Outline

Martingales

Piotr Wojciechowski¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

28 April, 2012

Outline

2 Applications

- General Applications
- Balls and Bins
- Chromatic Number

Outline

- General Applications
- Balls and Bins
- Chromatic Number

We can apply a Chernoff-like bound to Martingale even when the variables are not independent. This bound is referred to as the Azuma-Hoeffding Inequality.

We can apply a Chernoff-like bound to Martingale even when the variables are not independent. This bound is referred to as the Azuma-Hoeffding Inequality.

Azuma-Hoeffding Inequality Theorem

If X_0, \ldots, X_n is a martingale such that $|X_k - X_{k-1}| \le c_k$ then, for all t > 0 and $\lambda > 0$

$$P(|X_t - X_0| \ge \lambda) \le 2 \cdot e^{-\frac{\lambda^2}{2 \cdot \sum_{k=1}^t c_k^2}}.$$

Let $Y_i = X_i - X_{i-1}$ for i = 1, ..., t. Thus $|Y_i| \le c_i$.

Let $Y_i = X_i - X_{i-1}$ for i = 1, ..., t. Thus $|Y_i| \le c_i$. Since $X_0, ..., X_n$ is a martingale we have that

 $E[Y_i | X_0, \dots, X_{i-1}] = E[X_i - X_{i-1} | X_0, \dots, X_{i-1}] = E[X_i | X_0, \dots, X_{i-1}] - X_{i-1} = 0.$

Let $Y_i = X_i - X_{i-1}$ for i = 1, ..., t. Thus $|Y_i| \le c_i$. Since $X_0, ..., X_n$ is a martingale we have that

 $E[Y_i | X_0, \dots, X_{i-1}] = E[X_i - X_{i-1} | X_0, \dots, X_{i-1}] = E[X_i | X_0, \dots, X_{i-1}] - X_{i-1} = 0.$

We have that

$$Y_i = -c_i \cdot \frac{1 - \frac{Y_i}{c_i}}{2} + c_i \cdot \frac{1 + \frac{Y_i}{c_i}}{2}.$$

Let $Y_i = X_i - X_{i-1}$ for i = 1, ..., t. Thus $|Y_i| \le c_i$. Since $X_0, ..., X_n$ is a martingale we have that

 $E[Y_i | X_0, \dots, X_{i-1}] = E[X_i - X_{i-1} | X_0, \dots, X_{i-1}] = E[X_i | X_0, \dots, X_{i-1}] - X_{i-1} = 0.$

We have that

$$Y_i = -c_i \cdot \frac{1 - \frac{Y_i}{c_i}}{2} + c_i \cdot \frac{1 + \frac{Y_i}{c_i}}{2}.$$

Because the function $e^{\alpha \cdot x}$ is convex it follows that

$$e^{\alpha \cdot Y_{i}} \leq \frac{1 - \frac{Y_{i}}{c_{i}}}{2} \cdot e^{-\alpha \cdot c_{i}} + \frac{1 + \frac{Y_{i}}{c_{i}}}{2} \cdot e^{\alpha \cdot c_{i}} = \frac{e^{\alpha \cdot c_{i}} + e^{-\alpha \cdot c_{i}}}{2} + \frac{Y_{i}}{2 \cdot c_{i}} \cdot (e^{\alpha \cdot c_{i}} - e^{-\alpha \cdot c_{i}}).$$

As shown previously $E[Y_i | X_0, \dots, X_{i-1}] = 0$, thus

$$\begin{split} E[e^{\alpha \cdot Y_i} \mid X_0, \dots, x_{i-1}] &= E\left[\frac{e^{\alpha \cdot c_i} + e^{-\alpha \cdot c_i}}{2} + \frac{Y_i}{2 \cdot c_i} \cdot \left(e^{\alpha \cdot c_i} - e^{-\alpha \cdot c_i}\right) \mid X_0, \dots, X_{i-1}\right] \\ &= \frac{e^{\alpha \cdot c_i} + e^{-\alpha \cdot c_i}}{2} \le e^{-\frac{(\alpha \cdot c_i)^2}{2}}. \end{split}$$

As shown previously $E[Y_i | X_0, \dots, X_{i-1}] = 0$, thus

$$\begin{split} E[e^{\alpha \cdot Y_i} \mid X_0, \dots, x_{i-1}] &= E\left[\frac{e^{\alpha \cdot c_i} + e^{-\alpha \cdot c_i}}{2} + \frac{Y_i}{2 \cdot c_i} \cdot \left(e^{\alpha \cdot c_i} - e^{-\alpha \cdot c_i}\right) \mid X_0, \dots, X_{i-1}\right] \\ &= \frac{e^{\alpha \cdot c_i} + e^{-\alpha \cdot c_i}}{2} \le e^{-\frac{(\alpha \cdot c_i)^2}{2}}. \end{split}$$

We have that

$$E\left[e^{\alpha \cdot (X_{t}-X_{0})}\right] = E\left[\prod_{i=1}^{t-1} e^{\alpha \cdot Y_{i}}\right] = E\left[\prod_{i=1}^{t-2} e^{\alpha \cdot Y_{i}}\right] \cdot E\left[e^{\alpha \cdot Y_{i-1}} \mid X_{0}, \dots, X_{i-1}\right]$$
$$\leq E\left[\prod_{i=1}^{t-2} e^{\alpha \cdot Y_{i}}\right] \cdot e^{\frac{(\alpha \cdot c_{i})^{2}}{2}} \leq e^{\frac{\alpha^{2} \cdot \sum_{k=1}^{t} c_{i}^{2}}{2}}.$$

Therefore, we have that

$$P(X_t - X_0 \ge \lambda) = P(e^{\alpha \cdot (X_t - X_0)} \ge e^{\alpha \cdot \lambda}) \le \frac{E\left[e^{\alpha \cdot (X_t - X_0)}\right]}{e^{\alpha \cdot \lambda}} \le e^{\frac{\alpha^2 \cdot \sum_{k=1}^t c_i^2}{2} - \alpha \cdot \lambda}.$$

Therefore, we have that

$$P(X_t - X_0 \ge \lambda) = P(e^{\alpha \cdot (X_t - X_0)} \ge e^{\alpha \cdot \lambda}) \le \frac{E\left[e^{\alpha \cdot (X_t - X_0)}\right]}{e^{\alpha \cdot \lambda}} \le e^{\frac{\alpha^2 \cdot \sum_{k=1}^t c_i^2}{2} - \alpha \cdot \lambda}.$$

By letting $\alpha = \frac{\lambda}{\sum_{k=1}^{l} c_{i}^{2}}$ we get that $P(X_{t} - X_{0} \ge \lambda) \le e^{-\frac{\lambda^{2}}{2 \cdot \sum_{k=1}^{l} c_{k}^{2}}}.$

Therefore, we have that

$$P(X_t - X_0 \ge \lambda) = P(e^{\alpha \cdot (X_t - X_0)} \ge e^{\alpha \cdot \lambda}) \le \frac{E\left[e^{\alpha \cdot (X_t - X_0)}\right]}{e^{\alpha \cdot \lambda}} \le e^{\frac{\alpha^2 \cdot \sum_{k=1}^t c_i^2}{2} - \alpha \cdot \lambda}.$$

By letting $\alpha = \frac{\lambda}{\sum_{k=1}^{t} c_i^2}$ we get that

$$P(X_t - X_0 \geq \lambda) \leq e^{-\frac{\lambda^2}{2 \cdot \sum_{k=1}^t c_k^2}}.$$

We can similarly construct the same bound on $P(X_t - X_0 \le -\lambda)$.

Corollary

If X_0, \ldots, X_n is a martingale such that $|X_k - X_{k-1}| \le c$ then, for all $t \ge 1$ and $\lambda > 0$

$$P(|X_t - X_0| \ge \lambda \cdot c \cdot \sqrt{t}) \le 2 \cdot e^{-\frac{\lambda^2}{2}}.$$

Corollary

If X_0, \ldots, X_n is a martingale such that $|X_k - X_{k-1}| \le c$ then, for all $t \ge 1$ and $\lambda > 0$

$$P(|X_t - X_0| \ge \lambda \cdot c \cdot \sqrt{t}) \le 2 \cdot e^{-\frac{\lambda^2}{2}}.$$

Azuma-Hoeffding Inequality Theorem

If X_0, \ldots, X_n is a martingale such that $B_k \le X_k - X_{k-1} \le B_k + d_k$ for some constants d_k and random variables B_k then, for all $t \ge 0$ and $\lambda > 0$

$$P(|X_t - X_0| \geq \lambda) \leq 2 \cdot e^{-\frac{2 \cdot \lambda^2}{\sum_{k=1}^t a_k^2}}.$$

General **Balls and Bins**

Outline

2 Applications

- General Applications
- Balls and Bins
- Chromatic Number

Lipschitz condition

A function $f(\bar{X}) = f(X_1, X_2, ..., X_n)$ satisfies the *Lipschitz condition* with bound *c* if for any *i* and any $x_1, ..., x_n$ and y_i ,

 $|f(x_1,\ldots,x_i,\ldots,x_n)-f(x_1,\ldots,x_{i-1},y_i,x_{i+1},\ldots,x_n)| \leq c.$

Lipschitz condition

A function $f(\bar{X}) = f(X_1, X_2, ..., X_n)$ satisfies the *Lipschitz condition* with bound *c* if for any *i* and any $x_1, ..., x_n$ and y_i ,

$$|f(\mathbf{x}_1,\ldots,\mathbf{x}_i,\ldots,\mathbf{x}_n)-f(\mathbf{x}_1,\ldots,\mathbf{x}_{i-1},\mathbf{y}_i,\mathbf{x}_{i+1},\ldots,\mathbf{x}_n)|\leq c.$$

Theorem

Let *f* be a functions satisfying the Lipschitz condition with bound *c* and let Z_0, \ldots be the Doob martingale defined by $Z_0 = E[f(X_1, \ldots, X_n)]$ and $Z_k = E[f(X_1, \ldots, X_n) | X_1, \ldots, X_k]$. We have that for each *k* there exists a random variable B_k depending on Z_0, \ldots, Z_{k-1} such that $B_k \leq Z_k - Z_{k-1} \leq B_k + c$.

Balls and Bins

Balls and Bins Example

Suppose that we are throwing *m* balls independently and uniformly at random into *n* bins. Let X_i denote the bin into which the *i*th ball falls and let *F* denote the number of empty bins after all *m* balls are thrown.

Balls and Bins

Balls and Bins Example

Suppose that we are throwing *m* balls independently and uniformly at random into *n* bins. Let X_i denote the bin into which the *i*th ball falls and let *F* denote the number of empty bins after all *m* balls are thrown. We will use the Azuma-Hoeffding Inequality to determine the tightness of the distribution of *F*.

Balls and Bins

Balls and Bins Example

Suppose that we are throwing *m* balls independently and uniformly at random into *n* bins. Let X_i denote the bin into which the *i*th ball falls and let *F* denote the number of empty bins after all *m* balls are thrown. We will use the Azuma-Hoeffding Inequality to determine the tightness of the distribution of *F*.

We have that the sequence $Z_i = E[F | X_1, ..., X_i]$ is Doob martingale.

Balls and Bins

Balls and Bins Example

Suppose that we are throwing *m* balls independently and uniformly at random into *n* bins. Let X_i denote the bin into which the *i*th ball falls and let *F* denote the number of empty bins after all *m* balls are thrown. We will use the Azuma-Hoeffding Inequality to determine the tightness of the distribution of *F*.

We have that the sequence $Z_i = E[F | X_1, ..., X_i]$ is Doob martingale. Since *F* depends on $X_1, ..., X_m$, there is a function *f* such that $F = f(X_1, ..., X_m)$.

Balls and Bins

Balls and Bins Example

Suppose that we are throwing *m* balls independently and uniformly at random into *n* bins. Let X_i denote the bin into which the *i*th ball falls and let *F* denote the number of empty bins after all *m* balls are thrown. We will use the Azuma-Hoeffding Inequality to determine the tightness of the distribution of *F*.

We have that the sequence $Z_i = E[F | X_1, ..., X_i]$ is Doob martingale. Since *F* depends on $X_1, ..., X_m$, there is a function *f* such that $F = f(X_1, ..., X_m)$. Because changing which bin a single ball lands in changes *F* by at most 1, we have that *f* satisfies the Lipschitz condition with bound 1.

Balls and Bins

Balls and Bins Example

Suppose that we are throwing *m* balls independently and uniformly at random into *n* bins. Let X_i denote the bin into which the *i*th ball falls and let *F* denote the number of empty bins after all *m* balls are thrown. We will use the Azuma-Hoeffding Inequality to determine the tightness of the distribution of *F*.

We have that the sequence $Z_i = E[F | X_1, ..., X_i]$ is Doob martingale.

Since *F* depends on X_1, \ldots, X_m , there is a function *f* such that $F = f(X_1, \ldots, X_m)$. Because changing which bin a single ball lands in changes *F* by at most 1, we have that *f* satisfies the Lipschitz condition with bound 1.

Thus applying the second Azuma-Hoeffding Inequality we get that

$$\mathsf{P}(|\mathsf{F}-\mathsf{E}[\mathsf{F}]| \ge \epsilon) = \mathsf{P}(|Z_m - Z_0| \ge \epsilon) \le 2 \cdot e^{-\frac{2 \cdot \epsilon^2}{\sum_{k=1}^{k} c^2}} = e^{-\frac{2 \cdot \epsilon^2}{m}}.$$

Chromatic Number

Chromatic Number Example

Let *G* be a random graph in $G_{n,p'}$. The *Chromatic number*, $\chi(G)$, is the minimum number of colors needed to color all the verticies of a graph so that no two adjacent verticies are the same color.

Chromatic Number

Chromatic Number Example

Let *G* be a random graph in $G_{n,p'}$. The *Chromatic number*, $\chi(G)$, is the minimum number of colors needed to color all the verticies of a graph so that no two adjacent verticies are the same color. We will use the Azuma-Hoeffding Inequality to determine the tightness of the distribution of $\chi(G)$.

Chromatic Number

Chromatic Number Example

Let *G* be a random graph in $G_{n,p'}$. The *Chromatic number*, $\chi(G)$, is the minimum number of colors needed to color all the verticies of a graph so that no two adjacent verticies are the same color. We will use the Azuma-Hoeffding Inequality to determine the tightness of the distribution of $\chi(G)$.

Let *Z* be the vertex exposure martingale for *G*. Thus if G_i is subgraph of *G* induced by the verticies $1, \ldots, i$, we have that $Z_0 = E[\chi(G)]$ and $Z_i = E[\chi(G) | G_1, \ldots, G_i]$.

Chromatic Number Example

Let *G* be a random graph in $G_{n,p'}$. The *Chromatic number*, $\chi(G)$, is the minimum number of colors needed to color all the verticies of a graph so that no two adjacent verticies are the same color. We will use the Azuma-Hoeffding Inequality to determine the tightness of the distribution of $\chi(G)$.

Let *Z* be the vertex exposure martingale for *G*. Thus if *G_i* is subgraph of *G* induced by the verticies $1, \ldots, i$, we have that $Z_0 = E[\chi(G)]$ and $Z_i = E[\chi(G) | G_1, \ldots, G_i]$. Introducing a vertex into the graph increases he chromatic number by at most 1 so we have that for each *i*, $0 \le Z_i - Z_{i-1} \le 1$.

Chromatic Number Example

Let *G* be a random graph in $G_{n,p'}$. The *Chromatic number*, $\chi(G)$, is the minimum number of colors needed to color all the verticies of a graph so that no two adjacent verticies are the same color. We will use the Azuma-Hoeffding Inequality to determine the tightness of the distribution of $\chi(G)$.

Let *Z* be the vertex exposure martingale for *G*. Thus if *G_i* is subgraph of *G* induced by the verticies 1, ..., *i*, we have that $Z_0 = E[\chi(G)]$ and $Z_i = E[\chi(G) | G_1, ..., G_i]$. Introducing a vertex into the graph increases he chromatic number by at most 1 so we have that for each *i*, $0 \le Z_i - Z_{i-1} \le 1$. Thus, we can apply the second Azuma-Hoeffding Inequality to get that

$$P(|\chi(G) - E[\chi(G)]| \ge \lambda \cdot \sqrt{n}) \le 2 \cdot e^{-2 \cdot \lambda^2}.$$