
Outline

Monte Carlo Method

Vamshi Krishna Vudepu1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

05 April, 2012

Vamshi Randomized Algorithms 1of 26



Outline

Outline

1 Introduction
Monte Carlo Definition
Examples
Definitions

2 Applications
The DNF Counting Problem
DNF Couting Algorithms

Vamshi Randomized Algorithms 2of 26



Outline

Outline

1 Introduction
Monte Carlo Definition
Examples
Definitions

2 Applications
The DNF Counting Problem
DNF Couting Algorithms

Vamshi Randomized Algorithms 2of 26



Introduction
Applications

Monte Carlo Definition
Examples
Definitions

Outline

1 Introduction
Monte Carlo Definition
Examples
Definitions

2 Applications
The DNF Counting Problem
DNF Couting Algorithms

Vamshi Randomized Algorithms 3of 26



Introduction
Applications

Monte Carlo Definition
Examples
Definitions

Definition

What is a Monte Carlo Method?

The Monte Carlo Method refers to a collection of tools for evaluating values through
sampling and simulation.

Why Monte Carlo Method?

(i) Used when inputs are uncertain and are specified as probability distribution.

(ii) Predicts output values based on input samples.
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General steps involved in Monte Carlo Methods

(i) Define a domain of possible inputs.

(ii) Choose inputs at random from the probability distribution over the domain.

(iii) Perform computation on inputs and aggregate the results.
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Sampling

How can you ensure that an input is selected uniformly at random from the given input
domain in Computer Simulations? Using Random number generators. Consider 3
black balls and 7 red balls in a bin. The probability of choosing a black ball and a red
ball is is 0.3 and 0.7 respectively. A random number generator which generates any
number between 0 and 1 (equally likely) can be used to choose a ball. We can
associate each possible random number generated to the input. If the number
generated is less than or equal to 0.3, then a black ball will be picked. For the numbers
between 0.3 and 1, red ball will be selected.
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Example

Consider two fair dice.Calculate the probability for particular sum of outcomes of the
two dice. For example, the probability that the sum shows up 6 is 0.138. Roll the dice
manually 100 times and note down how many times the sum six turns up on the dice. If
the sum six showed up 15 times, the probability could be concluded as 0.15. How can
you increase accuracy? Accuracy increases with increase in number of times we roll
the dice.
Monte Carlo method simulates rolling of dice for given number of times (say for
instance 1000 times) and gives the probability.
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Example

Estimate the value of π
Draw a square of 2× 2 units on floor and inscribe a circle in it. Scatter some objects of
same size (such as grains) at random. What is the probability that the object falls inside
the circle? Ratio of area of circle to the area of square which is π

4 . Ratio of number of
grains inside the circle to the total number of grains inside the square gives
approximately the same value. Multiplying with 4 gives the approximate value of π.

Note

To get the accurate value

(i) The number of objects should be large enough.

(ii) Each object has to be scattered uniformly at random. Object should not be
dropped purposefully at a particular location inside the square.

Vamshi Randomized Algorithms 9of 26
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Estimating π value using Monte Carlo method
Let (X ,Y ) be a point chosen uniformly at random in a 2× 2 square centered at origin
(0, 0). Consider a circle of radius 1 unit centered at origin inscribed in the square.
Consider a random variable Z such that

Z =

{
1, if (X ,Y ) lies inside the circle,
0, Otherwise.

Pr(Z = 1) =
π

4

Assuming that the experiment is run m times with X and Y chosen independently
among the runs, let

W =
m∑

i=1

Zi

E[W ] = E

[ m∑
i=1

Zi

]
=

m∑
i=1

E[Zi ] =
m · π

4
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Hence, W ′ = 4
m ·W is an estimate of π.

Applying the following Chernoff bound,

Pr( |X − µ | ≥ δ · µ) ≤ 2 · e−µ·δ2/3

Pr( |W ′ − Π | ≥ ε · π) = Pr( |W − m·π|
4 | ≥ ε·m·π

4 )
= Pr( |W − E[W ] | ≥ ε · E[W ])

≤ 2 · e−m·Π·ε2/12

Therefore, m should be sufficiently large to obtain a tight approximation of π w.h.p.
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A randomized algorithm gives an (ε, δ)- approximation for the value V if the output X of
the algorithm satisfies

Pr( |X − V | ≤ εV ) ≥ 1− δ

Question

In the π example, what should be the value of m for the algorithm to give an
(ε, δ)-appromixation?
As long as ε ≤ 1, m should be large enough to make

2 · e
−m·π·ε2

12 ≤ δ

Solving the above equation, we get

m ≥
12 · ln(2/δ)

π · ε2

Vamshi Randomized Algorithms 13of 26



Introduction
Applications

Monte Carlo Definition
Examples
Definitions

Definitions

Definition

A randomized algorithm gives an (ε, δ)- approximation for the value V if the output X of
the algorithm satisfies

Pr( |X − V | ≤ εV ) ≥ 1− δ

Question

In the π example, what should be the value of m for the algorithm to give an
(ε, δ)-appromixation?
As long as ε ≤ 1, m should be large enough to make

2 · e
−m·π·ε2

12 ≤ δ

Solving the above equation, we get

m ≥
12 · ln(2/δ)

π · ε2

Vamshi Randomized Algorithms 13of 26



Introduction
Applications

Monte Carlo Definition
Examples
Definitions

Definitions

Definition

A randomized algorithm gives an (ε, δ)- approximation for the value V if the output X of
the algorithm satisfies

Pr( |X − V | ≤ εV ) ≥ 1− δ

Question

In the π example, what should be the value of m for the algorithm to give an
(ε, δ)-appromixation?
As long as ε ≤ 1, m should be large enough to make

2 · e
−m·π·ε2

12 ≤ δ

Solving the above equation, we get

m ≥
12 · ln(2/δ)

π · ε2

Vamshi Randomized Algorithms 13of 26



Introduction
Applications

Monte Carlo Definition
Examples
Definitions

Definitions

Definition

A randomized algorithm gives an (ε, δ)- approximation for the value V if the output X of
the algorithm satisfies

Pr( |X − V | ≤ εV ) ≥ 1− δ

Question

In the π example, what should be the value of m for the algorithm to give an
(ε, δ)-appromixation?
As long as ε ≤ 1, m should be large enough to make

2 · e
−m·π·ε2

12 ≤ δ

Solving the above equation, we get

m ≥
12 · ln(2/δ)

π · ε2

Vamshi Randomized Algorithms 13of 26



Introduction
Applications

Monte Carlo Definition
Examples
Definitions

Definitions

Definition

A randomized algorithm gives an (ε, δ)- approximation for the value V if the output X of
the algorithm satisfies

Pr( |X − V | ≤ εV ) ≥ 1− δ

Question

In the π example, what should be the value of m for the algorithm to give an
(ε, δ)-appromixation?

As long as ε ≤ 1, m should be large enough to make

2 · e
−m·π·ε2

12 ≤ δ

Solving the above equation, we get

m ≥
12 · ln(2/δ)

π · ε2

Vamshi Randomized Algorithms 13of 26



Introduction
Applications

Monte Carlo Definition
Examples
Definitions

Definitions

Definition

A randomized algorithm gives an (ε, δ)- approximation for the value V if the output X of
the algorithm satisfies

Pr( |X − V | ≤ εV ) ≥ 1− δ

Question

In the π example, what should be the value of m for the algorithm to give an
(ε, δ)-appromixation?
As long as ε ≤ 1,

m should be large enough to make

2 · e
−m·π·ε2

12 ≤ δ

Solving the above equation, we get

m ≥
12 · ln(2/δ)

π · ε2

Vamshi Randomized Algorithms 13of 26



Introduction
Applications

Monte Carlo Definition
Examples
Definitions

Definitions

Definition

A randomized algorithm gives an (ε, δ)- approximation for the value V if the output X of
the algorithm satisfies

Pr( |X − V | ≤ εV ) ≥ 1− δ

Question

In the π example, what should be the value of m for the algorithm to give an
(ε, δ)-appromixation?
As long as ε ≤ 1, m should be large enough to make

2 · e
−m·π·ε2

12 ≤ δ

Solving the above equation, we get

m ≥
12 · ln(2/δ)

π · ε2

Vamshi Randomized Algorithms 13of 26



Introduction
Applications

Monte Carlo Definition
Examples
Definitions

Definitions

Definition

A randomized algorithm gives an (ε, δ)- approximation for the value V if the output X of
the algorithm satisfies

Pr( |X − V | ≤ εV ) ≥ 1− δ

Question

In the π example, what should be the value of m for the algorithm to give an
(ε, δ)-appromixation?
As long as ε ≤ 1, m should be large enough to make

2 · e
−m·π·ε2

12 ≤ δ

Solving the above equation, we get

m ≥
12 · ln(2/δ)

π · ε2

Vamshi Randomized Algorithms 13of 26



Introduction
Applications

Monte Carlo Definition
Examples
Definitions

Definitions

Theorem

Let X1, ...,Xm be independent and identically distributed indicator random variables,
with µ = E[Xi ]. If m ≥ 3·ln(2/δ)

ε2·µ , then

Pr

( ∣∣∣∣∣ 1
m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε · µ
)
≤ δ

i.e, m samples provides an (ε, δ) approximation for µ.
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A fully polynomial randomized approximation scheme (FPRAS) for a problem is a
randomized algorithm for which, given an input x and any parameters ε and δ with
0 < ε, δ < 1, the algorithm outputs an (ε, δ)-approximation to V (x) in time that is
polynomial in 1/ε, ln δ−1, and the size of the input x .
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DNF

Note

Sampling in Monte Carlo methods is not as simple as shown for estimating Π value.
Sampling is often nontrivial.

What is a DNF?

A Boolean formula which comprises of disjuntion (OR) of clauses where each clause is
a conjunction (AND) of literals.

Example

(x1 ∧ x̄2) ∨ (x3 ∧ x4) ∨ (x̄4 ∧ x1)
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DNF

Questions

(i) What is a satisfying assignment? An assignment which when given to a Boolean
formula returns TRUE.

(ii) Determining the satisfiability of CNF is simpler compared to DNF. True/False?
False. The input assignment needs to satisfy just one clause in a DNF.

(iii) How to check the satisfiability of a CNF? Convert it into DNF using De Morgan’s
law.

(iv) If H is a CNF of n Boolean variables and H̄ is its DNF, what is the maximum
number of satisfying assignments can H̄ have for H to have a satisfying
assignment? Strictly less than 2n.

Note

Counting the number of satisfying assignments for a DNF comes under
#P − Complete Problems.
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DNF Counting Algorithm

Input: A DNF formula F with n variables.
Output: Y = an approximation of c(F ).

1: X ← 0
2: for (k = 1 to m) do
3: Generate a random assignment for n variables, chosen uniformly at random from

all 2n possible assignments.
4: if (the random assignment satisfies F ) then
5: X ← X + 1
6: end if
7: end for
8: return Y ← ( X

m ) · 2n

Algorithm 3.1: DNF Counting Algorithm I: Naive approach
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DNF- Counting Algorithm

Notes

c(F )→ No. of satisfying assignments of DNF Formaula F .
Let Xk be random variable such that

Xk =

{
1, if k th iteration generates a satisfying assignment.
0, Otherwise.

X =
m∑

k=1

Xk .

What is the probability that Xk is 1? c(F )
2n

E[Y ] =
E[X ] · 2n

m
= c(F )

Applying our previous theorem, Y gives an (ε, δ) -approximation of c(F ), when

m ≥
3 · 2n · ln(2/δ)

ε2 · c(F )
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DNF-Counting Algorithm

Problems in Naive Approach

If c(F ) ≥ 2n/α(n) for some polynomial α, then we need number of samples m
polynomial in n, 1/ε, ln(1/δ).

However, c(F ) can be much less than 2n. In such case, it takes exponential number of
assignments before finding the first satisfying assignment.

The number of satisfying assignments might not be sufficiently dense enough in set of
all assignments.

To obtain FPRAS for this problem, we need to construct a better sample space that
includes all the satisfying assignments of F and also, the satisfying assignments must
be sufficiently dense in the sample space.
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DNF- Counting Algorithm

FPRAS for DNF Couting

Let F = C1 ∨ C2 ∨ · · · ∨ Ct

A satisfying assignment needs to satisfy at least one clause.
Let SCi be set of assignments that satisfy clause i

Let U = {(i, a) |1 ≤ i ≤ t & a ∈ SCi}

U denotes set of satisfying assignments for all clauses.

t∑
i=1

|SCi | = |U |
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DNF-Counting Algorithm

FPRAS for DNF Couting cont...

The count can be estimated by

c(F ) =

∣∣∣∣∣
t⋃

i=1

SCi

∣∣∣∣∣
c(F ) ≤ |U | , since an assignment can satisfy more than one clause and thus can
appear in more than one pair in U. Let S be subset of U with size c(F ).

S = {(i, a) |1 ≤ i ≤ t , a ∈ SCi , a 6∈ SCj for j < i}

How to sample uniformly from U? First choose i from the pair (i, a) in U. Since i th
clause has |SCi | satisfying assignments, we should choose i with probability

|SCi |∑t
i=1 |SCi |

=
|SCi |
|U |
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appear in more than one pair in U. Let S be subset of U with size c(F ).

S = {(i, a) |1 ≤ i ≤ t , a ∈ SCi , a 6∈ SCj for j < i}

How to sample uniformly from U? First choose i from the pair (i, a) in U. Since i th
clause has |SCi | satisfying assignments, we should choose i with probability

|SCi |∑t
i=1 |SCi |

=
|SCi |
|U |
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Input: A DNF formula F with n variables.
Output: Y = an approximation of c(F ).

1: X ← 0
2: for (k = 1 to m) do
3: With probability |SCi |∑t

i=1 |SCi |
choose, uniformly at random, an assignment a ∈ SCi .

4: if (a is not in any SCj , j < i) then
5: X ← X + 1
6: end if
7: end for
8: return Y ← ( X

m ) ·
∑t

i=1 |SCi |

Algorithm 3.2: DNF Counting Algorithm II: FPRAS
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Theorem

DNF counting algorithm II is a fully polynomial randomized approximation scheme
(FPRAS) for the DNF counting problem when

m = d(3 · t2/ε2) · ln(2/δ)e
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