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Main points

Probability spaces, Random Variable, Distribution of a random variable (pmf), Expected Value,
Variance, Samples of randomized algorithms.
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Tail bounds

Note

The tail bounds of a random variable X are concerned with the probability that it deviates
signficantly from its expected value E[X ] on a run of the experiment.
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Note

The tail bounds of a random variable X are concerned with the probability that it deviates
signficantly from its expected value E[X ] on a run of the experiment.

Example

Consider the experiment of tossing a fair coin n times.
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Tail bounds

Note

The tail bounds of a random variable X are concerned with the probability that it deviates
signficantly from its expected value E[X ] on a run of the experiment.

Example

Consider the experiment of tossing a fair coin n times. What is the probability that the number of
heads exceeds 3

4 ·n?
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Theorem

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,
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Markov’s inequality

Theorem

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤ E[X ]
c .
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Markov’s inequality

Theorem

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤ E[X ]
c .

Proof.

E[X ] = ∑
x

x ·P(X = x)
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Markov’s inequality

Theorem

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤ E[X ]
c .

Proof.

E[X ] = ∑
x

x ·P(X = x)

= ∑
0≤x<c

x ·P(X = x)+ ∑
x≥c

x ·P(X = x)
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Markov’s inequality

Theorem

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤ E[X ]
c .

Proof.

E[X ] = ∑
x

x ·P(X = x)

= ∑
0≤x<c

x ·P(X = x)+ ∑
x≥c

x ·P(X = x)

≥ ∑
x≥c

x ·P(X = x)
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Theorem

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤ E[X ]
c .

Proof.

E[X ] = ∑
x

x ·P(X = x)

= ∑
0≤x<c

x ·P(X = x)+ ∑
x≥c

x ·P(X = x)

≥ ∑
x≥c

x ·P(X = x)

≥ ∑
x≥c

c ·P(X = x)
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Markov’s inequality

Theorem

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤ E[X ]
c .

Proof.

E[X ] = ∑
x

x ·P(X = x)

= ∑
0≤x<c

x ·P(X = x)+ ∑
x≥c

x ·P(X = x)

≥ ∑
x≥c

x ·P(X = x)

≥ ∑
x≥c

c ·P(X = x)

= c ·P(X ≥ c)

Subramani Moments and Deviations



Recap
Tail bounds

Markov’s inequality
Chebyshev’s Inequality

Markov’s inequality

Theorem

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤ E[X ]
c .

Proof.

E[X ] = ∑
x

x ·P(X = x)

= ∑
0≤x<c

x ·P(X = x)+ ∑
x≥c

x ·P(X = x)

≥ ∑
x≥c

x ·P(X = x)

≥ ∑
x≥c

c ·P(X = x)

= c ·P(X ≥ c)

⇒ P(X ≥ c) ≤
E[X ]

c
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Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

Subramani Moments and Deviations



Recap
Tail bounds

Markov’s inequality
Chebyshev’s Inequality

Markov’s Inequality (contd.)

Alternative Form

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,
P(X ≥ c ·E[X ]) ≤ 1

c .
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Markov’s Inequality (contd.)

Alternative Form

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,
P(X ≥ c ·E[X ]) ≤ 1

c .

Example (Application to coin tossing problem)
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Markov’s Inequality (contd.)

Alternative Form

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,
P(X ≥ c ·E[X ]) ≤ 1

c .

Example (Application to coin tossing problem)

P(X ≥
3n

4
) = P(X ≥

3

2
·

n

2
)
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Markov’s Inequality (contd.)

Alternative Form

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,
P(X ≥ c ·E[X ]) ≤ 1

c .

Example (Application to coin tossing problem)

P(X ≥
3n

4
) = P(X ≥

3

2
·

n

2
)

≤
1
3
2
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Markov’s Inequality (contd.)

Alternative Form

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,
P(X ≥ c ·E[X ]) ≤ 1

c .

Example (Application to coin tossing problem)

P(X ≥
3n

4
) = P(X ≥

3

2
·

n

2
)

≤
1
3
2

=
2

3
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Theorem

Let X be a random variable (not necessarily positive).
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Theorem

Let X be a random variable (not necessarily positive). Then, P(|X −E[X ]| ≥ a) ≤ Var[X ]
a2 .
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Theorem

Let X be a random variable (not necessarily positive). Then, P(|X −E[X ]| ≥ a) ≤ Var[X ]
a2 .

Proof.

P(|X −E[X ]| ≥ a) =
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Theorem

Let X be a random variable (not necessarily positive). Then, P(|X −E[X ]| ≥ a) ≤ Var[X ]
a2 .

Proof.

P(|X −E[X ]| ≥ a) = P(|X −E[X ]|2 ≥ a2)
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Theorem

Let X be a random variable (not necessarily positive). Then, P(|X −E[X ]| ≥ a) ≤ Var[X ]
a2 .

Proof.

P(|X −E[X ]| ≥ a) = P(|X −E[X ]|2 ≥ a2)

≤
E[(X −E[X ])2]

a2
], Markov’s inequality
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Theorem

Let X be a random variable (not necessarily positive). Then, P(|X −E[X ]| ≥ a) ≤ Var[X ]
a2 .

Proof.

P(|X −E[X ]| ≥ a) = P(|X −E[X ]|2 ≥ a2)

≤
E[(X −E[X ])2]

a2
], Markov’s inequality

=
Var[X ]

a2
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Chebyshev’s Inequality

Theorem

Let X be a random variable (not necessarily positive). Then, P(|X −E[X ]| ≥ a) ≤ Var[X ]
a2 .

Proof.

P(|X −E[X ]| ≥ a) = P(|X −E[X ]|2 ≥ a2)

≤
E[(X −E[X ])2]

a2
], Markov’s inequality

=
Var[X ]

a2

Note

Chebyshev’s theorem is alternatively stated as:
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Chebyshev’s Inequality

Theorem

Let X be a random variable (not necessarily positive). Then, P(|X −E[X ]| ≥ a) ≤ Var[X ]
a2 .

Proof.

P(|X −E[X ]| ≥ a) = P(|X −E[X ]|2 ≥ a2)

≤
E[(X −E[X ])2]

a2
], Markov’s inequality

=
Var[X ]

a2

Note

Chebyshev’s theorem is alternatively stated as:

P(|X −E[X ]| ≥ a ·E[X ]) ≤ Var[X ]
(a·E[X ])2 .
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Example (Application to coin tossing problem)

Subramani Moments and Deviations



Recap
Tail bounds

Markov’s inequality
Chebyshev’s Inequality

Chebyshev’s inequality (contd.)

Example (Application to coin tossing problem)

P(X ≥
3n

4
) =
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Chebyshev’s inequality (contd.)

Example (Application to coin tossing problem)

P(X ≥
3n

4
) = P(X −

n

2
≥

n

4
)
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Chebyshev’s inequality (contd.)

Example (Application to coin tossing problem)

P(X ≥
3n

4
) = P(X −

n

2
≥

n

4
)

≤ P(|X −
n

2
| ≥

n

4
)
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Chebyshev’s inequality (contd.)

Example (Application to coin tossing problem)

P(X ≥
3n

4
) = P(X −

n

2
≥

n

4
)

≤ P(|X −
n

2
| ≥

n

4
)

= P(|X −E[X ]| ≥
1

2
E[X ])
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Chebyshev’s inequality (contd.)

Example (Application to coin tossing problem)

P(X ≥
3n

4
) = P(X −

n

2
≥

n

4
)

≤ P(|X −
n

2
| ≥

n

4
)

= P(|X −E[X ]| ≥
1

2
E[X ])

≤
n
4

( 1
2 )2 · ( n

2 )2
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Chebyshev’s inequality (contd.)

Example (Application to coin tossing problem)

P(X ≥
3n

4
) = P(X −

n

2
≥

n

4
)

≤ P(|X −
n

2
| ≥

n

4
)

= P(|X −E[X ]| ≥
1

2
E[X ])

≤
n
4

( 1
2 )2 · ( n

2 )2

=
4

n
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Restatement

You are required to collect coupons in a series of iterations. Assume that each coupon belongs
to one of n types, where n is a fixed number.
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You are required to collect coupons in a series of iterations. Assume that each coupon belongs
to one of n types, where n is a fixed number. The coupons are drawn uniformly and at random
from the n coupon types.
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The coupon collecting problem

Restatement

You are required to collect coupons in a series of iterations. Assume that each coupon belongs
to one of n types, where n is a fixed number. The coupons are drawn uniformly and at random
from the n coupon types. What is the expected number of coupons to be collected, to ensure
that each coupon type has been collected?
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The coupon collecting problem

Restatement

You are required to collect coupons in a series of iterations. Assume that each coupon belongs
to one of n types, where n is a fixed number. The coupons are drawn uniformly and at random
from the n coupon types. What is the expected number of coupons to be collected, to ensure
that each coupon type has been collected?

Remark

Let X denote the number of coupons to be collected in order to ensure that we have one coupon
of each type.
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The coupon collecting problem

Restatement

You are required to collect coupons in a series of iterations. Assume that each coupon belongs
to one of n types, where n is a fixed number. The coupons are drawn uniformly and at random
from the n coupon types. What is the expected number of coupons to be collected, to ensure
that each coupon type has been collected?

Remark

Let X denote the number of coupons to be collected in order to ensure that we have one coupon
of each type. We have shown that E[X ] = n ·Hn , where Hn is the nth harmonic number.
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Tail bounds for coupon collecting

Markov

P(X ≥ 2 ·n ·Hn)
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1
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1

2

Chebyshev

What do we need?
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Tail bounds for coupon collecting

Markov

P(X ≥ 2 ·n ·Hn) ≤
1

2

Chebyshev

What do we need? Var[X ].
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Tail bounds for coupon collecting

Markov

P(X ≥ 2 ·n ·Hn) ≤
1

2

Chebyshev

What do we need? Var[X ]. Observe that Var[X ] = ∑n
i=1 Var[Xi ], where Xi is the random

variable which counts the number of coupons to be drawn assuming that (i −1) distinct types
have already been drawn, in order to draw a coupon of a new type.
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Tail bounds for coupon collecting

Markov

P(X ≥ 2 ·n ·Hn) ≤
1

2

Chebyshev

What do we need? Var[X ]. Observe that Var[X ] = ∑n
i=1 Var[Xi ], where Xi is the random

variable which counts the number of coupons to be drawn assuming that (i −1) distinct types
have already been drawn, in order to draw a coupon of a new type.
For a geometric variable Xi with parameter p, we know that Var[Xi ] =

1−pi
p2

i

Subramani Moments and Deviations



Recap
Tail bounds

Markov’s inequality
Chebyshev’s Inequality

Tail bounds for coupon collecting

Markov

P(X ≥ 2 ·n ·Hn) ≤
1

2

Chebyshev

What do we need? Var[X ]. Observe that Var[X ] = ∑n
i=1 Var[Xi ], where Xi is the random

variable which counts the number of coupons to be drawn assuming that (i −1) distinct types
have already been drawn, in order to draw a coupon of a new type.
For a geometric variable Xi with parameter p, we know that Var[Xi ] =

1−pi
p2

i
≤ 1

p2
i

.
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Tail bounds for coupon collecting

Markov

P(X ≥ 2 ·n ·Hn) ≤
1

2

Chebyshev

What do we need? Var[X ]. Observe that Var[X ] = ∑n
i=1 Var[Xi ], where Xi is the random

variable which counts the number of coupons to be drawn assuming that (i −1) distinct types
have already been drawn, in order to draw a coupon of a new type.
For a geometric variable Xi with parameter p, we know that Var[Xi ] =

1−pi
p2

i
≤ 1

p2
i

.

But recall that pi = n−i+1
n .
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Tail bounds for coupon collecting

Markov

P(X ≥ 2 ·n ·Hn) ≤
1

2

Chebyshev

What do we need? Var[X ]. Observe that Var[X ] = ∑n
i=1 Var[Xi ], where Xi is the random

variable which counts the number of coupons to be drawn assuming that (i −1) distinct types
have already been drawn, in order to draw a coupon of a new type.
For a geometric variable Xi with parameter p, we know that Var[Xi ] =

1−pi
p2

i
≤ 1

p2
i

.

But recall that pi = n−i+1
n . Therefore, 1

pi
= n

n−i+1 .
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Tail bounds for coupon collecting

Markov

P(X ≥ 2 ·n ·Hn) ≤
1

2

Chebyshev

What do we need? Var[X ]. Observe that Var[X ] = ∑n
i=1 Var[Xi ], where Xi is the random

variable which counts the number of coupons to be drawn assuming that (i −1) distinct types
have already been drawn, in order to draw a coupon of a new type.
For a geometric variable Xi with parameter p, we know that Var[Xi ] =

1−pi
p2

i
≤ 1

p2
i

.

But recall that pi = n−i+1
n . Therefore, 1

pi
= n

n−i+1 . Hence,

Var[X ] =
n

∑
i=1

Var[Xi ]
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Tail bounds for coupon collecting

Markov

P(X ≥ 2 ·n ·Hn) ≤
1

2

Chebyshev

What do we need? Var[X ]. Observe that Var[X ] = ∑n
i=1 Var[Xi ], where Xi is the random

variable which counts the number of coupons to be drawn assuming that (i −1) distinct types
have already been drawn, in order to draw a coupon of a new type.
For a geometric variable Xi with parameter p, we know that Var[Xi ] =

1−pi
p2

i
≤ 1

p2
i

.

But recall that pi = n−i+1
n . Therefore, 1

pi
= n

n−i+1 . Hence,

Var[X ] =
n

∑
i=1

Var[Xi ]

≤
n

∑
i=1

1

pi
2
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Tail bounds for coupon collecting (contd.)

Chebyshev (contd.)
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Tail bounds for coupon collecting (contd.)

Chebyshev (contd.)

Var[X ] ≤
n

∑
i=1

(
n

n− i +1
)2
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Tail bounds for coupon collecting (contd.)

Chebyshev (contd.)

Var[X ] ≤
n

∑
i=1

(
n

n− i +1
)2

= n2 ·
n

∑
i=1

(
1

n− i +1
)2
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Tail bounds for coupon collecting (contd.)

Chebyshev (contd.)

Var[X ] ≤
n

∑
i=1

(
n

n− i +1
)2

= n2 ·
n

∑
i=1

(
1

n− i +1
)2

= n2 ·
n

∑
i=1

1

i2
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Tail bounds for coupon collecting (contd.)

Chebyshev (contd.)

Var[X ] ≤
n

∑
i=1

(
n

n− i +1
)2

= n2 ·
n

∑
i=1

(
1

n− i +1
)2

= n2 ·
n

∑
i=1

1

i2

≤ n2 ·
π2

6
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Tail bounds for coupon collecting (contd.)

Analysis (contd.)
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Tail bounds for coupon collecting (contd.)

Analysis (contd.)

It follows that

P(X ≥ 2 ·n ·Hn) =
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Tail bounds for coupon collecting (contd.)

Analysis (contd.)

It follows that

P(X ≥ 2 ·n ·Hn) = P((X −n ·Hn) ≥ n ·Hn)
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Tail bounds for coupon collecting (contd.)

Analysis (contd.)

It follows that

P(X ≥ 2 ·n ·Hn) = P((X −n ·Hn) ≥ n ·Hn)

≤ P(|X −n ·Hn | ≥ n ·Hn)

≤
n2 · π2

6

(n ·Hn)2

∈ O(
1

ln2 n
)
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Focus on a coupon of type i. What is the probability that a coupon of type i has not been drawn
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(1−
1
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)n·lnn+c·n = (1−
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≤ e−1·(lnn+c)

=
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What is the probability that a coupon of any type has not been drawn after n · lnn+ c ·n trials? At
most e−c .
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What is the probability that a coupon of any type has not been drawn after n · lnn+ c ·n trials? At
most e−c . Hence, the probability that a coupon of some type is not picked after 2 ·n · ln n trials is
at most e− lnn = 1

n .
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First principles

Focus on a coupon of type i. What is the probability that a coupon of type i has not been drawn
after n · lnn + c ·n trials?

(1−
1

n
)n·lnn+c·n = (1−

1

n
)n·(lnn+c)

≤ e−1·(lnn+c)

=
1

ec ·n

What is the probability that a coupon of any type has not been drawn after n · lnn+ c ·n trials? At
most e−c . Hence, the probability that a coupon of some type is not picked after 2 ·n · ln n trials is
at most e− lnn = 1

n . Moral of the story: First principle bounds are always better than cookie cutter
bounds.
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