G* be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

Doob martingale - Examples

Edge exposure martingale

Let *G* be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

 $X_j = \begin{cases} 1, & \text{if there is an edge in the } j^{\text{th}} \text{ edge slot,} \\ 0, & \text{otherwise.} \end{cases}$

Doob martingale - Examples

Edge exposure martingale

Let *G* be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

 $X_j = \begin{cases} 1, & \text{if there is an edge in the } j^{\text{th}} \text{ edge slot,} \\ 0, & \text{otherwise.} \end{cases}$

Let F(G) be the size of the largest independent set in G.

Doob martingale - Examples

Edge exposure martingale

Let *G* be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

 $X_j = \begin{cases} 1, & \text{if there is an edge in the } j^{\text{th}} \text{ edge slot,} \\ 0, & \text{otherwise.} \end{cases}$

Let F(G) be the size of the largest independent set in G.

1 $Z_0 = \mathbf{E}[F(G)]$ and

Doob martingale - Examples

Edge exposure martingale

Let *G* be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

 $X_{j} = \begin{cases} 1, & \text{if there is an edge in the } j^{\text{th}} \text{ edge slot,} \\ 0, & \text{otherwise.} \end{cases}$

Let F(G) be the size of the largest independent set in G.

•
$$Z_0 = \mathbf{E}[F(G)]$$
 and
• $Z_i = \mathbf{E}[F(G) | X_1, ..., X_i]$

Doob martingale - Examples

Edge exposure martingale

Let *G* be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

 $X_j = \begin{cases} 1, & \text{if there is an edge in the } j^{\text{th}} \text{ edge slot,} \\ 0, & \text{otherwise.} \end{cases}$

Let F(G) be the size of the largest independent set in G.

•
$$Z_0 = \mathbf{E}[F(G)]$$
 and

$$2 \quad Z_i = \mathbf{E}[F(G) \mid X_1, \ldots, X_i]$$

The sequence Z_0, Z_1, \ldots, Z_m is a Doob martingale that represents the conditional expectations of F(G) as we reveal whether each edge is in the graph, one edge at a time.

Doob martingale - Examples

Edge exposure martingale

Let *G* be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

 $X_j = \begin{cases} 1, & \text{if there is an edge in the } j^{\text{th}} \text{ edge slot,} \\ 0, & \text{otherwise.} \end{cases}$

Let F(G) be the size of the largest independent set in G.

$$I = \mathbf{E}[F(G)] and$$

$$2 Z_i = \mathbf{E}[F(G) \mid X_1, \ldots, X_i]$$

The sequence Z_0, Z_1, \ldots, Z_m is a Doob martingale that represents the conditional expectations of F(G) as we reveal whether each edge is in the graph, one edge at a time.

This process of revealing edges gives a martingale called the edge exposure martingale.

Definition Doob Martingale

Doob martingale - Examples

Vertex exposure martingale

Definition Doob Martingale

Doob martingale - Examples

Vertex exposure martingale

Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time.

Definition Doob Martingale

Doob martingale - Examples

Vertex exposure martingale

Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time.

Consider the arbitrary numbering of vertices 1 through n,

Doob martingale - Examples

Vertex exposure martingale

Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time.

Consider the arbitrary numbering of vertices 1 through n, and let G_i be the subgraph of G induced by the first *i* vertices. Then, setting

Doob martingale - Examples

Vertex exposure martingale

Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time.

Consider the arbitrary numbering of vertices 1 through n, and let G_i be the subgraph of G induced by the first *i* vertices. Then, setting

•
$$Z_0 = \mathbf{E}[F(G)]$$
 and

Doob martingale - Examples

Vertex exposure martingale

Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time.

Consider the arbitrary numbering of vertices 1 through n, and let G_i be the subgraph of G induced by the first *i* vertices. Then, setting

•
$$Z_0 = \mathbf{E}[F(G)]$$
 and

2
$$Z_i = \mathbf{E}[F(G) | G_1, ..., G_i]$$
 $i = 1, ..., n,$

Doob martingale - Examples

Vertex exposure martingale

Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time.

Consider the arbitrary numbering of vertices 1 through n, and let G_i be the subgraph of G induced by the first *i* vertices. Then, setting

•
$$Z_0 = \mathbf{E}[F(G)]$$
 and

2 $Z_i = \mathbf{E}[F(G) | G_1, ..., G_i]$ i = 1, ..., n,

gives a Doob martingale that is commonly called the vertex exposure martingale.

Martingales Wald's Equation

Outline

• Doob Martingale

Stopping Times Introduction

• Martingale Stopping Theorem

ntroduction lartingale Stopping Theorem

Stopping Times

ntroduction Iartingale Stopping Theorem

Stopping Times

Stopping Times

Nitesh Randomized Algorithms

ntroduction Iartingale Stopping Theorem

Stopping Times

Stopping Times

Consider again the Gambler who participates in a sequence of fair gambling rounds,

ntroduction Iartingale Stopping Theorem

Stopping Times

Stopping Times

Consider again the Gambler who participates in a sequence of fair gambling rounds, and Z_i is the gamblers winnings after the *i*th game.

Introduction Martingale Stopping Theorem

Stopping Times

Stopping Times

Consider again the Gambler who participates in a sequence of fair gambling rounds, and Z_i is the gamblers winnings after the *i*th game. If the player decides (before starting to play) to quit after exactly *k* games, what are the gambler's expected winnings?

ntroduction Iartingale Stopping Theorem

Stopping Times

Stopping Times

Consider again the Gambler who participates in a sequence of fair gambling rounds, and Z_i is the gamblers winnings after the *i*th game. If the player decides (before starting to play) to quit after exactly *k* games, what are the gambler's expected winnings?

Lemma

Introduction Martingale Stopping Theorem

Stopping Times

Stopping Times

Consider again the Gambler who participates in a sequence of fair gambling rounds, and Z_i is the gamblers winnings after the *i*th game. If the player decides (before starting to play) to quit after exactly *k* games, what are the gambler's expected winnings?

Lemma

If the sequence Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , then $\mathbf{E}[Z_n] =$

Introduction Martingale Stopping Theorem

Stopping Times

Stopping Times

Consider again the Gambler who participates in a sequence of fair gambling rounds, and Z_i is the gamblers winnings after the *i*th game. If the player decides (before starting to play) to quit after exactly *k* games, what are the gambler's expected winnings?

Lemma

If the sequence Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , then $\mathbf{E}[Z_n] = \mathbf{E}[Z_0]$
ntroduction lartingale Stopping Theorem

Stopping Times

ntroduction Iartingale Stopping Theorem

Stopping Times

Proof

ntroduction Iartingale Stopping Theorem

Stopping Times

Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , it follows that

ntroduction Iartingale Stopping Theorem

Proof

Stopping Times

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , it follows that

$$Z_i = \mathbf{E}[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Introduction Martingale Stopping Theorem

Stopping Times

Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , it follows that

$$Z_i \quad = \quad \mathbf{E}[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

Introduction Martingale Stopping Theorem

Stopping Times

Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , it follows that

$$Z_i = \mathbf{E}[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

 $\mathbf{E}[Z_i] = \mathbf{E}[\mathbf{E}[Z_{i+1} \mid X_0, X_1, \dots, X_i]].$

Introduction Martingale Stopping Theorem

Stopping Times

Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , it follows that

$$Z_i = \mathbf{E}[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$\mathbf{E}[Z_i] = \mathbf{E}[\mathbf{E}[Z_{i+1} \mid X_0, X_1, \dots, X_i]] . \\ = \mathbf{E}[Z_{i+1}]$$

Introduction Martingale Stopping Theorem

Stopping Times

Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , it follows that

$$Z_i = \mathbf{E}[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$\begin{aligned} \mathbf{E}[Z_i] &= & \mathbf{E}[\mathbf{E}[Z_{i+1} \mid X_0, X_1, \dots, X_i]]. \\ &= & \mathbf{E}[Z_{i+1}] \end{aligned}$$

Repeating this argument yields

$$\mathbf{E}[Z_n] = \mathbf{E}[Z_0]$$

Introduction Martingale Stopping Theorem

Stopping Times

Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , it follows that

$$Z_i = \mathbf{E}[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$\begin{aligned} \mathbf{E}[Z_i] &= & \mathbf{E}[\mathbf{E}[Z_{i+1} \mid X_0, X_1, \dots, X_i]]. \\ &= & \mathbf{E}[Z_{i+1}] \end{aligned}$$

Repeating this argument yields

$$\mathbf{E}[Z_n] = \mathbf{E}[Z_0]$$

Thus, if the number of games played is initially fixed then the expected gain from the sequence of games is zero.

ntroduction Iartingale Stopping Theorem

Stopping Times

Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , it follows that

$$Z_i = \mathbf{E}[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$\begin{aligned} \mathbf{E}[Z_i] &= & \mathbf{E}[\mathbf{E}[Z_{i+1} \mid X_0, X_1, \dots, X_i]]. \\ &= & \mathbf{E}[Z_{i+1}] \end{aligned}$$

Repeating this argument yields

$$\mathbf{E}[Z_n] = \mathbf{E}[Z_0]$$

Thus, if the number of games played is initially fixed then the expected gain from the sequence of games is zero.

Note

Introduction Martingale Stopping Theorem

Stopping Times

Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , it follows that

$$Z_i = \mathbf{E}[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$\begin{aligned} \mathbf{E}[Z_i] &= & \mathbf{E}[\mathbf{E}[Z_{i+1} \mid X_0, X_1, \dots, X_i]]. \\ &= & \mathbf{E}[Z_{i+1}] \end{aligned}$$

Repeating this argument yields

$$\mathbf{E}[Z_n] = \mathbf{E}[Z_0]$$

Thus, if the number of games played is initially fixed then the expected gain from the sequence of games is zero.

Note

The gambler could decide to keep playing until his winnings total at least a hundred dollars. The following notion proves quite powerful.

ntroduction lartingale Stopping Theorem

Stopping Times

ntroduction Iartingale Stopping Theorem

Stopping Times

Definition

Introduction Martingale Stopping Theorem

Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \ge 0\}$ if the event T = n depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n .

Introduction Martingale Stopping Theorem

Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \ge 0\}$ if the event T = n depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n .

ntroduction Iartingale Stopping Theorem

Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \ge 0\}$ if the event T = n depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n .

Which of the following are stopping times?

First time the gambler wins five games in a row -

Introduction Martingale Stopping Theorem

Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \ge 0\}$ if the event T = n depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n .

Which of the following are stopping times?

• First time the gambler wins five games in a row - Stopping Time

Introduction Martingale Stopping Theorem

Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \ge 0\}$ if the event T = n depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n .

- First time the gambler wins five games in a row Stopping Time
- 2 First time the gambler has won at least a hundred dollars -

Introduction Martingale Stopping Theorem

Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \ge 0\}$ if the event T = n depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n .

- First time the gambler wins five games in a row Stopping Time
- ② First time the gambler has won at least a hundred dollars Stopping Time

Introduction Martingale Stopping Theorem

Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \ge 0\}$ if the event T = n depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n .

- First time the gambler wins five games in a row Stopping Time
- ② First time the gambler has won at least a hundred dollars Stopping Time
- I Last time the gambler wins five games in a row -

Introduction Martingale Stopping Theorem

Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \ge 0\}$ if the event T = n depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n .

- First time the gambler wins five games in a row Stopping Time
- ② First time the gambler has won at least a hundred dollars Stopping Time
- Last time the gambler wins five games in a row Not a stopping time

Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \ge 0\}$ if the event T = n depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n .

- First time the gambler wins five games in a row Stopping Time
- If its time the gambler has won at least a hundred dollars Stopping Time
- **O** Last time the gambler wins five games in a row Not a stopping time (needs knowledge of Z_{n+1}, Z_{n+2}, \ldots)

Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \ge 0\}$ if the event T = n depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n .

Which of the following are stopping times?

- First time the gambler wins five games in a row Stopping Time
- If its time the gambler has won at least a hundred dollars Stopping Time
- **2** Last time the gambler wins five games in a row Not a stopping time (needs knowledge of Z_{n+1}, Z_{n+2}, \ldots)

Note

Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \ge 0\}$ if the event T = n depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n .

Which of the following are stopping times?

- First time the gambler wins five games in a row Stopping Time
- If its time the gambler has won at least a hundred dollars Stopping Time
- **2** Last time the gambler wins five games in a row Not a stopping time (needs knowledge of Z_{n+1}, Z_{n+2}, \ldots)

Note

The subtle problem with the stopping times like, the first T such that $Z_T > B$ where B is a fixed constant greater than 0, is that it may not be finite, so the gambler may never finish playing.

Martingales Wald's Equation

Outline

• Doob Martingale

Stopping Times

- Introduction
- Martingale Stopping Theorem

ntroduction lartingale Stopping Theorem

Martingale Stopping Theorem

ntroduction Iartingale Stopping Theorem

Martingale Stopping Theorem

Theorem

Nitesh Randomized Algorithms

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if *T* is a stopping time for X_1, X_2, \ldots , then

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots , then

$$\mathbf{E}[Z_T] = \mathbf{E}[Z_0]$$

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots , then

 $\mathbf{E}[Z_T] = \mathbf{E}[Z_0]$

whenever one of the following holds:

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if *T* is a stopping time for X_1, X_2, \ldots , then

$$\mathbf{E}[Z_T] = \mathbf{E}[Z_0]$$

whenever one of the following holds:

① The Z_i are bounded, so there is a constant *c* such that, for all i, $|Z_i| \le c$;

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots , then

$$\mathbf{E}[Z_T] = \mathbf{E}[Z_0]$$

whenever one of the following holds:

① The Z_i are bounded, so there is a constant *c* such that, for all i, $|Z_i| \le c$;

2 T is bounded;

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots , then

$$\mathbf{E}[Z_T] = \mathbf{E}[Z_0]$$

whenever one of the following holds:

- **①** The Z_i are bounded, so there is a constant c such that, for all i, $|Z_i| \le c$;
- 2 T is bounded;
- **3** $\mathbf{E}[T] < \infty$, and there is a constant *c* such that $\mathbf{E}[|Z_{i+1} Z_i| | X_1, \dots, X_i] < c$.

ntroduction lartingale Stopping Theorem

Martingale Stopping Theorem

ntroduction lartingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games.
Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2.

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$,

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the *i*th game, and let Z_i be the total won by the player after *i* games.

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the *i*th game, and let Z_i be the total won by the player after *i* games. Assume that the player quits the game when she either loses I_1 dollars or wins I_2 dollars.

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the *i*th game, and let Z_i be the total won by the player after *i* games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the *i*th game, and let Z_i be the total won by the player after *i* games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the *i*th game, and let Z_i be the total won by the player after *i* games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let T be the first time the player has either won l_2 or lost l_1 .

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the *i*th game, and let Z_i be the total won by the player after *i* games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let T be the first time the player has either won l_2 or lost l_1 . Then T is a stopping time for X_1, X_2, \ldots

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the *i*th game, and let Z_i be the total won by the player after *i* games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let *T* be the first time the player has either won l_2 or lost l_1 . Then *T* is a stopping time for X_1, X_2, \ldots . The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem.

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the *i*th game, and let Z_i be the total won by the player after *i* games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let *T* be the first time the player has either won l_2 or lost l_1 . Then *T* is a stopping time for X_1, X_2, \ldots . The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem.

$$\mathbf{E}[Z_T]=\mathbf{0}.$$

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the *i*th game, and let Z_i be the total won by the player after *i* games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let *T* be the first time the player has either won l_2 or lost l_1 . Then *T* is a stopping time for X_1, X_2, \ldots . The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem.

$$\mathbf{E}[Z_T]=\mathbf{0}.$$

Let q be the probability that the gambler quits playing after winning l_2 dollars. Then

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the *i*th game, and let Z_i be the total won by the player after *i* games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let *T* be the first time the player has either won l_2 or lost l_1 . Then *T* is a stopping time for X_1, X_2, \ldots . The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem.

$$[Z_T]=0.$$

Let q be the probability that the gambler quits playing after winning l_2 dollars. Then

$$\mathbf{E}[Z_T] = I_2 \cdot q - I_1 \cdot (1-q) = 0$$

Introduction Martingale Stopping Theorem

Martingale Stopping Theorem

Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the *i*th game, and let Z_i be the total won by the player after *i* games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let *T* be the first time the player has either won l_2 or lost l_1 . Then *T* is a stopping time for X_1, X_2, \ldots . The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem.

$$[Z_T]=0.$$

Let q be the probability that the gambler quits playing after winning l_2 dollars. Then

$$E[Z_T] = l_2 \cdot q - l_1 \cdot (1 - q) = 0$$

gives $q = \frac{l_1}{l_1 + l_2}$

Wald's Equation

Wald's Equation

Theorem

Nitesh Randomized Algorithms

Wald's Equation

Theorem

Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution *X*. Let *T* be a stopping time for this sequence. If *T* and *X* have bounded expectation, then

$$\mathbf{E}\left[\sum_{i=1}^{T} X_i\right] = \mathbf{E}[T] \cdot \mathbf{E}[X].$$

Wald's Equation

Theorem

Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution *X*. Let *T* be a stopping time for this sequence. If *T* and *X* have bounded expectation, then

$$\mathbf{E}\left[\sum_{i=1}^{T} X_i\right] = \mathbf{E}[T] \cdot \mathbf{E}[X].$$

Proof

Wald's Equation

Theorem

Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution *X*. Let *T* be a stopping time for this sequence. If *T* and *X* have bounded expectation, then

$$\mathbf{E}\left[\sum_{i=1}^{T} X_i\right] = \mathbf{E}[T] \cdot \mathbf{E}[X].$$

Proof

For $i \ge 1$, let

$$Z_i = \sum_{j=1}^i (X_j - \mathbf{E}[X]).$$

Wald's Equation

Theorem

Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution *X*. Let *T* be a stopping time for this sequence. If *T* and *X* have bounded expectation, then

$$\mathbf{E}\left[\sum_{i=1}^{T} X_i\right] = \mathbf{E}[T] \cdot \mathbf{E}[X].$$

Proof

For $i \ge 1$, let

$$Z_i = \sum_{j=1}^i (X_j - \mathbf{E}[X]).$$

The sequence Z_1, Z_2, \ldots is a martingale with respect to X_1, X_2, \ldots , and $\mathbf{E}[Z_1] = 0$.

Wald's Equation

Theorem

Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution *X*. Let *T* be a stopping time for this sequence. If *T* and *X* have bounded expectation, then

$$\mathbf{E}\left[\sum_{i=1}^{T} X_i\right] = \mathbf{E}[T] \cdot \mathbf{E}[X].$$

Proof

For $i \ge 1$, let

$$Z_i = \sum_{j=1}^i (X_j - \mathbf{E}[X]).$$

The sequence $Z_1, Z_2, ...$ is a martingale with respect to $X_1, X_2, ...$, and $E[Z_1] = 0$. Now, $E[T] < \infty$ and

Wald's Equation

Theorem

Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution *X*. Let *T* be a stopping time for this sequence. If *T* and *X* have bounded expectation, then

$$\mathbf{E}\left[\sum_{i=1}^{T} X_i\right] = \mathbf{E}[T] \cdot \mathbf{E}[X].$$

Proof

For $i \ge 1$, let

$$Z_i = \sum_{j=1}^i (X_j - \mathbf{E}[X]).$$

The sequence $Z_1, Z_2, ...$ is a martingale with respect to $X_1, X_2, ...$, and $\mathbf{E}[Z_1] = 0$. Now, $\mathbf{E}[T] < \infty$ and

$$\mathbf{E}[|Z_{i+1} - Z_i| \mid X_1, \dots, X_i] = \mathbf{E}[|X_{i+1} - E[X]|] \le 2\mathbf{E}[X].$$

Wald's Equation

Wald's Equation

Proof

Wald's Equation

Proof

Hence on applying martingale stopping theorem

$$\mathbf{E}[Z_T] = \mathbf{E}[Z_1] = 0.$$

Wald's Equation

Proof

Hence on applying martingale stopping theorem

$$\mathbf{E}[Z_T] = \mathbf{E}[Z_1] = \mathbf{0}.$$

Wald's Equation

Proof

Hence on applying martingale stopping theorem

$$\mathbf{E}[Z_T] = \mathbf{E}[Z_1] = \mathbf{0}.$$

$$\mathbf{E}[Z_T] = \mathbf{E}\left[\sum_{j=1}^T (X_j - \mathbf{E}[X])\right]$$

Wald's Equation

Proof

Hence on applying martingale stopping theorem

$$\mathbf{E}[Z_T] = \mathbf{E}[Z_1] = \mathbf{0}.$$

$$\mathbf{E}[Z_T] = \mathbf{E}\left[\sum_{j=1}^T (X_j - \mathbf{E}[X])\right]$$
$$= \mathbf{E}\left[\left(\sum_{j=1}^T X_j\right) - T \cdot \mathbf{E}[X]\right]$$

Wald's Equation

Proof

Hence on applying martingale stopping theorem

$$\mathbf{E}[Z_T] = \mathbf{E}[Z_1] = 0.$$

$$\mathbf{E}[Z_T] = \mathbf{E}\left[\sum_{j=1}^T (X_j - \mathbf{E}[X])\right]$$
$$= \mathbf{E}\left[\left(\sum_{j=1}^T X_j\right) - T \cdot \mathbf{E}[X]\right]$$
$$= \mathbf{E}\left[\left(\sum_{j=1}^T X_j\right)\right] - \mathbf{E}[T] \cdot \mathbf{E}[X]$$

Wald's Equation

Proof

Hence on applying martingale stopping theorem

$$\mathbf{E}[Z_T] = \mathbf{E}[Z_1] = \mathbf{0}.$$

$$\mathbf{E}[Z_T] = \mathbf{E}\left[\sum_{j=1}^T (X_j - \mathbf{E}[X])\right]$$
$$= \mathbf{E}\left[\left(\sum_{j=1}^T X_j\right) - T \cdot \mathbf{E}[X]\right]$$
$$= \mathbf{E}\left[\left(\sum_{j=1}^T X_j\right)\right] - \mathbf{E}[T] \cdot \mathbf{E}[X]$$
$$= 0, \text{ which gives the result.}$$

Wald's Equation

Wald's Equation

Definition

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable *T* is a stopping time for the sequence if the event T = n is independent of $Z_{n+1}, Z_{n+2,\ldots}$

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable *T* is a stopping time for the sequence if the event T = n is independent of $Z_{n+1}, Z_{n+2,\ldots}$

Example

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable *T* is a stopping time for the sequence if the event T = n is independent of $Z_{n+1}, Z_{n+2,\ldots}$

Example

Consider a gambling game in which a player first rolls one standard die.

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable *T* is a stopping time for the sequence if the event T = n is independent of $Z_{n+1}, Z_{n+2,\ldots}$

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice.

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable *T* is a stopping time for the sequence if the event T = n is independent of $Z_{n+1}, Z_{n+2,\ldots}$

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?
Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable *T* is a stopping time for the sequence if the event T = n is independent of $Z_{n+1}, Z_{n+2,\ldots}$

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?

Solution

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable *T* is a stopping time for the sequence if the event T = n is independent of $Z_{n+1}, Z_{n+2,\ldots}$

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?

Solution

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable *T* is a stopping time for the sequence if the event T = n is independent of $Z_{n+1}, Z_{n+2,\ldots}$

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?

Solution

$$\mathbf{E}[Z] = \mathbf{E}\left[\sum_{i=1}^{X} Y_i\right] =$$

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable *T* is a stopping time for the sequence if the event T = n is independent of $Z_{n+1}, Z_{n+2,\ldots}$

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?

Solution

$$\mathbf{E}[Z] = \mathbf{E}\left[\sum_{i=1}^{X} Y_i\right] = \mathbf{E}[X] \cdot \mathbf{E}[Y_i] =$$

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable *T* is a stopping time for the sequence if the event T = n is independent of $Z_{n+1}, Z_{n+2,\ldots}$

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?

Solution

$$\mathbf{E}[Z] = \mathbf{E}\left[\sum_{i=1}^{X} Y_i\right] = \mathbf{E}[X] \cdot \mathbf{E}[Y_i] = \left(\frac{7}{2}\right)^2 = \frac{49}{4}$$

Wald's Equation

Wald's Equation

Las Vegas algorithms

Wald's Equation

Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times.

Wald's Equation

Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer.

Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct;

Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and

Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Application

Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Application

Wald's equation can be used in the analysis of Las Vegas algorithms.

Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Application

Wald's equation can be used in the analysis of Las Vegas algorithms. If N is the number of trials until a correct answer is found and X_i is the running time for the two subroutines on the *i*th trial, then according to Wald's equation

Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Application

Wald's equation can be used in the analysis of Las Vegas algorithms. If N is the number of trials until a correct answer is found and X_i is the running time for the two subroutines on the *i*th trial, then according to Wald's equation

$$\mathbf{E}\left[\sum_{i=1}^{N} X_i\right] = \mathbf{E}[N] \cdot \mathbf{E}[X].$$

Wald's Equation

Wald's Equation

Example

Wald's Equation

Example

Consider a set of *n* servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel.

Wald's Equation

Example

Consider a set of *n* servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted.

Example

Consider a set of *n* servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted. At each time slot, if the server's buffer is not empty then with probability 1/n it attempts to send the first packet in its buffer.

Example

Consider a set of *n* servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted. At each time slot, if the server's buffer is not empty then with probability 1/n it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Example

Consider a set of *n* servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted. At each time slot, if the server's buffer is not empty then with probability 1/n it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Example

Consider a set of *n* servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted. At each time slot, if the server's buffer is not empty then with probability 1/n it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Let *N* be the number of packets successfully sent until each server has successfully sent at least one packet.

Example

Consider a set of *n* servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted. At each time slot, if the server's buffer is not empty then with probability 1/n it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Let *N* be the number of packets successfully sent until each server has successfully sent at least one packet. Let t_i be the time slot in which the *i*th successfully transmitted packet is sent,

Example

Consider a set of *n* servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted. At each time slot, if the server's buffer is not empty then with probability 1/n it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Let *N* be the number of packets successfully sent until each server has successfully sent at least one packet. Let t_i be the time slot in which the i^{th} successfully transmitted packet is sent, starting from time $t_0 = 0$, and let $r_i = t_i - t_{i-1}$ and

Example

Consider a set of *n* servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted. At each time slot, if the server's buffer is not empty then with probability 1/n it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Let *N* be the number of packets successfully sent until each server has successfully sent at least one packet. Let t_i be the time slot in which the i^{th} successfully transmitted packet is sent, starting from time $t_0 = 0$, and let $r_i = t_i - t_{i-1}$ and let *T* be the number of time slots until each server successfully sends at least one packet, then

Example

Consider a set of *n* servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted. At each time slot, if the server's buffer is not empty then with probability 1/n it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Let *N* be the number of packets successfully sent until each server has successfully sent at least one packet. Let t_i be the time slot in which the i^{th} successfully transmitted packet is sent, starting from time $t_0 = 0$, and let $r_i = t_i - t_{i-1}$ and let *T* be the number of time slots until each server successfully sends at least one packet, then

$$T=\sum_{i=1}^N r_i$$

Wald's Equation

Wald's Equation

Solution

Nitesh Randomized Algorithms

Wald's Equation

Solution

The probability that a packet is successfully sent in a given time slot is

Solution

The probability that a packet is successfully sent in a given time slot is

$$p = {\binom{n}{1}} \cdot {\binom{1}{n}} \cdot {\binom{1}{1-\frac{1}{n}}}^{n-1} \approx e^{-1}$$

Solution

The probability that a packet is successfully sent in a given time slot is

$$\rho = \binom{n}{1} \cdot \left(\frac{1}{n}\right) \cdot \left(1 - \frac{1}{n}\right)^{n-1} \approx e^{-1}$$

The r_i each have a geometric distribution with parameter p, so $\mathbf{E}[r_i] =$

Solution

The probability that a packet is successfully sent in a given time slot is

$$p = \binom{n}{1} \cdot \left(\frac{1}{n}\right) \cdot \left(1 - \frac{1}{n}\right)^{n-1} \approx e^{-1}$$

The r_i each have a geometric distribution with parameter p, so $\mathbf{E}[r_i] = 1/p \approx e$.

Solution

The probability that a packet is successfully sent in a given time slot is

$$\rho = {\binom{n}{1}} \cdot {\binom{1}{n}} \cdot {\binom{1}{1-\frac{1}{n}}}^{n-1} \approx e^{-1}$$

The r_i each have a geometric distribution with parameter p, so $\mathbf{E}[r_i] = 1/p \approx e$. Given that a packet was successfully sent at a given time slot, the sender of that packet is uniformly distributed among the *n* servers, independent of previous steps.

Solution

The probability that a packet is successfully sent in a given time slot is

$$\rho = {\binom{n}{1}} \cdot {\binom{1}{n}} \cdot {\binom{1}{1-\frac{1}{n}}}^{n-1} \approx e^{-1}$$

The r_i each have a geometric distribution with parameter p, so $\mathbf{E}[r_i] = 1/p \approx e$. Given that a packet was successfully sent at a given time slot, the sender of that packet is uniformly distributed among the *n* servers, independent of previous steps. From Coupon collector's problem, we deduce that
Wald's Equation

Solution

The probability that a packet is successfully sent in a given time slot is

$$p = \binom{n}{1} \cdot \left(\frac{1}{n}\right) \cdot \left(1 - \frac{1}{n}\right)^{n-1} \approx e^{-1}$$

The r_i each have a geometric distribution with parameter p, so $\mathbf{E}[r_i] = 1/p \approx e$. Given that a packet was successfully sent at a given time slot, the sender of that packet is uniformly distributed among the *n* servers, independent of previous steps. From Coupon collector's problem, we deduce that

$$\mathbf{E}[N] = n \cdot H_n = n \cdot \ln n + O(n).$$

Wald's Equation

Solution

The probability that a packet is successfully sent in a given time slot is

$$p = \binom{n}{1} \cdot \left(\frac{1}{n}\right) \cdot \left(1 - \frac{1}{n}\right)^{n-1} \approx e^{-1}$$

The r_i each have a geometric distribution with parameter p, so $\mathbf{E}[r_i] = 1/p \approx e$. Given that a packet was successfully sent at a given time slot, the sender of that packet is uniformly distributed among the *n* servers, independent of previous steps. From Coupon collector's problem, we deduce that

$$\mathbf{E}[N] = n \cdot H_n = n \cdot \ln n + O(n).$$

Wald's Equation

Wald's Equation

Solution

Nitesh Randomized Algorithms

Wald's Equation

Solution

Wald's Equation

Solution

$$\mathbf{E}[T] = \mathbf{E}\left[\sum_{i=1}^{N} r_i\right]$$

Wald's Equation

Solution

$$\mathbf{E}[T] = \mathbf{E}\left[\sum_{i=1}^{N} r_i\right]$$
$$= \mathbf{E}[N] \cdot \mathbf{E}[r_i]$$

Wald's Equation

Solution

$$\mathbf{E}[T] = \mathbf{E}\left[\sum_{i=1}^{N} r_i\right]$$
$$= \mathbf{E}[N] \cdot \mathbf{E}[r_i]$$
$$= \frac{n \cdot H_n}{p}$$

Wald's Equation

Solution

$$\mathbf{E}[T] = \mathbf{E}\left[\sum_{i=1}^{N} r_i\right]$$
$$= \mathbf{E}[N] \cdot \mathbf{E}[r_i]$$
$$= \frac{n \cdot H_n}{p}$$
$$\approx \mathbf{e} \cdot n \cdot \ln n$$