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The Sorting Problem

Problem Statement

Given an array A of n distinct integers, in the indices A[1] through A[n],
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The Sorting Problem

Problem Statement

Given an array A of n distinct integers, in the indices A[1] through A[n], permute the elements of
A, so that A[1] < A[2] . . .A[n].
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The Randomized Quicksort Algorithm

The Sorting Problem

Problem Statement

Given an array A of n distinct integers, in the indices A[1] through A[n], permute the elements of
A, so that A[1] < A[2] . . .A[n].

Note

The assumption of distinctness simplifies the analysis.
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The Randomized Quicksort Algorithm

The Sorting Problem

Problem Statement

Given an array A of n distinct integers, in the indices A[1] through A[n], permute the elements of
A, so that A[1] < A[2] . . .A[n].

Note

The assumption of distinctness simplifies the analysis. It has no bearing on the running time.

Subramani Sample Analyses



The Randomized Quicksort Algorithm

The Partition subroutine

Function PARTITION(A,p,q)

1: {We partition the sub-array A[p,p+1, . . . ,q] about A[p].}
2: for (i = (p +1) to q) do
3: if (A[i] < A[p]) then
4: Insert A[i] into bucket L.
5: else
6: if (A[i] > A[p]) then
7: Insert A[i] into bucket U.
8: end if
9: end if

10: end for
11: Copy A[p] into A[(|L|+1)].
12: Copy the elements of L into the first |L| entries of A[p · ·q].
13: Copy A[p] into A[(|L|+1)].
14: Copy the elements of U into the entries of A[(|L|+2) · ·q].
15: return (|L|+1).
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The Partition subroutine

Function PARTITION(A,p,q)

1: {We partition the sub-array A[p,p+1, . . . ,q] about A[p].}
2: for (i = (p +1) to q) do
3: if (A[i] < A[p]) then
4: Insert A[i] into bucket L.
5: else
6: if (A[i] > A[p]) then
7: Insert A[i] into bucket U.
8: end if
9: end if

10: end for
11: Copy A[p] into A[(|L|+1)].
12: Copy the elements of L into the first |L| entries of A[p · ·q].
13: Copy A[p] into A[(|L|+1)].
14: Copy the elements of U into the entries of A[(|L|+2) · ·q].
15: return (|L|+1).

Note

Partitioning an array can be achieved in linear time.
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The Quicksort Algorithm
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The Randomized Quicksort Algorithm

The Quicksort Algorithm

Function QUICKSORT(A, p, q)

1: if (p ≥ q) then
2: return
3: else
4: j =PARTITION(A, p, q).
5: Quicksort(A, p, j −1).
6: Quicksort(A, j +1, q).
7: end if
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The Quicksort Algorithm

Function QUICKSORT(A, p, q)

1: if (p ≥ q) then
2: return
3: else
4: j =PARTITION(A, p, q).
5: Quicksort(A, p, j −1).
6: Quicksort(A, j +1, q).
7: end if

Note

The main program calls QUICKSORT(A, 1, n).
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The Randomized Quicksort Algorithm

Worst-case analysis

Analysis

What is the worst-case input for QUICKSORT()?
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Worst-case analysis

Analysis

What is the worst-case input for QUICKSORT()? How many comparisons in the worst case?
O(n2).
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The Randomized Quicksort Algorithm

Worst-case analysis

Analysis

What is the worst-case input for QUICKSORT()? How many comparisons in the worst case?
O(n2).

Intuition for randomized case

What sort of assumptions are reasonable in analysis?
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Randomized Quicksort
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Randomized Quicksort

Function RANDOMIZED-QUICKSORT(A, p, q)

1: if (p ≥ q) then
2: return
3: else
4: Choose a number, say r , uniformly and at random from the set {p,p +1, . . . ,q}.
5: Swap A[p] and A[r ].
6: j =PARTITION(A, p, q).
7: Quicksort(A, p, j −1).
8: Quicksort(A, j +1, q).
9: end if
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Randomized Quicksort

Function RANDOMIZED-QUICKSORT(A, p, q)

1: if (p ≥ q) then
2: return
3: else
4: Choose a number, say r , uniformly and at random from the set {p,p +1, . . . ,q}.
5: Swap A[p] and A[r ].
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Randomized Quicksort

Function RANDOMIZED-QUICKSORT(A, p, q)

1: if (p ≥ q) then
2: return
3: else
4: Choose a number, say r , uniformly and at random from the set {p,p +1, . . . ,q}.
5: Swap A[p] and A[r ].
6: j =PARTITION(A, p, q).
7: Quicksort(A, p, j −1).
8: Quicksort(A, j +1, q).
9: end if

Note

Worst case running time? O(n2)! However, for a randomized algorithm we are not interested in
worst-case running time, but in expected running time.
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Decision Tree Analysis
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The Randomized Quicksort Algorithm

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node.
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Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node. The elements in the node which are less than the pivot
are shunted to the left subtree and the rest of the elements (excluding the pivot) are shunted to
the right subtree.
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Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node. The elements in the node which are less than the pivot
are shunted to the left subtree and the rest of the elements (excluding the pivot) are shunted to
the right subtree. An in-order traversal of T focusing on the pivots, gives the sorted order.

Subramani Sample Analyses



The Randomized Quicksort Algorithm

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node. The elements in the node which are less than the pivot
are shunted to the left subtree and the rest of the elements (excluding the pivot) are shunted to
the right subtree. An in-order traversal of T focusing on the pivots, gives the sorted order. What
is the work done at each level of the tree?

Subramani Sample Analyses



The Randomized Quicksort Algorithm

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node. The elements in the node which are less than the pivot
are shunted to the left subtree and the rest of the elements (excluding the pivot) are shunted to
the right subtree. An in-order traversal of T focusing on the pivots, gives the sorted order. What
is the work done at each level of the tree? O(n).

Subramani Sample Analyses



The Randomized Quicksort Algorithm

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node. The elements in the node which are less than the pivot
are shunted to the left subtree and the rest of the elements (excluding the pivot) are shunted to
the right subtree. An in-order traversal of T focusing on the pivots, gives the sorted order. What
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Subramani Sample Analyses



The Randomized Quicksort Algorithm

Decision Tree Analysis

Decision Tree
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are shunted to the left subtree and the rest of the elements (excluding the pivot) are shunted to
the right subtree. An in-order traversal of T focusing on the pivots, gives the sorted order. What
is the work done at each level of the tree? O(n). Let h denote the height of T . Observe that h is
a random variable and we are interested in its expected value.
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a random variable and we are interested in its expected value.
The rank of an element of A is its position in A, when A has been sorted.
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Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node. The elements in the node which are less than the pivot
are shunted to the left subtree and the rest of the elements (excluding the pivot) are shunted to
the right subtree. An in-order traversal of T focusing on the pivots, gives the sorted order. What
is the work done at each level of the tree? O(n). Let h denote the height of T . Observe that h is
a random variable and we are interested in its expected value.
The rank of an element of A is its position in A, when A has been sorted.
When you pick an element at random, what is the probability that the rank of the element chosen
is between 1

4 ·n and 3
4 ·n, where n is the number of elements in the array?
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Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node. The elements in the node which are less than the pivot
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4 ·n, where n is the number of elements in the array? 1

2 .
Consider the tree T .
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Decision Tree
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When you pick an element at random, what is the probability that the rank of the element chosen
is between 1

4 ·n and 3
4 ·n, where n is the number of elements in the array? 1

2 .
Consider the tree T . We define an internal node o of the tree to be good, if both its children have
at most 3

4 · |o| nodes, where |o| denotes the number of elements in the node o.
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node o of T , what is the probability that it is good?
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Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
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4 · |o| nodes, where |o| denotes the number of elements in the node o. Given an intenal

node o of T , what is the probability that it is good? At least 1
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Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node. The elements in the node which are less than the pivot
are shunted to the left subtree and the rest of the elements (excluding the pivot) are shunted to
the right subtree. An in-order traversal of T focusing on the pivots, gives the sorted order. What
is the work done at each level of the tree? O(n). Let h denote the height of T . Observe that h is
a random variable and we are interested in its expected value.
The rank of an element of A is its position in A, when A has been sorted.
When you pick an element at random, what is the probability that the rank of the element chosen
is between 1

4 ·n and 3
4 ·n, where n is the number of elements in the array? 1

2 .
Consider the tree T . We define an internal node o of the tree to be good, if both its children have
at most 3

4 · |o| nodes, where |o| denotes the number of elements in the node o. Given an intenal

node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T .
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Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node. The elements in the node which are less than the pivot
are shunted to the left subtree and the rest of the elements (excluding the pivot) are shunted to
the right subtree. An in-order traversal of T focusing on the pivots, gives the sorted order. What
is the work done at each level of the tree? O(n). Let h denote the height of T . Observe that h is
a random variable and we are interested in its expected value.
The rank of an element of A is its position in A, when A has been sorted.
When you pick an element at random, what is the probability that the rank of the element chosen
is between 1

4 ·n and 3
4 ·n, where n is the number of elements in the array? 1

2 .
Consider the tree T . We define an internal node o of the tree to be good, if both its children have
at most 3

4 · |o| nodes, where |o| denotes the number of elements in the node o. Given an intenal

node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T . How many good nodes can exist on such a path?
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Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node. The elements in the node which are less than the pivot
are shunted to the left subtree and the rest of the elements (excluding the pivot) are shunted to
the right subtree. An in-order traversal of T focusing on the pivots, gives the sorted order. What
is the work done at each level of the tree? O(n). Let h denote the height of T . Observe that h is
a random variable and we are interested in its expected value.
The rank of an element of A is its position in A, when A has been sorted.
When you pick an element at random, what is the probability that the rank of the element chosen
is between 1

4 ·n and 3
4 ·n, where n is the number of elements in the array? 1

2 .
Consider the tree T . We define an internal node o of the tree to be good, if both its children have
at most 3

4 · |o| nodes, where |o| denotes the number of elements in the node o. Given an intenal

node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T . How many good nodes can exist on such a path? At most
r = log 4

3
n.
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Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T , with a
pivot being chosen at each internal node. The elements in the node which are less than the pivot
are shunted to the left subtree and the rest of the elements (excluding the pivot) are shunted to
the right subtree. An in-order traversal of T focusing on the pivots, gives the sorted order. What
is the work done at each level of the tree? O(n). Let h denote the height of T . Observe that h is
a random variable and we are interested in its expected value.
The rank of an element of A is its position in A, when A has been sorted.
When you pick an element at random, what is the probability that the rank of the element chosen
is between 1

4 ·n and 3
4 ·n, where n is the number of elements in the array? 1

2 .
Consider the tree T . We define an internal node o of the tree to be good, if both its children have
at most 3

4 · |o| nodes, where |o| denotes the number of elements in the node o. Given an intenal

node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T . How many good nodes can exist on such a path? At most
r = log 4

3
n. What is the expected number of nodes on a root to leaf path before you see r good

nodes?
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The Randomized Quicksort Algorithm

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p.
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The Randomized Quicksort Algorithm

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is the
expected number of tosses to obtain k heads?
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The Randomized Quicksort Algorithm

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is the
expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)
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The Randomized Quicksort Algorithm

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is the
expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is
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The Randomized Quicksort Algorithm

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is the
expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2

=
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The Randomized Quicksort Algorithm

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is the
expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2

= 2 · r =
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The Randomized Quicksort Algorithm

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is the
expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2

= 2 · r = 2 · log 4
3

n.
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The Randomized Quicksort Algorithm

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is the
expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2

= 2 · r = 2 · log 4
3

n. However, this

is the expected height of T , i.e., E[h].
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Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is the
expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2

= 2 · r = 2 · log 4
3

n. However, this

is the expected height of T , i.e., E[h]. Therefore, the expected work undertaken by the algorithm
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The Randomized Quicksort Algorithm

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is the
expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2

= 2 · r = 2 · log 4
3

n. However, this

is the expected height of T , i.e., E[h]. Therefore, the expected work undertaken by the algorithm

E[h]×work done per level = O(n · logn).
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The Randomized Quicksort Algorithm

Indicator Variable Analysis
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Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence of some
event,
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A random variable is an indicator variable, if it assumes the value 1, for the occurrence of some
event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array.
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Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence of some
event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every element of A
has a unique rank in the set {1,2, . . . ,n}.
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Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence of some
event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every element of A
has a unique rank in the set {1,2, . . . ,n}.

Analysis

Let S(i) denote the element in A, whose rank i.
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Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence of some
event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every element of A
has a unique rank in the set {1,2, . . . ,n}.

Analysis

Let S(i) denote the element in A, whose rank i. We wish to compute the number of comparisons
between A[i] and the other elements of A, for each i = 1,2 . . . n.
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Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence of some
event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every element of A
has a unique rank in the set {1,2, . . . ,n}.

Analysis

Let S(i) denote the element in A, whose rank i. We wish to compute the number of comparisons
between A[i] and the other elements of A, for each i = 1,2 . . . n. Instead, we will compute the
number of comparisons between S(i) and the elements of other ranks, for each i = 1,2, . . . ,n.
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The Randomized Quicksort Algorithm

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence of some
event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every element of A
has a unique rank in the set {1,2, . . . ,n}.

Analysis

Let S(i) denote the element in A, whose rank i. We wish to compute the number of comparisons
between A[i] and the other elements of A, for each i = 1,2 . . . n. Instead, we will compute the
number of comparisons between S(i) and the elements of other ranks, for each i = 1,2, . . . ,n.
Are the two computations equivalent?
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Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{

1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm.
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Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{

1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =
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Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{

1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =
n−1

∑
i=1

∑
j>i

Xij
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Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{

1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =
n−1

∑
i=1

∑
j>i

Xij

=
n−1

∑
i=1

n

∑
j=i+1

Xij
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Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{

1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =
n−1

∑
i=1

∑
j>i

Xij

=
n−1

∑
i=1

n

∑
j=i+1

Xij

How to compute X?

Subramani Sample Analyses



The Randomized Quicksort Algorithm

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{

1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =
n−1

∑
i=1

∑
j>i

Xij

=
n−1

∑
i=1

n

∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E[X ]!
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Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{

1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =
n−1

∑
i=1

∑
j>i

Xij

=
n−1

∑
i=1

n

∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E[X ]! Observe that,

E[X ] = E[
n−1

∑
i=1

n

∑
j=i+1

Xij ]
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Indicator Variable Analysis (contd.)

Analysis (contd.)

E[X ] =
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Indicator Variable Analysis (contd.)

Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]
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Indicator Variable Analysis (contd.)

Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

Let pij denote the probability that S(i) and S(j) are compared.
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Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

Let pij denote the probability that S(i) and S(j) are compared. Clearly, E[Xij] =
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Indicator Variable Analysis (contd.)

Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

Let pij denote the probability that S(i) and S(j) are compared. Clearly, E[Xij] = pij .
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Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

Let pij denote the probability that S(i) and S(j) are compared. Clearly, E[Xij] = pij . How to
compute pij ?
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Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

Let pij denote the probability that S(i) and S(j) are compared. Clearly, E[Xij] = pij . How to
compute pij ? Let Sij = {S(i),S(i +1), . . .S(j)}.
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Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

Let pij denote the probability that S(i) and S(j) are compared. Clearly, E[Xij] = pij . How to
compute pij ? Let Sij = {S(i),S(i +1), . . .S(j)}. S(i) and S(j) will be compared only if, either
one of them is picked before the other elements in Sij !
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Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

Let pij denote the probability that S(i) and S(j) are compared. Clearly, E[Xij] = pij . How to
compute pij ? Let Sij = {S(i),S(i +1), . . .S(j)}. S(i) and S(j) will be compared only if, either
one of them is picked before the other elements in Sij ! Since all choices are made uniformly and
at random, the probability of either S(i) or S(j) being picked before the other elements in Sij is
exactly
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Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

Let pij denote the probability that S(i) and S(j) are compared. Clearly, E[Xij] = pij . How to
compute pij ? Let Sij = {S(i),S(i +1), . . .S(j)}. S(i) and S(j) will be compared only if, either
one of them is picked before the other elements in Sij ! Since all choices are made uniformly and
at random, the probability of either S(i) or S(j) being picked before the other elements in Sij is
exactly 2

j−i+1 .
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Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

Let pij denote the probability that S(i) and S(j) are compared. Clearly, E[Xij] = pij . How to
compute pij ? Let Sij = {S(i),S(i +1), . . .S(j)}. S(i) and S(j) will be compared only if, either
one of them is picked before the other elements in Sij ! Since all choices are made uniformly and
at random, the probability of either S(i) or S(j) being picked before the other elements in Sij is
exactly 2

j−i+1 .
Therefore,
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compute pij ? Let Sij = {S(i),S(i +1), . . .S(j)}. S(i) and S(j) will be compared only if, either
one of them is picked before the other elements in Sij ! Since all choices are made uniformly and
at random, the probability of either S(i) or S(j) being picked before the other elements in Sij is
exactly 2

j−i+1 .
Therefore,

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]
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Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

Let pij denote the probability that S(i) and S(j) are compared. Clearly, E[Xij] = pij . How to
compute pij ? Let Sij = {S(i),S(i +1), . . .S(j)}. S(i) and S(j) will be compared only if, either
one of them is picked before the other elements in Sij ! Since all choices are made uniformly and
at random, the probability of either S(i) or S(j) being picked before the other elements in Sij is
exactly 2

j−i+1 .
Therefore,

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

=
n−1

∑
i=1

n

∑
j=i+1

2

j − i +1
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Analysis (contd.)

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

Let pij denote the probability that S(i) and S(j) are compared. Clearly, E[Xij] = pij . How to
compute pij ? Let Sij = {S(i),S(i +1), . . .S(j)}. S(i) and S(j) will be compared only if, either
one of them is picked before the other elements in Sij ! Since all choices are made uniformly and
at random, the probability of either S(i) or S(j) being picked before the other elements in Sij is
exactly 2

j−i+1 .
Therefore,

E[X ] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij ]

=
n−1

∑
i=1

n

∑
j=i+1

2

j − i +1

=
n−1

∑
i=1

n−i+1

∑
k=2

2

k
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Indicator Variable Analysis (contd.)

Analysis (contd.)

E[X ] ≤
n

∑
i=1

n

∑
k=1

2

k
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Analysis (contd.)

E[X ] ≤
n

∑
i=1

n

∑
k=1

2

k

= 2 ·
n

∑
i=1

n

∑
k=1

1

k
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Analysis (contd.)

E[X ] ≤
n

∑
i=1

n

∑
k=1
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k

= 2 ·
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∑
i=1

n

∑
k=1

1
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= 2 ·
n

∑
i=1
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Analysis (contd.)

E[X ] ≤
n

∑
i=1

n

∑
k=1

2

k

= 2 ·
n

∑
i=1

n

∑
k=1

1

k

= 2 ·
n

∑
i=1

Hn

= 2 ·n ·Hn
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Indicator Variable Analysis (contd.)

Analysis (contd.)

E[X ] ≤
n

∑
i=1

n

∑
k=1

2

k

= 2 ·
n

∑
i=1

n

∑
k=1

1

k

= 2 ·
n

∑
i=1

Hn

= 2 ·n ·Hn

∈ O(n · logn)
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