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We can apply a Chernoff-like bound to Martingale even when the variables are not
independent. This bound is referred to as the Azuma-Hoeffding Inequality.
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We can apply a Chernoff-like bound to Martingale even when the variables are not
independent. This bound is referred to as the Azuma-Hoeffding Inequality.

Azuma-Hoeffding Inequality Theorem

If X0, . . . , Xn is a martingale such that |Xk − Xk−1| ≤ ck then, for all t > 0 and λ > 0

P(|Xt − X0| ≥ λ) ≤ 2 · e
−

λ
2

2·
Pt

k=1
c2
k .
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Proof.

Let Yi = Xi − Xi−1 for i = 1, . . . , t . Thus |Yi | ≤ ci .
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Proof.

Let Yi = Xi − Xi−1 for i = 1, . . . , t . Thus |Yi | ≤ ci . Since X0, . . . , Xn is a martingale we
have that

E[Yi |X0, . . . , Xi−1] = E[Xi − Xi−1 |X0, . . . , Xi−1] = E[Xi |X0, . . . , Xi−1] − Xi−1 = 0.
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Proof.

Let Yi = Xi − Xi−1 for i = 1, . . . , t . Thus |Yi | ≤ ci . Since X0, . . . , Xn is a martingale we
have that

E[Yi |X0, . . . , Xi−1] = E[Xi − Xi−1 |X0, . . . , Xi−1] = E[Xi |X0, . . . , Xi−1] − Xi−1 = 0.

We have that

Yi = −ci ·
1 − Yi

ci

2
+ ci ·

1 +
Yi
ci

2
.
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Proof.

Let Yi = Xi − Xi−1 for i = 1, . . . , t . Thus |Yi | ≤ ci . Since X0, . . . , Xn is a martingale we
have that

E[Yi |X0, . . . , Xi−1] = E[Xi − Xi−1 |X0, . . . , Xi−1] = E[Xi |X0, . . . , Xi−1] − Xi−1 = 0.

We have that

Yi = −ci ·
1 − Yi

ci

2
+ ci ·

1 +
Yi
ci

2
.

Because the function eα·x is convex it follows that

eα·Yi ≤
1 − Yi

ci

2
· e−α·ci +

1 +
Yi
ci

2
· eα·ci =

eα·ci + e−α·ci

2
+

Yi

2 · ci
· (eα·ci − e−α·ci ).
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Proof.

As shown previously E[Yi |X0, . . . , Xi−1] = 0, thus

E[eα·Yi |X0, . . . , xi−1] = E
»

eα·ci + e−α·ci

2
+

Yi

2 · ci
· (eα·ci − e−α·ci ) |X0, .., Xi−1

–

=
eα·ci + e−α·ci

2
≤ e−

(α·ci )
2

2 .
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Proof.

As shown previously E[Yi |X0, . . . , Xi−1] = 0, thus

E[eα·Yi |X0, . . . , xi−1] = E
»

eα·ci + e−α·ci

2
+

Yi

2 · ci
· (eα·ci − e−α·ci ) |X0, .., Xi−1

–

=
eα·ci + e−α·ci

2
≤ e−

(α·ci )
2

2 .

We have that

E
h

eα·(Xt−X0)
i

= E

2

4

t−1
Y

i=1

eα·Yi

3

5 = E

2

4

t−2
Y

i=1

eα·Yi

3

5 · E
h

eα·Yi−1 |X0, . . . , xi−1

i

≤ E

2

4

t−2
Y

i=1

eα·Yi

3

5 · e
(α·ci )

2

2 ≤ e
α

2
·

Pt
k=1 c2

i
2 .
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Proof.

Therefore, we have that

P(Xt − X0 ≥ λ) = P(eα·(Xt−X0) ≥ eα·λ) ≤
E

ˆ

eα·(Xt−X0)
˜

eα·λ
≤ e

α
2
·

Pt
k=1 c2

i
2 −α·λ.
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Proof.

Therefore, we have that

P(Xt − X0 ≥ λ) = P(eα·(Xt−X0) ≥ eα·λ) ≤
E

ˆ

eα·(Xt−X0)
˜

eα·λ
≤ e

α
2
·

Pt
k=1 c2

i
2 −α·λ.

By letting α = λ
Pt

k=1 c2
i

we get that

P(Xt − X0 ≥ λ) ≤ e
−

λ
2

2·
Pt

k=1
c2
k .
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Proof.

Therefore, we have that

P(Xt − X0 ≥ λ) = P(eα·(Xt−X0) ≥ eα·λ) ≤
E

ˆ

eα·(Xt−X0)
˜

eα·λ
≤ e

α
2
·

Pt
k=1 c2

i
2 −α·λ.

By letting α = λ
Pt

k=1 c2
i

we get that

P(Xt − X0 ≥ λ) ≤ e
−

λ
2

2·
Pt

k=1
c2
k .

We can similarly construct the same bound on P(Xt − X0 ≤ −λ).
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Corollary

If X0, . . . , Xn is a martingale such that |Xk − Xk−1| ≤ c then, for all t ≥ 1 and λ > 0

P(|Xt − X0| ≥ λ · c ·
√

t) ≤ 2 · e−
λ

2
2 .
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Corollary

If X0, . . . , Xn is a martingale such that |Xk − Xk−1| ≤ c then, for all t ≥ 1 and λ > 0

P(|Xt − X0| ≥ λ · c ·
√

t) ≤ 2 · e−
λ

2
2 .

Azuma-Hoeffding Inequality Theorem

If X0, . . . , Xn is a martingale such that Bk ≤ Xk − Xk−1 ≤ Bk + dk for some constants
dk and random variables Bk then, for all t ≥ 0 and λ > 0

P(|Xt − X0| ≥ λ) ≤ 2 · e
−

2·λ2
Pt

k=1
d2
k .
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Lipschitz condition

A function f (X̄ ) = f (X1, X2, . . . , Xn) satisfies the Lipschitz condition with bound c if for
any i and any x1, . . . , xn and yi ,

|f (x1, . . . , xi , . . . , xn) − f (x1 , . . . , xi−1, yi , xi+1, . . . , xn)| ≤ c.
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Lipschitz condition

A function f (X̄ ) = f (X1, X2, . . . , Xn) satisfies the Lipschitz condition with bound c if for
any i and any x1, . . . , xn and yi ,

|f (x1, . . . , xi , . . . , xn) − f (x1 , . . . , xi−1, yi , xi+1, . . . , xn)| ≤ c.

Theorem

Let f be a functions satisfying the Lipschitz condition with bound c and let Z0, . . . be the
Doob martingale defined by Z0 = E[f (X1, . . . , Xn)] and
Zk = E[f (X1, . . . , Xn) |X1, . . . , Xk ]. We have that for each k there exists a random
variable Bk depending on Z0, . . . , Zk−1 such that Bk ≤ Zk − Zk−1 ≤ Bk + c.
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Balls and Bins Example

Suppose that we are throwing m balls independently and uniformly at random into n
bins. Let Xi denote the bin into which the i th ball falls and let F denote the number of
empty bins after all m balls are thrown.
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Balls and Bins Example

Suppose that we are throwing m balls independently and uniformly at random into n
bins. Let Xi denote the bin into which the i th ball falls and let F denote the number of
empty bins after all m balls are thrown. We will use the Azuma-Hoeffding Inequality to
determine the tightness of the distribution of F .
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Balls and Bins Example

Suppose that we are throwing m balls independently and uniformly at random into n
bins. Let Xi denote the bin into which the i th ball falls and let F denote the number of
empty bins after all m balls are thrown. We will use the Azuma-Hoeffding Inequality to
determine the tightness of the distribution of F .
We have that the sequence Zi = E[F |X1, . . . , Xi ] is Doob martingale.
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Balls and Bins Example

Suppose that we are throwing m balls independently and uniformly at random into n
bins. Let Xi denote the bin into which the i th ball falls and let F denote the number of
empty bins after all m balls are thrown. We will use the Azuma-Hoeffding Inequality to
determine the tightness of the distribution of F .
We have that the sequence Zi = E[F |X1, . . . , Xi ] is Doob martingale.
Since F depends on X1, . . . , Xm, there is a function f such that F = f (X1, . . . , Xm).
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Balls and Bins

Balls and Bins Example

Suppose that we are throwing m balls independently and uniformly at random into n
bins. Let Xi denote the bin into which the i th ball falls and let F denote the number of
empty bins after all m balls are thrown. We will use the Azuma-Hoeffding Inequality to
determine the tightness of the distribution of F .
We have that the sequence Zi = E[F |X1, . . . , Xi ] is Doob martingale.
Since F depends on X1, . . . , Xm, there is a function f such that F = f (X1, . . . , Xm).
Because changing which bin a single ball lands in changes F by at most 1, we have
that f satisfies the Lipschitz condition with bound 1.
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Balls and Bins Example

Suppose that we are throwing m balls independently and uniformly at random into n
bins. Let Xi denote the bin into which the i th ball falls and let F denote the number of
empty bins after all m balls are thrown. We will use the Azuma-Hoeffding Inequality to
determine the tightness of the distribution of F .
We have that the sequence Zi = E[F |X1, . . . , Xi ] is Doob martingale.
Since F depends on X1, . . . , Xm, there is a function f such that F = f (X1, . . . , Xm).
Because changing which bin a single ball lands in changes F by at most 1, we have
that f satisfies the Lipschitz condition with bound 1.
Thus applying the second Azuma-Hoeffding Inequality we get that

P(|F − E[F ]| ≥ ǫ) = P(|Zm − Z0| ≥ ǫ) ≤ 2 · e
−

2·ǫ2
Pm

k=1 c2
= e−

2·ǫ2
m .
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Chromatic Number Example

Let G be a random graph in Gn,p′ . The Chromatic number, χ(G), is the minimum
number of colors needed to color all the verticies of a graph so that no two adjacent
verticies are the same color.
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Chromatic Number Example

Let G be a random graph in Gn,p′ . The Chromatic number, χ(G), is the minimum
number of colors needed to color all the verticies of a graph so that no two adjacent
verticies are the same color. We will use the Azuma-Hoeffding Inequality to determine
the tightness of the distribution of χ(G).
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Chromatic Number Example

Let G be a random graph in Gn,p′ . The Chromatic number, χ(G), is the minimum
number of colors needed to color all the verticies of a graph so that no two adjacent
verticies are the same color. We will use the Azuma-Hoeffding Inequality to determine
the tightness of the distribution of χ(G).
Let Z be the vertex exposure martingale for G. Thus if Gi is subgraph of G induced by
the verticies 1, . . . , i , we have that Z0 = E[χ(G)] and Zi = E[χ(G) |G1, . . . , Gi ].
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Chromatic Number Example

Let G be a random graph in Gn,p′ . The Chromatic number, χ(G), is the minimum
number of colors needed to color all the verticies of a graph so that no two adjacent
verticies are the same color. We will use the Azuma-Hoeffding Inequality to determine
the tightness of the distribution of χ(G).
Let Z be the vertex exposure martingale for G. Thus if Gi is subgraph of G induced by
the verticies 1, . . . , i , we have that Z0 = E[χ(G)] and Zi = E[χ(G) |G1, . . . , Gi ].
Introducing a vertex into the graph increases he chromatic number by at most 1 so we
have that for each i , 0 ≤ Zi − Zi−1 ≤ 1.
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Chromatic Number Example

Let G be a random graph in Gn,p′ . The Chromatic number, χ(G), is the minimum
number of colors needed to color all the verticies of a graph so that no two adjacent
verticies are the same color. We will use the Azuma-Hoeffding Inequality to determine
the tightness of the distribution of χ(G).
Let Z be the vertex exposure martingale for G. Thus if Gi is subgraph of G induced by
the verticies 1, . . . , i , we have that Z0 = E[χ(G)] and Zi = E[χ(G) |G1, . . . , Gi ].
Introducing a vertex into the graph increases he chromatic number by at most 1 so we
have that for each i , 0 ≤ Zi − Zi−1 ≤ 1. Thus, we can apply the second
Azuma-Hoeffding Inequality to get that

P(|χ(G) − E[χ(G)]| ≥ λ ·
√

n) ≤ 2 · e−2·λ2
.
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