# Monte Carlo Method

### Meghana Ramakumar<sup>1</sup>

<sup>1</sup>Lane Department of Computer Science and Electrical Engineering West Virginia University

10 April, 2012





- Definition
- Example

# Outline



- Definition
- Example



- Markov Chain Monte Carlo Method
  - Introduction
  - Metropolis Algorithm



# Approximate Sampling to Approximate Counting Definition

Example



Markov Chain Monte Carlo Method

- Introduction
- Metropolis Algorithm

Definition Example

# Definition

Approximate Sampling to Approximate Counting

Approximate Sampling to Approximate Counting

If a solution to a self-reducible combinatorial problem can be sampled, we can construct a randomized algorithm which counts the number of solutions.

Approximate Sampling to Approximate Counting

If a solution to a self-reducible combinatorial problem can be sampled, we can construct a randomized algorithm which counts the number of solutions.

#### Definition

#### Approximate Sampling to Approximate Counting

If a solution to a self-reducible combinatorial problem can be sampled, we can construct a randomized algorithm which counts the number of solutions.

#### Definition

Let *w* be the (random) output of a sampling algorithm for a finite sample space  $\Omega$ . The sampling algorithm generates an  $\varepsilon$ -uniform sample of  $\Omega$  if, for any subset *S* of  $\Omega$ ,

#### Approximate Sampling to Approximate Counting

If a solution to a self-reducible combinatorial problem can be sampled, we can construct a randomized algorithm which counts the number of solutions.

#### Definition

Let *w* be the (random) output of a sampling algorithm for a finite sample space  $\Omega$ . The sampling algorithm generates an  $\varepsilon$ -uniform sample of  $\Omega$  if, for any subset *S* of  $\Omega$ ,

$$\left| oldsymbol{P}(oldsymbol{w}\in oldsymbol{S}) - rac{|oldsymbol{S}|}{|\Omega|} 
ight| \leq arepsilon.$$

#### Approximate Sampling to Approximate Counting

If a solution to a self-reducible combinatorial problem can be sampled, we can construct a randomized algorithm which counts the number of solutions.

#### Definition

Let *w* be the (random) output of a sampling algorithm for a finite sample space  $\Omega$ . The sampling algorithm generates an  $\varepsilon$ -uniform sample of  $\Omega$  if, for any subset *S* of  $\Omega$ ,

$$\left| {{m{\mathcal{P}}}({m{w}} \in {m{\mathcal{S}}}) - rac{|{m{\mathcal{S}}}|}{|\Omega|}} 
ight| \le arepsilon.$$

A sampling algorithm is a fully polynomial almost uniform sample (*FPAUS*) for a problem if, given an input *x* and a parameter  $\varepsilon > 0$ , it generates an  $\varepsilon$  - uniform sample of  $\Omega(x)$  and runs in time that is polynomial in  $\ln \varepsilon^{-1}$  and the size of the input x.



### Approximate Sampling to Approximate Counting

- Definition
- Example

- 2
- Markov Chain Monte Carlo Method
- Introduction
- Metropolis Algorithm

### Example

Meghana Randomized Algorithms

Example

FPAUS for independent sets.

### Example

FPAUS for independent sets.

#### Question

What is an independent set?

#### Example

FPAUS for independent sets.

#### Question

What is an independent set? It is a subset of vertices in a graph, such that no two of which are adjacent.

#### Example

FPAUS for independent sets.

#### Question

What is an independent set? It is a subset of vertices in a graph, such that no two of which are adjacent.



Definition

# Example continued

#### Example

Meghana Randomized Algorithms

Definition

# Example continued

#### Example

Input : Graph G = (V, E) and parameter  $\varepsilon$ .

Definition

# Example continued

#### Example

Input : Graph G = (V, E) and parameter  $\varepsilon$ . Sample space : All independent sets in *G*.

Definition

# Example continued

#### Example

Input : Graph G = (V, E) and parameter  $\varepsilon$ . Sample space : All independent sets in *G*. Output :  $\varepsilon$ -uniform sample of the independent sets.

# Example continued

#### Example

Input : Graph G = (V, E) and parameter  $\varepsilon$ . Sample space : All independent sets in *G*. Output :  $\varepsilon$ -uniform sample of the independent sets. Goal : To show that, given an FPAUS for independent sets, we can construct an FPRAS for counting the number of independent sets.

Continued

Assumption:

### Continued

Assumption: Input graph *G* has *m* edges.

### Continued

Assumption: Input graph *G* has *m* edges. Let  $e_1, e_2, e_3, \ldots, e_m$  be an arbitrary ordering of the edges.

#### Continued

Assumption: Input graph *G* has *m* edges. Let  $e_1, e_2, e_3, \ldots, e_m$  be an arbitrary ordering of the edges.  $E_i$  be the set of the first *i* edges in *E*.

#### Continued

Assumption: Input graph *G* has *m* edges. Let  $e_1, e_2, e_3, \ldots, e_m$  be an arbitrary ordering of the edges.  $E_i$  be the set of the first *i* edges in *E*. Let  $G_i = (V, E_i)$ .

#### Continued

Assumption: Input graph *G* has *m* edges. Let  $e_1, e_2, e_3, \ldots, e_m$  be an arbitrary ordering of the edges.  $E_i$  be the set of the first *i* edges in *E*. Let  $G_i = (V, E_i)$ .  $G_{i-1}$  is obtained from  $G_i$  by removing a single edge.

#### Continued

Assumption: Input graph *G* has *m* edges. Let  $e_1, e_2, e_3, \ldots, e_m$  be an arbitrary ordering of the edges.  $E_i$  be the set of the first *i* edges in *E*. Let  $G_i = (V, E_i)$ .  $G_{i-1}$  is obtained from  $G_i$  by removing a single edge.

Let  $\Omega(G_i)$  denote set of independent sets in  $G_i$ .

#### Continued

Assumption: Input graph *G* has *m* edges. Let  $e_1, e_2, e_3, \ldots, e_m$  be an arbitrary ordering of the edges.  $E_i$  be the set of the first *i* edges in *E*. Let  $G_i = (V, E_i)$ .  $G_{i-1}$  is obtained from  $G_i$  by removing a single edge.

Let  $\Omega(G_i)$  denote set of independent sets in  $G_i$ . The number of independent sets in *G* can be expressed as,

$$|\Omega(G)| = \frac{|\Omega(G_m)|}{|\Omega(G_{m-1})|} \times \frac{|\Omega(G_{m-1})|}{|\Omega(G_{m-2})|} \times \frac{|\Omega(G_{m-2})|}{|\Omega(G_{m-3})|} \times \cdots \times \frac{|\Omega(G_1)|}{|\Omega(G_0)|} \times |\Omega(G_0)|.$$

#### Continued

Assumption: Input graph *G* has *m* edges. Let  $e_1, e_2, e_3, \ldots, e_m$  be an arbitrary ordering of the edges.  $E_i$  be the set of the first *i* edges in *E*. Let  $G_i = (V, E_i)$ .  $G_{i-1}$  is obtained from  $G_i$  by removing a single edge.

Let  $\Omega(G_i)$  denote set of independent sets in  $G_i$ . The number of independent sets in *G* can be expressed as,

 $|\Omega(G)| = \frac{|\Omega(G_m)|}{|\Omega(G_{m-1})|} \times \frac{|\Omega(G_{m-1})|}{|\Omega(G_{m-2})|} \times \frac{|\Omega(G_{m-2})|}{|\Omega(G_{m-3})|} \times \cdots \times \frac{|\Omega(G_1)|}{|\Omega(G_0)|} \times |\Omega(G_0)|.$ 

 $G_0$  has no edges, every subset of V is an independent set,

#### Continued

Assumption: Input graph *G* has *m* edges. Let  $e_1, e_2, e_3, \ldots, e_m$  be an arbitrary ordering of the edges.  $E_i$  be the set of the first *i* edges in *E*. Let  $G_i = (V, E_i)$ .  $G_{i-1}$  is obtained from  $G_i$  by removing a single edge.

Let  $\Omega(G_i)$  denote set of independent sets in  $G_i$ . The number of independent sets in *G* can be expressed as,

 $|\Omega(G)| = \frac{|\Omega(G_m)|}{|\Omega(G_{m-1})|} \times \frac{|\Omega(G_{m-1})|}{|\Omega(G_{m-2})|} \times \frac{|\Omega(G_{m-2})|}{|\Omega(G_{m-3})|} \times \cdots \times \frac{|\Omega(G_1)|}{|\Omega(G_0)|} \times |\Omega(G_0)|.$ 

 $G_0$  has no edges, every subset of V is an independent set, therefore  $\Omega(G_0)$  =

#### Continued

Assumption: Input graph *G* has *m* edges. Let  $e_1, e_2, e_3, \ldots, e_m$  be an arbitrary ordering of the edges.  $E_i$  be the set of the first *i* edges in *E*. Let  $G_i = (V, E_i)$ .  $G_{i-1}$  is obtained from  $G_i$  by removing a single edge.

Let  $\Omega(G_i)$  denote set of independent sets in  $G_i$ . The number of independent sets in *G* can be expressed as,

 $|\Omega(G)| = \frac{|\Omega(G_m)|}{|\Omega(G_{m-1})|} \times \frac{|\Omega(G_{m-1})|}{|\Omega(G_{m-2})|} \times \frac{|\Omega(G_{m-2})|}{|\Omega(G_{m-3})|} \times \cdots \times \frac{|\Omega(G_1)|}{|\Omega(G_0)|} \times |\Omega(G_0)|.$ 

 $G_0$  has no edges, every subset of V is an independent set, therefore  $\Omega(G_0) = 2^n$ .

### Continued

#### Continued

To estimate  $|\Omega(G)|$ , we need good estimates for each of the ratios

#### Continued

To estimate  $|\Omega(G)|$ , we need good estimates for each of the ratios

$$r_i = \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}$$
,  $i = 1, 2, ..., m$ .

#### Continued

To estimate  $|\Omega(G)|$ , we need good estimates for each of the ratios

$$r_i = \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}$$
,  $i = 1, 2, ..., m$ .

More formally, we will develop estimates  $\tilde{r}_i$  for the ratios  $r_i$ , then estimates for the number of independent sets in *G* will be,
### Continued

To estimate  $|\Omega(G)|$ , we need good estimates for each of the ratios

$$r_i = \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}$$
,  $i = 1, 2, ..., m$ .

More formally, we will develop estimates  $\tilde{r}_i$  for the ratios  $r_i$ , then estimates for the number of independent sets in *G* will be,

$$2^n \prod_{i=1}^m \tilde{r}_i$$

### Continued

To estimate  $|\Omega(G)|$ , we need good estimates for each of the ratios

$$r_i = \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}$$
,  $i = 1, 2, ..., m$ .

More formally, we will develop estimates  $\tilde{r}_i$  for the ratios  $r_i$ , then estimates for the number of independent sets in *G* will be,

$$2^n \prod_{i=1}^m \tilde{r}_i$$

while the actual number is

### Continued

To estimate  $|\Omega(G)|$ , we need good estimates for each of the ratios

$$r_i = \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}$$
,  $i = 1, 2, ..., m$ .

More formally, we will develop estimates  $\tilde{r}_i$  for the ratios  $r_i$ , then estimates for the number of independent sets in *G* will be,

$$2^n \prod_{i=1}^m \tilde{r}_i$$

while the actual number is

$$|\Omega(G)|=2^n\prod_{i=1}^m r_i.$$

### Continued

To evaluate the error in our estimate, we need to bound the ratio

### Continued

To evaluate the error in our estimate, we need to bound the ratio

$$R=\prod_{i=1}^m\frac{\tilde{r}_i}{r_i}.$$

#### Continued

To evaluate the error in our estimate, we need to bound the ratio

$$\mathsf{R}=\prod_{i=1}^m\frac{\tilde{r}_i}{r_i}.$$

To have an  $(\varepsilon, \delta)$ -approximation, we want  $P(|R-1| \le \varepsilon) \ge 1 - \delta$ .

## Lemmas

### Lemma

Suppose that for all *i*,  $1 \le i \le m$ ,  $\tilde{r}_i$  is an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ -approximation for  $r_i$ . Then,

#### Definit Exam

# Lemmas

### Lemma

Suppose that for all *i*,  $1 \le i \le m$ ,  $\tilde{r}_i$  is an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ -approximation for  $r_i$ . Then,

$$P(|R-1| \le \varepsilon) \ge 1 - \delta.$$

# Lemmas

#### Lemma

Suppose that for all *i*,  $1 \le i \le m$ ,  $\tilde{r}_i$  is an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ -approximation for  $r_i$ . Then,

$$P(|R-1| \leq \varepsilon) \geq 1 - \delta.$$

Definition

#### Proof

For each  $1 \le i \le m$ , we have

$$\begin{aligned} & \mathcal{P}(|\tilde{r}_i - r_i| \leq \frac{\varepsilon}{2 \cdot m} \cdot r_i) \geq 1 - \frac{\delta}{m} \\ & \mathcal{P}(|\tilde{r}_i - r_i| > \frac{\varepsilon}{2 \cdot m} \cdot r_i) < \frac{\delta}{m} \end{aligned}$$

#### Lemma

Suppose that for all *i*,  $1 \le i \le m$ ,  $\tilde{r}_i$  is an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ -approximation for  $r_i$ . Then,

$$P(|R-1| \leq \varepsilon) \geq 1 - \delta.$$

Definition

#### Proof

For each  $1 \le i \le m$ , we have

$$\begin{aligned} & \mathcal{P}(|\tilde{r}_i - r_i| \leq \frac{\varepsilon}{2 \cdot m} \cdot r_i) \quad \geq \quad 1 - \frac{\delta}{m} \\ & \mathcal{P}(|\tilde{r}_i - r_i| > \frac{\varepsilon}{2 \cdot m} \cdot r_i) \quad < \quad \frac{\delta}{m} \end{aligned}$$

By union bound, the probability that  $|\tilde{r}_i - r_i| > (\frac{\varepsilon}{2 \cdot m}) \cdot r_i$  for any *i* is at most  $\delta$ ; Therefore  $|\tilde{r}_i - r_i| \leq (\frac{\varepsilon}{2 \cdot m} \cdot r_i)$  for all *i* with probability at least  $1 - \delta$ . Equivalently,

### Definition

### Lemmas

#### Lemma

Suppose that for all *i*,  $1 \le i \le m$ ,  $\tilde{r}_i$  is an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ -approximation for  $r_i$ . Then,

$$P(|R-1| \leq \varepsilon) \geq 1 - \delta.$$

#### Proof

For each  $1 \le i \le m$ , we have

$$\begin{aligned} & \mathcal{P}(|\tilde{r}_i - r_i| \leq \frac{\varepsilon}{2 \cdot m} \cdot r_i) \quad \geq \quad 1 - \frac{\delta}{m} \\ & \mathcal{P}(|\tilde{r}_i - r_i| > \frac{\varepsilon}{2 \cdot m} \cdot r_i) \quad < \quad \frac{\delta}{m} \end{aligned}$$

By union bound, the probability that  $|\tilde{r}_i - r_i| > (\frac{\varepsilon}{2 \cdot m}) \cdot r_i$  for any *i* is at most  $\delta$ ; Therefore  $|\tilde{r}_i - r_i| \le (\frac{\varepsilon}{2 \cdot m} \cdot r_i)$  for all *i* with probability at least  $1 - \delta$ . Equivalently,

$$1 - \frac{\varepsilon}{2 \cdot m} \leq \frac{\tilde{r}_i}{r_i} \leq 1 + \frac{\varepsilon}{2 \cdot m}$$

**Proof continued** 

When these bounds hold for all *i*, we can combine them to obtain,

### Proof continued

When these bounds hold for all *i*, we can combine them to obtain,

$$1-\varepsilon \leq (1-\frac{\varepsilon}{2\cdot m})^m \leq \prod_{i=1}^m \frac{\tilde{r}_i}{r_i} \leq (1+\frac{\varepsilon}{2\cdot m})^m \leq 1+\varepsilon$$

# Proof continued

Lemmas

When these bounds hold for all *i*, we can combine them to obtain,

$$1-\varepsilon \leq (1-rac{\varepsilon}{2\cdot m})^m \leq \prod_{i=1}^m rac{ ilde{r}_i}{r_i} \leq (1+rac{\varepsilon}{2\cdot m})^m \leq 1+\varepsilon$$

#### Notes

We need a method for obtaining an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ - approximation for the  $r_i$ . We estimate each of these ratios by a Monte Carlo algorithm that uses *FPAUS* for sampling independent sets.

#### Proof continued

When these bounds hold for all *i*, we can combine them to obtain,

$$1-\varepsilon \leq (1-rac{\varepsilon}{2\cdot m})^m \leq \prod_{i=1}^m rac{ ilde{r}_i}{r_i} \leq (1+rac{\varepsilon}{2\cdot m})^m \leq 1+\varepsilon$$

#### Notes

We need a method for obtaining an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ - approximation for the  $r_i$ . We estimate each of these ratios by a Monte Carlo algorithm that uses *FPAUS* for sampling independent sets.

To estimate  $r_i$ , we sample independent sets in  $G_{i-1}$  and compute the fraction of these sets that are also independent sets in  $G_i$ , as shown in the following algorithm.

# Algorithm

| Estimating r <sub>i</sub> :                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------|
| <b>Input:</b> Graphs $G_{i-1} = (V, E_{i-1})$ and $G_i = (V, E_i)$ .<br><b>Output:</b> $\tilde{r}_i =$ an approximation of $r_i$ . |
| 1: $X \leftarrow 0$                                                                                                                |
| 2: repeat                                                                                                                          |
| 3: Generate an $(\frac{\varepsilon}{6.m})$ – uniform sample from $\Omega(G_{i-1})$ .                                               |
| 4: If the sample is an independent set in $G_i$ , let $X \leftarrow X + 1$                                                         |
| 5: <b>until</b> $M = \left[ 1296 m^2 \varepsilon^{-2} \ln\left(\frac{2 \cdot m}{\delta}\right) \right]$ independent trials         |
| 6: return $\tilde{r_i} \leftarrow \frac{X}{M}$                                                                                     |

Algorithm 2.1: Estimating r<sub>i</sub>

# Definition Example

# Lemmas

#### Lemma

When  $m \ge 1$  and  $0 < \varepsilon \le 1$ , the procedure for estimating  $r_i$  yields an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ -approximation for  $r_i$ .

#### Definition Example

## Lemmas

#### Lemma

When  $m \ge 1$  and  $0 < \varepsilon \le 1$ , the procedure for estimating  $r_i$  yields an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ -approximation for  $r_i$ .

#### Proof

Read pages 261-262 in the book.

#### Lemma

When  $m \ge 1$  and  $0 < \varepsilon \le 1$ , the procedure for estimating  $r_i$  yields an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ -approximation for  $r_i$ .

#### Proof

Read pages 261-262 in the book.

#### **Proving involves**

We first show that  $r_i$  is not too small.  $\Omega(G_i) \subseteq \Omega(G_{i-1})$ .

#### Lemma

When  $m \ge 1$  and  $0 < \varepsilon \le 1$ , the procedure for estimating  $r_i$  yields an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ -approximation for  $r_i$ .

#### Proof

Read pages 261-262 in the book.

#### **Proving involves**

We first show that  $r_i$  is not too small.  $\Omega(G_i) \subseteq \Omega(G_{i-1})$ . To bound the size of the set in  $\Omega(G_{i-1}) \setminus \Omega(G_i)$ ,

#### Lemma

When  $m \ge 1$  and  $0 < \varepsilon \le 1$ , the procedure for estimating  $r_i$  yields an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ -approximation for  $r_i$ .

#### Proof

Read pages 261-262 in the book.

#### Proving involves

We first show that  $r_i$  is not too small.  $\Omega(G_i) \subseteq \Omega(G_{i-1})$ . To bound the size of the set in  $\Omega(G_{i-1}) \setminus \Omega(G_i)$ , associate each  $I \in \Omega(G_{i-1}) \setminus \Omega(G_i)$  with an independent set  $I \setminus v \in \Omega(G_i)$ .

#### Lemma

When  $m \ge 1$  and  $0 < \varepsilon \le 1$ , the procedure for estimating  $r_i$  yields an  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ -approximation for  $r_i$ .

Definition

#### Proof

Read pages 261-262 in the book.

#### **Proving involves**

We first show that  $r_i$  is not too small.  $\Omega(G_i) \subseteq \Omega(G_{i-1})$ . To bound the size of the set in  $\Omega(G_{i-1}) \setminus \Omega(G_i)$ , associate each  $I \in \Omega(G_{i-1}) \setminus \Omega(G_i)$  with an independent set  $I \setminus v \in \Omega(G_i)$ . We have,

$$r_i = \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|} = \frac{|\Omega(G_i)|}{|\Omega(G_i)| + |\Omega(G_{i-1}) \setminus \Omega(G_i)|} \ge \frac{1}{2}.$$

## continued

Consider *M* samples and let  $X_k$  be

$$X_k = \begin{cases} 1 & \text{if the } k^{\text{th}} \text{ sample is in } \Omega(G_i) \\ 0 & \text{otherwise} \end{cases}$$

### continued

Consider *M* samples and let  $X_k$  be

$$X_k = \begin{cases} 1 & \text{if the } k^{\text{th}} \text{ sample is in } \Omega(G_i) \\ 0 & \text{otherwise} \end{cases}$$

Definition

Since our samples are generated by an  $(\frac{\varepsilon}{6 \cdot m})$ - uniform sampler, by our previous definition each  $X_i$  must satisfy,

$$|P(X_k=1)-\frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}|\leq \frac{\varepsilon}{6\cdot m}.$$

#### continued

Consider *M* samples and let  $X_k$  be

$$X_{k} = \begin{cases} 1 & \text{if the } k^{\text{th}} \text{ sample is in } \Omega(G_{i}) \\ 0 & \text{otherwise} \end{cases}$$

Since our samples are generated by an  $(\frac{\varepsilon}{6 \cdot m})$ - uniform sampler, by our previous definition each  $X_i$  must satisfy,

$$|P(X_k=1)-\frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}|\leq \frac{\varepsilon}{6\cdot m}.$$

Since  $X_k$  are indicator random variables and further by linearity of expectations, we get

$$\mathbf{E}[\tilde{r}_i] - r_i| = |\mathbf{E}[\frac{\sum_{i=1}^M X_k}{M}] - \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}| \le \frac{\varepsilon}{6 \cdot m}$$

#### continued

Consider *M* samples and let  $X_k$  be

$$X_k = \begin{cases} 1 & \text{if the } k^{\text{th}} \text{ sample is in } \Omega(G_i) \\ 0 & \text{otherwise} \end{cases}$$

Since our samples are generated by an  $(\frac{\varepsilon}{6 \cdot m})$ - uniform sampler, by our previous definition each  $X_i$  must satisfy,

$$|P(X_k=1)-\frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}|\leq \frac{\varepsilon}{6\cdot m}.$$

Since  $X_k$  are indicator random variables and further by linearity of expectations, we get

$$|\mathbf{E}[\tilde{r}_i] - r_i| = |\mathbf{E}[\frac{\sum_{i=1}^M X_k}{M}] - \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}| \le \frac{\varepsilon}{6 \cdot m}$$

Lemma is completed by combining

- (a)  $\mathbf{E}[\tilde{r}_i]$  is close to  $r_i$  and
- (b)  $\tilde{r}_i$  will be close to  $\mathbf{E}[\tilde{r}_i]$  for a sufficiently large number of samples .

#### continued

Consider *M* samples and let  $X_k$  be

$$X_{k} = \begin{cases} 1 & \text{if the } k^{\text{th}} \text{ sample is in } \Omega(G_{i}) \\ 0 & \text{otherwise} \end{cases}$$

Since our samples are generated by an  $(\frac{c}{6 \cdot m})$ - uniform sampler, by our previous definition each  $X_i$  must satisfy,

$$|P(X_k = 1) - \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}| \leq \frac{\varepsilon}{6 \cdot m}.$$

Since  $X_k$  are indicator random variables and further by linearity of expectations, we get

$$|\mathbf{E}[\tilde{r}_i] - r_i| = |\mathbf{E}[\frac{\sum_{i=1}^M X_k}{M}] - \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}| \le \frac{\varepsilon}{6 \cdot m}$$

Lemma is completed by combining

(a)  $\mathbf{E}[\tilde{r}_i]$  is close to  $r_i$  and

(b)  $\tilde{r}_i$  will be close to  $\mathbf{E}[\tilde{r}_i]$  for a sufficiently large number of samples .

Using the above and  $r_i \ge 1/2$  gives the desired  $(\frac{\varepsilon}{2 \cdot m}, \frac{\delta}{m})$ - approximation.

### Theorems

#### Theorem

Given a fully polynomial almost uniform sampler (*FPAUS*) for independent sets in any graph, we can construct a fully polynomial randomized approximation scheme (*FPRAS*) for the number of independent sets in a graph *G*.

#### Theorem

Given a fully polynomial almost uniform sampler (*FPAUS*) for independent sets in any graph with maximum degree at most  $\Delta$ , we can construct a fully polynomial randomized approximation scheme (*FPRAS*) for the number of independent sets in a graph *G* with maximum degree at most  $\Delta$ .

# Outline



- Example



• Metropolis Algorithm

# Introduction

### Definition

The Markov chain Monte Carlo (*MCMC*) method provides a very general approach to sampling from a desired probability distribution.

# Introduction

#### Definition

The Markov chain Monte Carlo (*MCMC*) method provides a very general approach to sampling from a desired probability distribution.

#### Where MCMC is used

- (i) Data Mining and Machine Learning
- (ii) Bayesian methods
- (iii) Biological and generic research

ntroduction Metropolis Algorithm

# Recall Markov chain

### Questions

Meghana Randomized Algorithms

ntroduction Metropolis Algorithm

# Recall Markov chain

### Questions

(i) Irreducible?

Introduction Metropolis Algorithm

# **Recall Markov chain**

#### Questions

 (i) Irreducible? Markov chain is said to be irreducible if its state space is a single communicating class; i.e., if it is possible to get to any state from any state.

# **Recall Markov chain**

#### Questions

- (i) Irreducible? Markov chain is said to be irreducible if its state space is a single communicating class; i.e., if it is possible to get to any state from any state.
- (ii) Aperiodic?

## **Recall Markov chain**

#### Questions

- (i) Irreducible? Markov chain is said to be irreducible if its state space is a single communicating class; i.e., if it is possible to get to any state from any state.
- (ii) Aperiodic? A state is periodic if it can only return to itself after a fixed number of transitions greater than 1 (or multiple of a fixed number). A state that is not periodic is aperiodic. A Markov chain is aperiodic if all states of the chain are aperiodic.
- (i) Irreducible? Markov chain is said to be irreducible if its state space is a single communicating class; i.e., if it is possible to get to any state from any state.
- (ii) Aperiodic? A state is periodic if it can only return to itself after a fixed number of transitions greater than 1 (or multiple of a fixed number). A state that is not periodic is aperiodic. A Markov chain is aperiodic if all states of the chain are aperiodic.
- (iii) Ergodic Markov chain?

- (i) Irreducible? Markov chain is said to be irreducible if its state space is a single communicating class; i.e., if it is possible to get to any state from any state.
- (ii) Aperiodic? A state is periodic if it can only return to itself after a fixed number of transitions greater than 1 (or multiple of a fixed number). A state that is not periodic is aperiodic. A Markov chain is aperiodic if all states of the chain are aperiodic.
- (iii) Ergodic Markov chain? A state *i* is said to be ergodic if it is aperiodic and positive recurrent. If all states in an irreducible Markov chain are ergodic, then the chain is said to be ergodic.

- (i) Irreducible? Markov chain is said to be irreducible if its state space is a single communicating class; i.e., if it is possible to get to any state from any state.
- (ii) Aperiodic? A state is periodic if it can only return to itself after a fixed number of transitions greater than 1 (or multiple of a fixed number). A state that is not periodic is aperiodic. A Markov chain is aperiodic if all states of the chain are aperiodic.
- (iii) Ergodic Markov chain? A state *i* is said to be ergodic if it is aperiodic and positive recurrent. If all states in an irreducible Markov chain are ergodic, then the chain is said to be ergodic.
- (iv) Stationary distribution?

- (i) Irreducible? Markov chain is said to be irreducible if its state space is a single communicating class; i.e., if it is possible to get to any state from any state.
- (ii) Aperiodic? A state is periodic if it can only return to itself after a fixed number of transitions greater than 1 (or multiple of a fixed number). A state that is not periodic is aperiodic. A Markov chain is aperiodic if all states of the chain are aperiodic.
- (iii) Ergodic Markov chain? A state *i* is said to be ergodic if it is aperiodic and positive recurrent. If all states in an irreducible Markov chain are ergodic, then the chain is said to be ergodic.
- (iv) Stationary distribution? A stationary distribution of a Markov chain is a probability distribution  $\bar{\pi}$  such that  $\bar{\pi} = \bar{\pi} \cdot P$

### Recall Markov chain continued

### Theorem (for stationary distribution)

Consider a finite, irreducible, and ergodic Markov chain with transition matrix *P*. If there are nonnegative numbers  $\bar{\pi} = (\pi_0, ... \pi_n)$  such that  $\sum_{i=0}^n \pi_i = 1$  and if, for any pair of states *i*, *j*,

$$\pi_i \cdot P_{i,j} = \pi_j \cdot P_{j,i},$$

then  $\pi_i$  is the stationary distribution corresponding to P.

### Recall Markov chain continued

#### Theorem (for stationary distribution)

Consider a finite, irreducible, and ergodic Markov chain with transition matrix *P*. If there are nonnegative numbers  $\bar{\pi} = (\pi_0, ... \pi_n)$  such that  $\sum_{i=0}^n \pi_i = 1$  and if, for any pair of states *i*, *j*,

$$\pi_i \cdot P_{i,j} = \pi_j \cdot P_{j,i},$$

then  $\pi_i$  is the stationary distribution corresponding to P.

#### Theorem

A random walk on G converges to a stationary distribution  $\bar{\pi}$ , where

$$\pi_{v}=\frac{d(v)}{2\cdot|E|}.$$

In a stationary distribution of a random walk, the probability of a vertex is proportional to the degree of the vertex.

Approximate Sampling to Approximate Counting Markov Chain Monte Carlo Method Introduction Metropolis Algorithm

# MCMC Continued

#### Basic Idea

Define an ergodic Markov chain whose set of states is the sample space and whose stationary distribution is the required sampling distribution.

#### **Basic Idea**

Define an ergodic Markov chain whose set of states is the sample space and whose stationary distribution is the required sampling distribution. Let  $X_0, X_1, \ldots, X_n$  be a run of the chain.

#### Basic Idea

Define an ergodic Markov chain whose set of states is the sample space and whose stationary distribution is the required sampling distribution.

Let  $X_0, X_1, \ldots, X_n$  be a run of the chain.

Markov chain converges to the stationary distribution from any starting state  $X_0$ , after a sufficiently large number of steps r, the distribution of the state  $X_r$  will be close to stationary distribution and can be used as a sample.

#### Basic Idea

Define an ergodic Markov chain whose set of states is the sample space and whose stationary distribution is the required sampling distribution.

Let  $X_0, X_1, \ldots, X_n$  be a run of the chain.

Markov chain converges to the stationary distribution from any starting state  $X_0$ , after a sufficiently large number of steps r, the distribution of the state  $X_r$  will be close to stationary distribution and can be used as a sample.

Similarly starting from  $X_r$ ,  $X_{2,r}$  can be used as a sample and so on.

#### Basic Idea

Define an ergodic Markov chain whose set of states is the sample space and whose stationary distribution is the required sampling distribution.

Let  $X_0, X_1, \ldots, X_n$  be a run of the chain.

Markov chain converges to the stationary distribution from any starting state  $X_0$ , after a sufficiently large number of steps r, the distribution of the state  $X_r$  will be close to stationary distribution and can be used as a sample.

Similarly starting from  $X_r$ ,  $X_{2 \cdot r}$  can be used as a sample and so on.

Therefore the sequence of states  $X_r, X_{2 \cdot r}, X_{3 \cdot r}, \ldots$  can be used as the almost

independent samples from the stationary distribution of the Markov chain.

Approximate Sampling to Approximate Counting Markov Chain Monte Carlo Method

Introduction Metropolis Algorithm

# MCMC Continued

#### Lemma

For a finite state space  $\Omega$  and neighborhood structure  $\{N(X)|x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ .

# MCMC Continued

#### Lemma

For a finite state space  $\Omega$  and neighborhood structure  $\{N(X)|x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ . Let M be any number such that  $M \ge N$ . Consider a Markov chain where

$$P_{x,y} = \begin{cases} \frac{1}{M}, & \text{if } x \neq y \text{ and } y \in N(x), \end{cases}$$

#### Lemma

For a finite state space  $\Omega$  and neighborhood structure  $\{N(X)|x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ . Let M be any number such that  $M \ge N$ . Consider a Markov chain where

$$P_{x,y} = \begin{cases} \frac{1}{M}, & \text{if } x \neq y \text{ and } y \in N(x), \\ 0, & \text{if } x \neq y \text{ and } y \notin N(x), \end{cases}$$

#### Lemma

For a finite state space  $\Omega$  and neighborhood structure  $\{N(X)|x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ . Let M be any number such that  $M \ge N$ . Consider a Markov chain where

$$P_{x,y} = \begin{cases} \frac{1}{M}, & \text{if } x \neq y \text{ and } y \in N(x), \\ 0, & \text{if } x \neq y \text{ and } y \notin N(x), \\ 1 - \frac{N(x)}{M}, & \text{if } x = y. \end{cases}$$

#### Lemma

For a finite state space  $\Omega$  and neighborhood structure  $\{N(X)|x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ . Let M be any number such that  $M \ge N$ . Consider a Markov chain where

$$P_{x,y} = \begin{cases} \frac{1}{M}, & \text{if } x \neq y \text{ and } y \in N(x), \\ 0, & \text{if } x \neq y \text{ and } y \notin N(x), \\ 1 - \frac{N(x)}{M}, & \text{if } x = y. \end{cases}$$

If this chain is irreducible and aperiodic, then the stationary distribution is the uniform distribution.

Approximate Sampling to Approximate Counting Markov Chain Monte Carlo Method

Introduction Metropolis Algorithm

# MCMC Continued

### Proof

We show that chain is time reversible and apply Theorem (for stationary distribution).

Approximate Sampling to Approximate Counting Markov Chain Monte Carlo Method Introduction Metropolis Algorithm

# MCMC Continued

### Proof

# MCMC Continued

### Proof

$$\pi_{x} \cdot P_{x,y} = \pi_{y} \cdot P_{y,x},$$

# MCMC Continued

### Proof

$$\pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x},$$
  
since  $P_{x,y} = P_{y,x} = \frac{1}{M}.$ 

# MCMC Continued

### Proof

$$\pi_{x} \cdot P_{x,y} = \pi_{y} \cdot P_{y,x},$$
  
since  $P_{x,y} = P_{y,x} = \frac{1}{M}.$   
 $\implies \pi_{x} = \frac{1}{|\Omega|}$  is the stationary distribution.

### Example

### Example

Consider the following simple Markov chain, whose states are independent sets in a graph G = (V, E).

(1)  $X_0$  is an arbitrary independent set in *G*.

### Example

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :

### Example

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,

### Example

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$  then  $X_{i+1} = X_i \setminus \{v\}$ ,

### Example

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$  then  $X_{i+1} = X_i \setminus \{v\}$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then  $X_{i+1} = X_i \cup \{v\}$ ,

### Example

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$  then  $X_{i+1} = X_i \setminus \{v\}$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then  $X_{i+1} = X_i \cup \{v\}$ ,
  - (d) otherwise,  $X_{i+1} = X_i$ .

### Example

Consider the following simple Markov chain, whose states are independent sets in a graph G = (V, E).

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$  then  $X_{i+1} = X_i \setminus \{v\}$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then  $X_{i+1} = X_i \cup \{v\}$ ,
  - (d) otherwise,  $X_{i+1} = X_i$ .

#### contd...

### Example

Consider the following simple Markov chain, whose states are independent sets in a graph G = (V, E).

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$  then  $X_{i+1} = X_i \setminus \{v\}$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then  $X_{i+1} = X_i \cup \{v\}$ ,
  - (d) otherwise,  $X_{i+1} = X_i$ .

#### contd...

Chain is :

(i) Irreducible

### Example

Consider the following simple Markov chain, whose states are independent sets in a graph G = (V, E).

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$  then  $X_{i+1} = X_i \setminus \{v\}$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then  $X_{i+1} = X_i \cup \{v\}$ ,
  - (d) otherwise,  $X_{i+1} = X_i$ .

#### contd...

- (i) Irreducible
- (ii) Aperiodic

### Example

Consider the following simple Markov chain, whose states are independent sets in a graph G = (V, E).

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$  then  $X_{i+1} = X_i \setminus \{v\}$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then  $X_{i+1} = X_i \cup \{v\}$ ,
  - (d) otherwise,  $X_{i+1} = X_i$ .

#### contd...

- (i) Irreducible
- (ii) Aperiodic

(iii) When 
$$y \neq x$$
, it follows that  $P_{x,y} = \frac{1}{|V|}$  or 0.

### Example

Consider the following simple Markov chain, whose states are independent sets in a graph G = (V, E).

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$  then  $X_{i+1} = X_i \setminus \{v\}$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then  $X_{i+1} = X_i \cup \{v\}$ ,
  - (d) otherwise,  $X_{i+1} = X_i$ .

#### contd...

- (i) Irreducible
- (ii) Aperiodic
- (iii) When  $y \neq x$ , it follows that  $P_{x,y} = \frac{1}{|V|}$  or 0.
- $\implies$  Stationary distribution is the uniform distribution

### Outline



- Definition
- Example



- Introduction
- Metropolis Algorithm

Approximate Sampling to Approximate Counting Markov Chain Monte Carlo Method ntroduction Vetropolis Algorithm

# Metropolis Algorithm

Metropolis Algorithm

# Metropolis Algorithm

#### Metropolis Algorithm

It refers to a general construction algorithm that transforms any irreducible Markov chain on a state space  $\Omega$  to a time-reversible Markov chain with a required stationary distribution.
#### Metropolis Algorithm

It refers to a general construction algorithm that transforms any irreducible Markov chain on a state space  $\Omega$  to a time-reversible Markov chain with a required stationary distribution.

#### Notes

Assume we have designed an irreducible state space for a Markov chain.

### Metropolis Algorithm

It refers to a general construction algorithm that transforms any irreducible Markov chain on a state space  $\Omega$  to a time-reversible Markov chain with a required stationary distribution.

#### Notes

Assume we have designed an irreducible state space for a Markov chain. We want to construct Markov chain on this state space with a stationary distribution,  $\pi_x = \frac{b(x)}{B}, \forall x \in \Omega$  we have b(x) > 0 such that  $B = \sum_{x \in \Omega} b(x)$  is finite.

#### Lemma

For a finite state space  $\Omega$  and neighborhood structure  $\{N(X)|x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ .

#### Lemma

For a finite state space  $\Omega$  and neighborhood structure  $\{N(X)|x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ . Let M be any number such that  $M \ge N$ . For all  $x \in \Omega$ , let  $\pi_x > 0$  be the desired probability of state x in the stationary distribution.

#### Lemma

For a finite state space  $\Omega$  and neighborhood structure  $\{N(X)|x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ . Let M be any number such that  $M \ge N$ . For all  $x \in \Omega$ , let  $\pi_x > 0$  be the desired probability of state x in the stationary distribution. Consider a Markov chain where

$$P_{x,y} = \begin{cases} \frac{1}{M}\min(1,\frac{\pi_y}{\pi_x}) & \text{if } x \neq y \text{ and } y \in N(x), \end{cases}$$

#### Lemma

For a finite state space  $\Omega$  and neighborhood structure  $\{N(X)|x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ . Let M be any number such that  $M \ge N$ . For all  $x \in \Omega$ , let  $\pi_x > 0$  be the desired probability of state x in the stationary distribution. Consider a Markov chain where

$$P_{x,y} = \begin{cases} \frac{1}{M}\min(1,\frac{\pi_y}{\pi_x}) & \text{if } x \neq y \text{ and } y \in N(x), \\ 0 & \text{if } x \neq y \text{ and } y \notin N(x), \end{cases}$$

#### Lemma

For a finite state space  $\Omega$  and neighborhood structure  $\{N(X)|x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ . Let M be any number such that  $M \ge N$ . For all  $x \in \Omega$ , let  $\pi_x > 0$  be the desired probability of state x in the stationary distribution. Consider a Markov chain where

$$P_{x,y} = \begin{cases} \frac{1}{M} \min(1, \frac{\pi_y}{\pi_x}) & \text{if } x \neq y \text{ and } y \in N(x), \\ 0 & \text{if } x \neq y \text{ and } y \notin N(x), \\ 1 - \sum_{y \neq x} P_{x,y} & \text{if } x = y. \end{cases}$$

#### Lemma

For a finite state space  $\Omega$  and neighborhood structure  $\{N(X)|x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ . Let M be any number such that  $M \ge N$ . For all  $x \in \Omega$ , let  $\pi_x > 0$  be the desired probability of state x in the stationary distribution. Consider a Markov chain where

$$P_{x,y} = \begin{cases} \frac{1}{M} \min(1, \frac{\pi_y}{\pi_x}) & \text{if } x \neq y \text{ and } y \in N(x), \\ 0 & \text{if } x \neq y \text{ and } y \notin N(x), \\ 1 - \sum_{y \neq x} P_{x,y} & \text{if } x = y. \end{cases}$$

Then, if this chain is irreducible and aperiodic, the stationary distribution is given by the probabilities  $\pi_x$ .

# Proof

We show that chain is time reversible and apply Theorem (for stationary distribution).

#### Introduction Metropolis Algorithm

# Lemma

# Proof

We show that chain is time reversible and apply Theorem (for stationary distribution). For any  $x \neq y$  if  $\pi_x \leq \pi_y$  then  $P_{x,y} = 1$  and  $P_{y,x} = \frac{\pi_x}{\pi_y}$ .

# Proof

We show that chain is time reversible and apply Theorem (for stationary distribution). For any  $x \neq y$  if  $\pi_x \leq \pi_y$  then  $P_{x,y} = 1$  and  $P_{y,x} = \frac{\pi_x}{\pi_y}$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ .

# Proof

We show that chain is time reversible and apply Theorem (for stationary distribution). For any  $x \neq y$  if  $\pi_x \leq \pi_y$  then  $P_{x,y} = 1$  and  $P_{y,x} = \frac{\pi_x}{\pi_y}$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . Similarly, if  $\pi_x > \pi_y$ , then  $P_{x,y} = \frac{\pi_y}{\pi_x}$  and  $P_{y,x} = 1$ .

#### Introduction Metropolis Algorithm

# Lemma

# Proof

We show that chain is time reversible and apply Theorem (for stationary distribution). For any  $x \neq y$  if  $\pi_x \leq \pi_y$  then  $P_{x,y} = 1$  and  $P_{y,x} = \frac{\pi_x}{\pi_y}$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . Similarly, if  $\pi_x > \pi_y$ , then  $P_{x,y} = \frac{\pi_y}{\pi_x}$  and  $P_{y,x} = 1$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ .

#### Proof

We show that chain is time reversible and apply Theorem (for stationary distribution). For any  $x \neq y$  if  $\pi_x \leq \pi_y$  then  $P_{x,y} = 1$  and  $P_{y,x} = \frac{\pi_x}{\pi_y}$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . Similarly, if  $\pi_x > \pi_y$ , then  $P_{x,y} = \frac{\pi_y}{\pi_x}$  and  $P_{y,x} = 1$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . By Theorem (for stationary distribution), the stationary distribution is given by  $\pi_x$ .

### Proof

We show that chain is time reversible and apply Theorem (for stationary distribution). For any  $x \neq y$  if  $\pi_x \leq \pi_y$  then  $P_{x,y} = 1$  and  $P_{y,x} = \frac{\pi_x}{\pi_y}$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . Similarly, if  $\pi_x > \pi_y$ , then  $P_{x,y} = \frac{\pi_y}{\pi_x}$  and  $P_{y,x} = 1$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . By Theorem (for stationary distribution), the stationary distribution is given by  $\pi_x$ .

# Independent sets

Suppose we want to create Markov chain where, in the stationary distribution, each independent set *I* has probability proportional to  $\lambda^{|I|}$  for some constant parameter  $\lambda > 0$ .

### Proof

We show that chain is time reversible and apply Theorem (for stationary distribution). For any  $x \neq y$  if  $\pi_x \leq \pi_y$  then  $P_{x,y} = 1$  and  $P_{y,x} = \frac{\pi_x}{\pi_y}$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . Similarly, if  $\pi_x > \pi_y$ , then  $P_{x,y} = \frac{\pi_y}{\pi_x}$  and  $P_{y,x} = 1$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . By Theorem (for stationary distribution), the stationary distribution is given by  $\pi_x$ .

#### Independent sets

Suppose we want to create Markov chain where, in the stationary distribution, each independent set *I* has probability proportional to  $\lambda^{|I|}$  for some constant parameter  $\lambda > 0$ . i.e.  $\pi_x = \frac{\lambda^{|I_x|}}{p}$ ,

### Proof

We show that chain is time reversible and apply Theorem (for stationary distribution). For any  $x \neq y$  if  $\pi_x \leq \pi_y$  then  $P_{x,y} = 1$  and  $P_{y,x} = \frac{\pi_x}{\pi_y}$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . Similarly, if  $\pi_x > \pi_y$ , then  $P_{x,y} = \frac{\pi_y}{\pi_x}$  and  $P_{y,x} = 1$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . By Theorem (for stationary distribution), the stationary distribution is given by  $\pi_x$ .

### Independent sets

Suppose we want to create Markov chain where, in the stationary distribution, each independent set *I* has probability proportional to  $\lambda^{|I|}$  for some constant parameter  $\lambda > 0$ .

i.e. 
$$\pi_x = \frac{\lambda^{|Y_x|}}{B}$$
,

where  $I_x$  is independent set corresponding to state x and  $B = \sum_x \lambda^{|I_x|}$ .

### Proof

We show that chain is time reversible and apply Theorem (for stationary distribution). For any  $x \neq y$  if  $\pi_x \leq \pi_y$  then  $P_{x,y} = 1$  and  $P_{y,x} = \frac{\pi_x}{\pi_y}$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . Similarly, if  $\pi_x > \pi_y$ , then  $P_{x,y} = \frac{\pi_y}{\pi_x}$  and  $P_{y,x} = 1$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . By Theorem (for stationary distribution), the stationary distribution is given by  $\pi_x$ .

#### Independent sets

Suppose we want to create Markov chain where, in the stationary distribution, each independent set *I* has probability proportional to  $\lambda^{|I|}$  for some constant parameter  $\lambda > 0$ . i.e.  $\pi_x = \frac{\lambda^{|I_x|}}{B}$ , where  $I_x$  is independent set corresponding to state *x* and  $B = \sum_x \lambda^{|I_x|}$ .

Where  $I_X$  is independent set corresponding to state x and  $B = \sum_X \lambda^{1/2}$ When  $\lambda = 1$ , this is the uniform distribution,

### Proof

We show that chain is time reversible and apply Theorem (for stationary distribution). For any  $x \neq y$  if  $\pi_x \leq \pi_y$  then  $P_{x,y} = 1$  and  $P_{y,x} = \frac{\pi_x}{\pi_y}$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . Similarly, if  $\pi_x > \pi_y$ , then  $P_{x,y} = \frac{\pi_y}{\pi_x}$  and  $P_{y,x} = 1$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . By Theorem (for stationary distribution), the stationary distribution is given by  $\pi_x$ .

### Independent sets

Suppose we want to create Markov chain where, in the stationary distribution, each independent set *I* has probability proportional to  $\lambda^{|I|}$  for some constant parameter  $\lambda > 0$ .

i.e. 
$$\pi_X = \frac{\lambda^{|I_X|}}{B}$$
,

where  $I_x$  is independent set corresponding to state x and  $B = \sum_x \lambda^{|I_x|}$ .

When  $\lambda = 1$ , this is the uniform distribution,

when  $\lambda > 1$ , larger independent sets have a larger probability than smaller independent sets,

### Proof

We show that chain is time reversible and apply Theorem (for stationary distribution). For any  $x \neq y$  if  $\pi_x \leq \pi_y$  then  $P_{x,y} = 1$  and  $P_{y,x} = \frac{\pi_x}{\pi_y}$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . Similarly, if  $\pi_x > \pi_y$ , then  $P_{x,y} = \frac{\pi_y}{\pi_x}$  and  $P_{y,x} = 1$ .  $\implies \pi_x \cdot P_{x,y} = \pi_y \cdot P_{y,x}$ . By Theorem (for stationary distribution), the stationary distribution is given by  $\pi_x$ .

### Independent sets

Suppose we want to create Markov chain where, in the stationary distribution, each independent set *I* has probability proportional to  $\lambda^{|I|}$  for some constant parameter  $\lambda > 0$ .

i.e. 
$$\pi_x = \frac{\lambda^{|l_x|}}{B}$$
,

where  $I_x$  is independent set corresponding to state x and  $B = \sum_x \lambda^{|I_x|}$ .

When  $\lambda = 1$ , this is the uniform distribution,

when  $\lambda > 1$ , larger independent sets have a larger probability than smaller independent sets,

when  $\lambda <$  1, larger independent sets have smaller probability than smaller independent sets.

ntroduction Metropolis Algorithm

# Example

# Example

# Example

Consider the following variation on previous Markov chain for independent sets in a graph G = (V, E).

(1)  $X_0$  is an arbitrary independent set in *G*.

# Example

- (1)  $X_0$  is an arbitrary independent set in *G*.
- (2) To compute  $X_{i+1}$ :

### Example

Consider the following variation on previous Markov chain for independent sets in a graph G = (V, E).

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :

(a) choose a vertex v uniformly at random from V,

### Example

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$ , set  $X_{i+1} = X_i \setminus \{v\}$  with probability min $(1, \frac{1}{\lambda})$ ,

### Example

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$ , set  $X_{i+1} = X_i \setminus \{v\}$  with probability min $(1, \frac{1}{\lambda})$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then put  $X_{i+1} = X_i \cup \{v\}$  with probability min $(1, \lambda)$ ,

### Example

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$ , set  $X_{i+1} = X_i \setminus \{v\}$  with probability min $(1, \frac{1}{\lambda})$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then put  $X_{i+1} = X_i \cup \{v\}$  with probability min $(1, \lambda)$ ,
  - (d) otherwise, set  $X_{i+1} = X_i$ .

### Example

Consider the following variation on previous Markov chain for independent sets in a graph G = (V, E).

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$ , set  $X_{i+1} = X_i \setminus \{v\}$  with probability min $(1, \frac{1}{\lambda})$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then put  $X_{i+1} = X_i \cup \{v\}$  with probability min $(1, \lambda)$ ,
  - (d) otherwise, set  $X_{i+1} = X_i$ .

### Two-step approach

Choose a vertex v to add or delete with probability  $\frac{1}{M}$ ; here M = |V|.

### Example

Consider the following variation on previous Markov chain for independent sets in a graph G = (V, E).

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$ , set  $X_{i+1} = X_i \setminus \{v\}$  with probability min $(1, \frac{1}{\lambda})$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then put  $X_{i+1} = X_i \cup \{v\}$  with probability min $(1, \lambda)$ ,
  - (d) otherwise, set  $X_{i+1} = X_i$ .

### Two-step approach

Choose a vertex v to add or delete with probability  $\frac{1}{M}$ ; here M = |V|. This proposal is accepted with probability  $min(1, \frac{\pi_y}{\pi_x})$ , where x is current state and y is proposed state.

### Example

Consider the following variation on previous Markov chain for independent sets in a graph G = (V, E).

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$ , set  $X_{i+1} = X_i \setminus \{v\}$  with probability min $(1, \frac{1}{\lambda})$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then put  $X_{i+1} = X_i \cup \{v\}$  with probability min $(1, \lambda)$ ,
  - (d) otherwise, set  $X_{i+1} = X_i$ .

### Two-step approach

Choose a vertex v to add or delete with probability  $\frac{1}{M}$ ; here M = |V|. This proposal is accepted with probability  $min(1, \frac{\pi_y}{\pi_x})$ , where x is current state and y is proposed state.

(i) If chain adds a vertex,  $\frac{\pi_y}{\pi_x}$  is  $\lambda$ 

### Example

Consider the following variation on previous Markov chain for independent sets in a graph G = (V, E).

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$ , set  $X_{i+1} = X_i \setminus \{v\}$  with probability min $(1, \frac{1}{\lambda})$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then put  $X_{i+1} = X_i \cup \{v\}$  with probability min $(1, \lambda)$ ,
  - (d) otherwise, set  $X_{i+1} = X_i$ .

### Two-step approach

Choose a vertex v to add or delete with probability  $\frac{1}{M}$ ; here M = |V|. This proposal is accepted with probability  $min(1, \frac{\pi_y}{\pi_x})$ , where x is current state and y is proposed state.

- (i) If chain adds a vertex,  $\frac{\pi_y}{\pi_x}$  is  $\lambda$
- (ii) If chain deletes a vertex  $\frac{\pi_y}{\pi_x}$  is  $\frac{1}{\lambda}$

### Example

Consider the following variation on previous Markov chain for independent sets in a graph G = (V, E).

- (1)  $X_0$  is an arbitrary independent set in G.
- (2) To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V,
  - (b) if  $v \in X_i$ , set  $X_{i+1} = X_i \setminus \{v\}$  with probability min $(1, \frac{1}{\lambda})$ ,
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then put  $X_{i+1} = X_i \cup \{v\}$  with probability min $(1, \lambda)$ ,
  - (d) otherwise, set  $X_{i+1} = X_i$ .

### Two-step approach

Choose a vertex v to add or delete with probability  $\frac{1}{M}$ ; here M = |V|. This proposal is accepted with probability  $min(1, \frac{\pi_y}{\pi_x})$ , where x is current state and y is proposed state.

- (i) If chain adds a vertex,  $\frac{\pi_y}{\pi_x}$  is  $\lambda$
- (ii) If chain deletes a vertex  $\frac{\pi_y}{\pi_x}$  is  $\frac{1}{\lambda}$ The transition probability  $P_{x,y} = \frac{1}{M} \cdot \min(1, \frac{\pi_y}{\pi_x})$ , so Lemma applies.

#### Notes

We dint need to know  $B = \sum_{x} \lambda^{|I_x|}$ .

Graphs with *n* vertices can have exponentially many independent sets calculating whose sum would be expensive task.

Markov chain here gives the stationary distribution by using only the ratios  $\frac{\pi_y}{\pi_x}$ .