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Definition

Approximate Sampling to Approximate Counting

If a solution to a self-reducible combinatorial problem can be sampled, we can
construct a randomized algorithm which counts the number of solutions.

Definition

Let w be the (random) output of a sampling algorithm for a finite sample space Ω. The
sampling algorithm generates an ε−uniform sample of Ω if, for any subset S of Ω,

∣∣∣∣P(w ∈ S)−
|S|
|Ω|

∣∣∣∣ ≤ ε.
A sampling algorithm is a fully polynomial almost uniform sample (FPAUS) for a
problem if, given an input x and a parameter ε > 0, it generates an ε - uniform sample
of Ω(x) and runs in time that is polynomial in ln ε−1 and the size of the input x.
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FPAUS for independent sets.

Question

What is an independent set?
It is a subset of vertices in a graph, such that no two of which are adjacent.

a

b
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f
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Example

Input : Graph G = (V ,E) and parameter ε.
Sample space : All independent sets in G.
Output : ε-uniform sample of the independent sets.
Goal : To show that, given an FPAUS for independent sets, we can construct an
FPRAS for counting the number of independent sets.
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Continued

Assumption:

Input graph G has m edges.
Let e1, e2, e3, . . . , em be an arbitrary ordering of the edges.
Ei be the set of the first i edges in E .
Let Gi = (V ,Ei ).
Gi−1 is obtained from Gi by removing a single edge.

Let Ω(Gi ) denote set of independent sets in Gi .
The number of independent sets in G can be expressed as,

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| ×

|Ω(Gm−1)|
|Ω(Gm−2)| ×

|Ω(Gm−2)|
|Ω(Gm−3)| × · · · ×

|Ω(G1)|
|Ω(G0)| × |Ω(G0)|.

G0 has no edges, every subset of V is an independent set,therefore
Ω(G0) = 2n.

Meghana Randomized Algorithms



Approximate Sampling to Approximate Counting
Markov Chain Monte Carlo Method

Definition
Example

Example

Continued

Assumption:
Input graph G has m edges.

Let e1, e2, e3, . . . , em be an arbitrary ordering of the edges.
Ei be the set of the first i edges in E .
Let Gi = (V ,Ei ).
Gi−1 is obtained from Gi by removing a single edge.

Let Ω(Gi ) denote set of independent sets in Gi .
The number of independent sets in G can be expressed as,

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| ×

|Ω(Gm−1)|
|Ω(Gm−2)| ×

|Ω(Gm−2)|
|Ω(Gm−3)| × · · · ×

|Ω(G1)|
|Ω(G0)| × |Ω(G0)|.

G0 has no edges, every subset of V is an independent set,therefore
Ω(G0) = 2n.

Meghana Randomized Algorithms



Approximate Sampling to Approximate Counting
Markov Chain Monte Carlo Method

Definition
Example

Example

Continued

Assumption:
Input graph G has m edges.
Let e1, e2, e3, . . . , em be an arbitrary ordering of the edges.

Ei be the set of the first i edges in E .
Let Gi = (V ,Ei ).
Gi−1 is obtained from Gi by removing a single edge.

Let Ω(Gi ) denote set of independent sets in Gi .
The number of independent sets in G can be expressed as,

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| ×

|Ω(Gm−1)|
|Ω(Gm−2)| ×

|Ω(Gm−2)|
|Ω(Gm−3)| × · · · ×

|Ω(G1)|
|Ω(G0)| × |Ω(G0)|.

G0 has no edges, every subset of V is an independent set,therefore
Ω(G0) = 2n.

Meghana Randomized Algorithms



Approximate Sampling to Approximate Counting
Markov Chain Monte Carlo Method

Definition
Example

Example

Continued

Assumption:
Input graph G has m edges.
Let e1, e2, e3, . . . , em be an arbitrary ordering of the edges.
Ei be the set of the first i edges in E .

Let Gi = (V ,Ei ).
Gi−1 is obtained from Gi by removing a single edge.

Let Ω(Gi ) denote set of independent sets in Gi .
The number of independent sets in G can be expressed as,

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| ×

|Ω(Gm−1)|
|Ω(Gm−2)| ×

|Ω(Gm−2)|
|Ω(Gm−3)| × · · · ×

|Ω(G1)|
|Ω(G0)| × |Ω(G0)|.

G0 has no edges, every subset of V is an independent set,therefore
Ω(G0) = 2n.

Meghana Randomized Algorithms



Approximate Sampling to Approximate Counting
Markov Chain Monte Carlo Method

Definition
Example

Example

Continued

Assumption:
Input graph G has m edges.
Let e1, e2, e3, . . . , em be an arbitrary ordering of the edges.
Ei be the set of the first i edges in E .
Let Gi = (V ,Ei ).

Gi−1 is obtained from Gi by removing a single edge.

Let Ω(Gi ) denote set of independent sets in Gi .
The number of independent sets in G can be expressed as,

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| ×

|Ω(Gm−1)|
|Ω(Gm−2)| ×

|Ω(Gm−2)|
|Ω(Gm−3)| × · · · ×

|Ω(G1)|
|Ω(G0)| × |Ω(G0)|.

G0 has no edges, every subset of V is an independent set,therefore
Ω(G0) = 2n.

Meghana Randomized Algorithms



Approximate Sampling to Approximate Counting
Markov Chain Monte Carlo Method

Definition
Example

Example

Continued

Assumption:
Input graph G has m edges.
Let e1, e2, e3, . . . , em be an arbitrary ordering of the edges.
Ei be the set of the first i edges in E .
Let Gi = (V ,Ei ).
Gi−1 is obtained from Gi by removing a single edge.

Let Ω(Gi ) denote set of independent sets in Gi .
The number of independent sets in G can be expressed as,

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| ×

|Ω(Gm−1)|
|Ω(Gm−2)| ×

|Ω(Gm−2)|
|Ω(Gm−3)| × · · · ×

|Ω(G1)|
|Ω(G0)| × |Ω(G0)|.

G0 has no edges, every subset of V is an independent set,therefore
Ω(G0) = 2n.

Meghana Randomized Algorithms



Approximate Sampling to Approximate Counting
Markov Chain Monte Carlo Method

Definition
Example

Example

Continued

Assumption:
Input graph G has m edges.
Let e1, e2, e3, . . . , em be an arbitrary ordering of the edges.
Ei be the set of the first i edges in E .
Let Gi = (V ,Ei ).
Gi−1 is obtained from Gi by removing a single edge.

Let Ω(Gi ) denote set of independent sets in Gi .

The number of independent sets in G can be expressed as,

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| ×

|Ω(Gm−1)|
|Ω(Gm−2)| ×

|Ω(Gm−2)|
|Ω(Gm−3)| × · · · ×

|Ω(G1)|
|Ω(G0)| × |Ω(G0)|.

G0 has no edges, every subset of V is an independent set,therefore
Ω(G0) = 2n.

Meghana Randomized Algorithms



Approximate Sampling to Approximate Counting
Markov Chain Monte Carlo Method

Definition
Example

Example

Continued

Assumption:
Input graph G has m edges.
Let e1, e2, e3, . . . , em be an arbitrary ordering of the edges.
Ei be the set of the first i edges in E .
Let Gi = (V ,Ei ).
Gi−1 is obtained from Gi by removing a single edge.

Let Ω(Gi ) denote set of independent sets in Gi .
The number of independent sets in G can be expressed as,

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| ×

|Ω(Gm−1)|
|Ω(Gm−2)| ×

|Ω(Gm−2)|
|Ω(Gm−3)| × · · · ×

|Ω(G1)|
|Ω(G0)| × |Ω(G0)|.

G0 has no edges, every subset of V is an independent set,therefore
Ω(G0) = 2n.

Meghana Randomized Algorithms



Approximate Sampling to Approximate Counting
Markov Chain Monte Carlo Method

Definition
Example

Example

Continued

Assumption:
Input graph G has m edges.
Let e1, e2, e3, . . . , em be an arbitrary ordering of the edges.
Ei be the set of the first i edges in E .
Let Gi = (V ,Ei ).
Gi−1 is obtained from Gi by removing a single edge.

Let Ω(Gi ) denote set of independent sets in Gi .
The number of independent sets in G can be expressed as,

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| ×

|Ω(Gm−1)|
|Ω(Gm−2)| ×

|Ω(Gm−2)|
|Ω(Gm−3)| × · · · ×

|Ω(G1)|
|Ω(G0)| × |Ω(G0)|.

G0 has no edges, every subset of V is an independent set,

therefore
Ω(G0) = 2n.

Meghana Randomized Algorithms



Approximate Sampling to Approximate Counting
Markov Chain Monte Carlo Method

Definition
Example

Example

Continued

Assumption:
Input graph G has m edges.
Let e1, e2, e3, . . . , em be an arbitrary ordering of the edges.
Ei be the set of the first i edges in E .
Let Gi = (V ,Ei ).
Gi−1 is obtained from Gi by removing a single edge.

Let Ω(Gi ) denote set of independent sets in Gi .
The number of independent sets in G can be expressed as,

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| ×

|Ω(Gm−1)|
|Ω(Gm−2)| ×

|Ω(Gm−2)|
|Ω(Gm−3)| × · · · ×

|Ω(G1)|
|Ω(G0)| × |Ω(G0)|.

G0 has no edges, every subset of V is an independent set,therefore
Ω(G0) =

2n.

Meghana Randomized Algorithms



Approximate Sampling to Approximate Counting
Markov Chain Monte Carlo Method

Definition
Example

Example

Continued

Assumption:
Input graph G has m edges.
Let e1, e2, e3, . . . , em be an arbitrary ordering of the edges.
Ei be the set of the first i edges in E .
Let Gi = (V ,Ei ).
Gi−1 is obtained from Gi by removing a single edge.

Let Ω(Gi ) denote set of independent sets in Gi .
The number of independent sets in G can be expressed as,

|Ω(G)| = |Ω(Gm)|
|Ω(Gm−1)| ×

|Ω(Gm−1)|
|Ω(Gm−2)| ×

|Ω(Gm−2)|
|Ω(Gm−3)| × · · · ×

|Ω(G1)|
|Ω(G0)| × |Ω(G0)|.

G0 has no edges, every subset of V is an independent set,therefore
Ω(G0) = 2n.

Meghana Randomized Algorithms



Approximate Sampling to Approximate Counting
Markov Chain Monte Carlo Method

Definition
Example

Example

Continued

To estimate |Ω(G)|, we need good estimates for each of the ratios

ri =
|Ω(Gi )|
|Ω(Gi−1)| , i = 1, 2, . . .m.

More formally, we will develop estimates r̃i for the ratios ri , then estimates for the
number of independent sets in G will be,

2n
m∏

i=1

r̃i

while the actual number is

|Ω(G)| = 2n
m∏

i=1

ri .
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To evaluate the error in our estimate, we need to bound the ratio

R =
m∏

i=1

r̃i

ri
.

To have an (ε, δ)-approximation, we want P(|R − 1| ≤ ε) ≥ 1− δ.
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Lemma

Suppose that for all i , 1 ≤ i ≤ m, r̃i is an ( ε
2·m ,

δ
m )-approximation for ri . Then,

P(|R − 1| ≤ ε) ≥ 1− δ.

Proof

For each 1 ≤ i ≤ m, we have

P(|r̃i − ri | ≤
ε

2 ·m
· ri ) ≥ 1−

δ

m

P(|r̃i − ri | >
ε

2 ·m
· ri ) <

δ

m

By union bound, the probability that |r̃i − ri | > ( ε
2·m ) · ri for any i is at most δ;

Therefore |r̃i − ri | ≤ ( ε
2·m · ri ) for all i with probability at least 1− δ. Equivalently,

1−
ε

2 ·m
≤

r̃i

ri
≤ 1 +

ε

2 ·m
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Proof continued

When these bounds hold for all i , we can combine them to obtain,

1− ε ≤ (1−
ε

2 ·m
)m ≤

m∏
i=1

r̃i

ri
≤ (1 +

ε

2 ·m
)m ≤ 1 + ε

Notes

We need a method for obtaining an ( ε
2·m ,

δ
m )- approximation for the ri .

We estimate each of these ratios by a Monte Carlo algorithm that uses FPAUS for
sampling independent sets.
To estimate ri , we sample independent sets in Gi−1 and compute the fraction of these
sets that are also independent sets in Gi , as shown in the following algorithm.
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Estimating ri :

Input: Graphs Gi−1 = (V ,Ei−1) and Gi = (V ,Ei ).
Output: r̃i = an approximation of ri .

1: X ← 0
2: repeat
3: Generate an ( ε

6·m )− uniform sample from Ω(Gi−1).
4: If the sample is an independent set in Gi , let X ← X + 1.
5: until M = d1296m2ε−2 ln( 2·m

δ
)e independent trials

6: return r̃i ← X
M

Algorithm 2.1: Estimating ri
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Lemma

When m ≥ 1 and 0 < ε ≤ 1, the procedure for estimating ri yields an ( ε
2·m ,

δ
m )-

approximation for ri .

Proof

Read pages 261-262 in the book.

Proving involves

We first show that ri is not too small. Ω(Gi ) ⊆ Ω(Gi−1).
To bound the size of the set in Ω(Gi−1) \ Ω(Gi ),
associate each I ∈ Ω(Gi−1) \ Ω(Gi ) with an independent set I \ v ∈ Ω(Gi ).
We have,

ri =
|Ω(Gi )|
|Ω(Gi−1)|

=
|Ω(Gi )|

|Ω(Gi )|+ |Ω(Gi−1) \ Ω(Gi )|
≥

1
2
.
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continued

Consider M samples and let Xk be

Xk =

{
1 if the k th sample is in Ω(Gi )
0 otherwise

Since our samples are generated by an ( ε
6·m )- uniform sampler, by our previous

definition each Xi must satisfy,

|P(Xk = 1)−
|Ω(Gi )|
|Ω(Gi−1)|

| ≤
ε

6 ·m
.

Since Xk are indicator random variables and further by linearity of expectations, we get

|E[r̃i ]− ri | = |E[

∑M
i=1 Xk

M
]−

|Ω(Gi )|
|Ω(Gi−1)|

| ≤
ε

6 ·m
.

Lemma is completed by combining

(a) E[r̃i ] is close to ri and

(b) r̃i will be close to E[r̃i ] for a sufficiently large number of samples .

Using the above and ri ≥ 1/2 gives the desired ( ε
2·m ,

δ
m )- approximation.
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Theorem

Given a fully polynomial almost uniform sampler (FPAUS) for independent sets in any
graph, we can construct a fully polynomial randomized approximation scheme
(FPRAS) for the number of independent sets in a graph G.

Theorem

Given a fully polynomial almost uniform sampler (FPAUS) for independent sets in any
graph with maximum degree at most ∆, we can construct a fully polynomial
randomized approximation scheme (FPRAS) for the number of independent sets in a
graph G with maximum degree at most ∆.
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1 Approximate Sampling to Approximate Counting
Definition
Example

2 Markov Chain Monte Carlo Method
Introduction
Metropolis Algorithm
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Introduction

Definition

The Markov chain Monte Carlo (MCMC) method provides a very general approach to
sampling from a desired probability distribution.

Where MCMC is used

(i) Data Mining and Machine Learning

(ii) Bayesian methods

(iii) Biological and generic research
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Recall Markov chain

Questions

(i) Irreducible? Markov chain is said to be irreducible if its state space is a single
communicating class; i.e. , if it is possible to get to any state from any state.

(ii) Aperiodic? A state is periodic if it can only return to itself after a fixed number of
transitions greater than 1 (or multiple of a fixed number). A state that is not
periodic is aperiodic. A Markov chain is aperiodic if all states of the chain are
aperiodic.

(iii) Ergodic Markov chain? A state i is said to be ergodic if it is aperiodic and
positive recurrent. If all states in an irreducible Markov chain are ergodic, then the
chain is said to be ergodic.

(iv) Stationary distribution? A stationary distribution of a Markov chain is a
probability distribution π̄ such that π̄ = π̄ · P
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Recall Markov chain continued

Theorem (for stationary distribution)

Consider a finite, irreducible, and ergodic Markov chain with transition matrix P. If there
are nonnegative numbers π̄ = (π0, ...πn) such that

∑n
i=0 πi = 1 and if, for any pair of

states i, j ,

πi · Pi,j = πj · Pj,i ,

then π̄i is the stationary distribution corresponding to P.

Theorem

A random walk on G converges to a stationary distribution π̄, where

πv =
d(v)

2 · |E |
.

In a stationary distribution of a random walk, the probability of a vertex is proportional
to the degree of the vertex.
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MCMC Continued

Basic Idea

Define an ergodic Markov chain whose set of states is the sample space and whose
stationary distribution is the required sampling distribution.

Let X0,X1, . . . ,Xn be a run of the chain.
Markov chain converges to the stationary distribution from any starting state X0, after a
sufficiently large number of steps r , the distribution of the state Xr will be close to
stationary distribution and can be used as a sample.
Similarly starting from Xr , X2·r can be used as a sample and so on.
Therefore the sequence of states Xr ,X2·r ,X3·r , . . . can be used as the almost
independent samples from the stationary distribution of the Markov chain.
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MCMC Continued

Lemma

For a finite state space Ω and neighborhood structure {N(X)|x ∈ Ω}, let
N = maxx∈Ω |N(x)|.

Let M be any number such that M ≥ N. Consider a Markov chain where

Px,y =


1
M , if x 6= y and y ∈ N(x),
0, if x 6= y and y /∈ N(x),

1− N(x)
M , if x = y .

If this chain is irreducible and aperiodic, then the stationary distribution is the uniform
distribution.
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Proof

We show that chain is time reversible and apply Theorem (for stationary distribution).

For any x 6= y , if πx = πy then,

πx · Px,y = πy · Py,x ,

since Px,y = Py,x =
1
M
.

=⇒ πx =
1
|Ω|

is the stationary distribution.
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Example

Example

Consider the following simple Markov chain, whose states are independent sets in a
graph G = (V ,E).

(1) X0 is an arbitrary independent set in G.
(2) To compute Xi+1 :

(a) choose a vertex v uniformly at random from V,
(b) if v ∈ Xi then Xi+1 = Xi\{v},
(c) if v /∈ Xi and if adding v to Xi still gives an independent set, then Xi+1 = Xi ∪ {v},
(d) otherwise, Xi+1 = Xi .

contd...

Chain is :

(i) Irreducible

(ii) Aperiodic

(iii) When y 6= x , it follows that Px,y = 1
|V | or 0.

=⇒ Stationary distribution is the uniform distribution
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Metropolis Algorithm

It refers to a general construction algorithm that transforms any irreducible Markov
chain on a state space Ω to a time-reversible Markov chain with a required stationary
distribution.

Notes

Assume we have designed an irreducible state space for a Markov chain.
We want to construct Markov chain on this state space with a stationary distribution,
πx = b(x)

B , ∀x ∈ Ω we have b(x) > 0 such that B =
∑

x∈Ω b(x) is finite.
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Metropolis Algorithm

Lemma

For a finite state space Ω and neighborhood structure {N(X)|x ∈ Ω}, let
N = maxx∈Ω |N(x)|.

Let M be any number such that M ≥ N. For all x ∈ Ω, let πx > 0
be the desired probability of state x in the stationary distribution.
Consider a Markov chain where

Px,y =


1
M min(1, πy

πx
) if x 6= y and y ∈ N(x),

0 if x 6= y and y /∈ N(x),
1−

∑
y 6=x Px,y if x = y .

Then, if this chain is irreducible and aperiodic, the stationary distribution is given by the
probabilities πx .
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Lemma

Proof

We show that chain is time reversible and apply Theorem (for stationary distribution).

For any x 6= y if πx ≤ πy then Px,y = 1 and Py,x = πx
πy

.
=⇒ πx · Px,y = πy · Py,x .

Similarly, if πx > πy , then Px,y =
πy
πx

and Py,x = 1.
=⇒ πx · Px,y = πy · Py,x .

By Theorem (for stationary distribution), the stationary distribution is given by πx .

Independent sets

Suppose we want to create Markov chain where, in the stationary distribution, each
independent set I has probability proportional to λ|I| for some constant parameter
λ > 0.
i.e. πx = λ|Ix |

B ,
where Ix is independent set corresponding to state x and B =

∑
x λ
|Ix |.

When λ = 1, this is the uniform distribution,
when λ > 1, larger independent sets have a larger probability than smaller
independent sets,
when λ < 1, larger independent sets have smaller probability than smaller independent
sets.
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Example

Example

Consider the following variation on previous Markov chain for independent sets in a
graph G = (V ,E).

(1) X0 is an arbitrary independent set in G.
(2) To compute Xi+1 :

(a) choose a vertex v uniformly at random from V,
(b) if v ∈ Xi , set Xi+1 = Xi\{v} with probability min(1, 1

λ ),
(c) if v /∈ Xi and if adding v to Xi still gives an independent set, then put Xi+1 = Xi ∪ {v} with

probability min(1, λ),
(d) otherwise, set Xi+1 = Xi .

Two-step approach

Choose a vertex v to add or delete with probability 1
M ; here M = |V |.

This proposal is accepted with probability min(1, πy
πx

), where x is current state and y is
proposed state.

(i) If chain adds a vertex, πy
πx

is λ

(ii) If chain deletes a vertex πy
πx

is 1
λ

The transition probability Px,y = 1
M ·min(1, πy

πx
),

so Lemma applies.
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Notes

We dint need to know B =
∑

x λ
|Ix |.

Graphs with n vertices can have exponentially many independent sets calculating
whose sum would be expensive task.
Markov chain here gives the stationary distribution by using only the ratios πy

πx
.
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