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We can apply a Chernoff-like bound to Martingale even when the variables are not
independent. This bound is referred to as the Azuma-Hoeffding Inequality. J
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Azuma-Hoeffding Inequality Theorem

If Xo, - . ., Xn is @ martingale such that Xy — Xx_1| < c then, forallt >0and A > 0
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LetY; = X —Xi,]_fOI'i =1,...,t. Thus |Y|| < Gj.
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Proof.

LetY; =X — Xj_1 fori =1,...,t. Thus |Y;| < ¢;. Since Xo, ..., Xn is a martingale we
have that

E[Yi[Xo,.- -, Xi—1] = E[Xi = Xi_1|Xo, ..., Xi—1] = E[X; [ X0, ..., Xi—1] = Xj—1 = 0.

Wojciechowski



Proof.
LetY; =X — Xj_1 fori =1,...,t. Thus |Y;| < ¢;. Since Xo, ..., Xn is a martingale we
have that

E[Yi[Xo,.- -, Xi—1] = E[Xi = Xi_1|Xo, ..., Xi—1] = E[X; [ X0, ..., Xi—1] = Xj—1 = 0.

We have that
1-% 1+ 5

Wojciechowski



Proof.

LetY; =X — Xj_y fori =1,...,t. Thus |Y;| < ¢j. Since Xo, .
have that

E[Yi|Xo,.- -, Xi—1] = E[Xi = Xi_1 | Xo, - - -, Xi—1] = E[X; | Xo,

We have that

.., Xn is a martingale we

s Xiz1] = Xio1 = 0.
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As shown previously E[Y; | Xo, ..., Xj_1] =0, thus
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As shown previously E[Y; | Xo, ..., Xj_1] =0, thus
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Therefore, we have that

E [em(xt—xo)] e o2 Zk . | o

P(Xi —Xo > A) =P(en (1 770) > o) < ——
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Therefore, we have that

E [em(xt—xo)] e o2 Zk . | o

P(Xi —Xo > A) =P(en (1 770) > o) < ——

By letting o = -2 We get that
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Therefore, we have that
E [ex (Xt—Xo) o
P(X = Xo > A) = P(e*t%0) > e2) < % <ot
By letting o = ﬁ we get that
Zkfl i
g
P(X —Xo>X) <e T,
We can similarly construct the same bound on P(X; — Xg < —X). O
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If Xo, . . ., Xn is @ martingale such that | Xy — Xx_1| < c then, forallt > 1and A > 0

2
P(X —Xo| > A-c- Vi) <2.e %.
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If Xo, . . ., Xn is @ martingale such that | Xy — Xx_1| < c then, forallt > 1and A > 0

2
P(X —Xo| > A-c- Vi) <2.e %.

Azuma-Hoeffding Inequality Theorem

If Xo, ..., Xn is a martingale such that By < Xy — Xx_1 < By + di for some constants
dx and random variables By then, forallt > 0and A > 0
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Lipschitz condition

A function f(X) = f(Xg, Xz, . . . , Xn) satisfies the Lipschitz condition with bound c if for
any i and any Xg,...,Xn andyj,

[F(X1, o5 Xiso oy Xn) — F(Xa, -0 o5 Xiz1, Yis Xiga, - - -, Xn)| < C.

Wojciechowski



Balls and Bins
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[F(X1, o5 Xiso oy Xn) — F(Xa, -0 o5 Xiz1, Yis Xiga, - - -, Xn)| < C.

| \

Theorem

Let f be a functions satisfying the Lipschitz condition with bound ¢ and let Zy, . . . be the
Doob martingale defined by Zo = E[f(X4, ..., Xn)] and

Z = E[f(X1,...,Xn) | X1,...,Xk]. We have that for each k there exists a random
variable By depending on Zy, ...,Zx_1 suchthat By <Z, —Zy 1 < By +cC.
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Balls and Bins

Balls and Bins Example

Suppose that we are throwing m balls independently and uniformly at random into n
bins. Let X; denote the bin into which the i" ball falls and let F denote the number of
empty bins after all m balls are thrown.
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determine the tightness of the distribution of F.
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Since F depends on Xy, . .., Xm, there is a function f such that F = f(Xg, ..., Xm).
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Because changing which bin a single ball lands in changes F by at most 1, we have
that f satisfies the Lipschitz condition with bound 1.
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Balls and Bins Example

Suppose that we are throwing m balls independently and uniformly at random into n
bins. Let X; denote the bin into which the i" ball falls and let F denote the number of
empty bins after all m balls are thrown. We will use the Azuma-Hoeffding Inequality to
determine the tightness of the distribution of F.

We have that the sequence Z; = E[F | Xy, . .., Xj] is Doob martingale.

Since F depends on Xy, . .., Xm, there is a function f such that F = f(Xg, ..., Xm).
Because changing which bin a single ball lands in changes F by at most 1, we have
that f satisfies the Lipschitz condition with bound 1.

Thus applying the second Azuma-Hoeffding Inequality we get that

2
2.
< 2.2

P(F —E[F]| > ) =P(iZn - Zo| > ) <2-e a® =e~ .
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Chromatic Number Example

Let G be a random graph in G, ,». The Chromatic number, x(G), is the minimum
number of colors needed to color all the verticies of a graph so that no two adjacent
verticies are the same color.
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Let G be a random graph in G, ,». The Chromatic number, x(G), is the minimum
number of colors needed to color all the verticies of a graph so that no two adjacent
verticies are the same color. We will use the Azuma-Hoeffding Inequality to determine
the tightness of the distribution of x(G).

Let Z be the vertex exposure martingale for G. Thus if G; is subgraph of G induced by
the verticies 1,. .., i, we have that Zo = E[x(G)] and Z; = E[x(G) | G, . .., Gj].
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Chromatic Number Example

Let G be a random graph in G, ,». The Chromatic number, x(G), is the minimum
number of colors needed to color all the verticies of a graph so that no two adjacent
verticies are the same color. We will use the Azuma-Hoeffding Inequality to determine
the tightness of the distribution of x(G).

Let Z be the vertex exposure martingale for G. Thus if G; is subgraph of G induced by
the verticies 1,. .., i, we have that Zo = E[x(G)] and Z; = E[x(G) | G, . .., Gj].
Introducing a vertex into the graph increases he chromatic number by at most 1 so we
have that for eachi, 0 < 7; — 7;_; < 1.
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Chromatic Number Example

Let G be a random graph in G, ,». The Chromatic number, x(G), is the minimum
number of colors needed to color all the verticies of a graph so that no two adjacent
verticies are the same color. We will use the Azuma-Hoeffding Inequality to determine
the tightness of the distribution of x(G).

Let Z be the vertex exposure martingale for G. Thus if G; is subgraph of G induced by
the verticies 1,. .., i, we have that Zo = E[x(G)] and Z; = E[x(G) | G, . .., Gj].
Introducing a vertex into the graph increases he chromatic number by at most 1 so we
have that for each i, 0 < Z; — Zj_, < 1. Thus, we can apply the second
Azuma-Hoeffding Inequality to get that

P(Ix(G) — E[(G)]| > A- vh) < 2. e~V
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