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Tail bounds

Note

The tail bounds of a random variable X are concerned with the probability that it deviates
significantly from its expected value E[X ] on a run of the experiment.
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Tail bounds

Note

The tail bounds of a random variable X are concerned with the probability that it deviates
significantly from its expected value E[X ] on a run of the experiment.

Example

Consider the experiment of tossing a fair coin n times.
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Tail bounds

Note

The tail bounds of a random variable X are concerned with the probability that it deviates
significantly from its expected value E[X ] on a run of the experiment.

Example

Consider the experiment of tossing a fair coin n times. What is the probability that the number of
heads exceeds 3

4 ·n?
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Markov’s inequality

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,
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Tail bounds

Markov’s inequality

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤
E(X)

c
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Tail bounds

Markov’s inequality

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤
E(X)

c
or P(X ≥ cE[X ])≤

1

c
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Tail bounds

Markov’s inequality

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤
E(X)

c
or P(X ≥ cE[X ])≤

1

c

Chebyshev’s inequality
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Markov’s inequality

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤
E(X)

c
or P(X ≥ cE[X ])≤

1

c

Chebyshev’s inequality

Let X be a random variable (not necessarily positive). Then,
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Markov’s inequality

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤
E(X)

c
or P(X ≥ cE[X ])≤

1

c

Chebyshev’s inequality

Let X be a random variable (not necessarily positive). Then,

P(|X −E[X ]| ≥ a) ≤
Var[X]

a2
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Tail bounds

Markov’s inequality

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤
E(X)

c
or P(X ≥ cE[X ])≤

1

c

Chebyshev’s inequality

Let X be a random variable (not necessarily positive). Then,

P(|X −E[X ]| ≥ a) ≤
Var[X]

a2
or P(|X −E[X ]| ≥ aE[X ])≤

Var[X]

a2(E[X ])2
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Tail bounds

Markov’s inequality

Let X be a non-negative random variable and let c > 0 be a positive constant. Then,

P(X ≥ c) ≤
E(X)

c
or P(X ≥ cE[X ])≤

1

c

Chebyshev’s inequality

Let X be a random variable (not necessarily positive). Then,

P(|X −E[X ]| ≥ a) ≤
Var[X]

a2
or P(|X −E[X ]| ≥ aE[X ])≤

Var[X]

a2(E[X ])2

Example

Consider the experiment of tossing a fair coin n times. What is the probability that the number of
heads exceeds 3

4 ·n?
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Moment Generating Functions

The moment-generating function of a random variable X

The moment-generating function of a random variable is an alternative specification of its
probability distribution.
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Moment Generating Functions

The moment-generating function of a random variable X

The moment-generating function of a random variable is an alternative specification of its
probability distribution.
The moment-generating function of a random variable X is:

MX (t) = E[etX ]
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The moment-generating function of a random variable X

The moment-generating function of a random variable is an alternative specification of its
probability distribution.
The moment-generating function of a random variable X is:

MX (t) = E[etX ]

Note that MX (0) always exists and that MX (0) = 1.
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The moment-generating function of a random variable X

The moment-generating function of a random variable is an alternative specification of its
probability distribution.
The moment-generating function of a random variable X is:

MX (t) = E[etX ]

Note that MX (0) always exists and that MX (0) = 1.
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Theorem

Let X be a random variable with moment generating function MX (t).
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Theorem

Let X be a random variable with moment generating function MX (t).
Under the assumption that exchanging the expectation and differentiation operands is legitimate,
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Theorem

Let X be a random variable with moment generating function MX (t).
Under the assumption that exchanging the expectation and differentiation operands is legitimate,
for all n > 1 we have

E[Xn] = M
(n)
X (0)

where M
(n)
X (0) is the nth derivative of MX (t) evaluated at t = 0.
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Moment Generating Functions

Theorem

Let X be a random variable with moment generating function MX (t).
Under the assumption that exchanging the expectation and differentiation operands is legitimate,
for all n > 1 we have

E[Xn] = M
(n)
X (0)

where M
(n)
X (0) is the nth derivative of MX (t) evaluated at t = 0.

Proof.

Exercise.
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Bernoulli random variables

Consider a Bernoulli random variable X .
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Bernoulli random variables

Consider a Bernoulli random variable X .
The moment-generating function of X is:
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Bernoulli random variables

Consider a Bernoulli random variable X .
The moment-generating function of X is:

MX (t) =
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Consider a Bernoulli random variable X .
The moment-generating function of X is:

MX (t) = E[etX ]
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Bernoulli random variables

Consider a Bernoulli random variable X .
The moment-generating function of X is:

MX (t) = E[etX ]

= ∑
X

P(X)etX
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Moment Generating Functions

Bernoulli random variables

Consider a Bernoulli random variable X .
The moment-generating function of X is:

MX (t) = E[etX ]

= ∑
X

P(X)etX

= P(X = 1)et +P(X = 0)e0
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Bernoulli random variables

Consider a Bernoulli random variable X .
The moment-generating function of X is:

MX (t) = E[etX ]

= ∑
X

P(X)etX

= P(X = 1)et +P(X = 0)e0

=
et

2
+

1

2
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Bernoulli random variables

Consider a Bernoulli random variable X .
The moment-generating function of X is:

MX (t) = E[etX ]

= ∑
X

P(X)etX

= P(X = 1)et +P(X = 0)e0

=
et

2
+

1

2

Example

Using the moment generating function of X :
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Bernoulli random variables

Consider a Bernoulli random variable X .
The moment-generating function of X is:

MX (t) = E[etX ]

= ∑
X

P(X)etX

= P(X = 1)et +P(X = 0)e0

=
et

2
+

1

2

Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).
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Bernoulli random variables

Consider a Bernoulli random variable X .
The moment-generating function of X is:

MX (t) = E[etX ]

= ∑
X

P(X)etX

= P(X = 1)et +P(X = 0)e0

=
et

2
+

1

2

Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Evaluate the variance of X , i.e., Var(X).
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Bernoulli random variables

Consider a Bernoulli random variable X .
The moment-generating function of X is:

MX (t) = E[etX ]

= ∑
X

P(X)etX

= P(X = 1)et +P(X = 0)e0

=
et

2
+

1

2

Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Evaluate the variance of X , i.e., Var(X).

Hint: Recall that E[Xn] = M
(n)
X (0).
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Moment Generating Functions

Geometric random variables

Consider a geometric random variable X with parameter p.
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Moment Generating Functions

Geometric random variables

Consider a geometric random variable X with parameter p.
What is a geometric random variable?
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Geometric random variables

Consider a geometric random variable X with parameter p.
What is a geometric random variable?
What is its probability distribution?
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Moment Generating Functions

Geometric random variables

Consider a geometric random variable X with parameter p.
What is a geometric random variable?
What is its probability distribution?
Recall that the probability distribution of X on n = 1,2, . . . is

P(X = n) = (1−p)n−1p

Eirinakis Chernoff bounds



Tail bounds
Moment Generating Functions

Poisson Trials
Chernoff Bounds

Moment Generating Functions

Geometric random variables

Consider a geometric random variable X with parameter p.
What is a geometric random variable?
What is its probability distribution?
Recall that the probability distribution of X on n = 1,2, . . . is

P(X = n) = (1−p)n−1p

Also the expectation of functions is:

E[g(X)] = ∑
X

P(X) ·g(X)
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Geometric random variables

Consider a geometric random variable X with parameter p.
What is a geometric random variable?
What is its probability distribution?
Recall that the probability distribution of X on n = 1,2, . . . is

P(X = n) = (1−p)n−1p

Also the expectation of functions is:

E[g(X)] = ∑
X

P(X) ·g(X)

For geometric random variable X and for t < − ln(1−p), the moment-generating function of X
is:
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Geometric random variables

Consider a geometric random variable X with parameter p.
What is a geometric random variable?
What is its probability distribution?
Recall that the probability distribution of X on n = 1,2, . . . is

P(X = n) = (1−p)n−1p

Also the expectation of functions is:

E[g(X)] = ∑
X

P(X) ·g(X)

For geometric random variable X and for t < − ln(1−p), the moment-generating function of X
is:
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Moment Generating Functions

Geometric random variables

Consider a geometric random variable X with parameter p.
What is a geometric random variable?
What is its probability distribution?
Recall that the probability distribution of X on n = 1,2, . . . is

P(X = n) = (1−p)n−1p

Also the expectation of functions is:

E[g(X)] = ∑
X

P(X) ·g(X)

For geometric random variable X and for t < − ln(1−p), the moment-generating function of X
is:

MX (t) = E[etX ]

=
p

1−p
((1− (1−p)et )−1 −1).
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Moment Generating Functions

Geometric random variables

Hence, for t < − ln(1−p):

MX (t) =
p

1−p
((1− (1−p)et )−1 −1).
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Geometric random variables

Hence, for t < − ln(1−p):

MX (t) =
p

1−p
((1− (1−p)et )−1 −1).

Example

Using the moment generating function of X :
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Moment Generating Functions

Geometric random variables

Hence, for t < − ln(1−p):

MX (t) =
p

1−p
((1− (1−p)et )−1 −1).

Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).
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Moment Generating Functions

Geometric random variables

Hence, for t < − ln(1−p):

MX (t) =
p

1−p
((1− (1−p)et )−1 −1).

Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Evaluate the variance of X , i.e., Var(X).
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Geometric random variables

Hence, for t < − ln(1−p):

MX (t) =
p

1−p
((1− (1−p)et )−1 −1).

Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Evaluate the variance of X , i.e., Var(X).

The derivatives

The first and second derivatives of MX (t) are:
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Geometric random variables

Hence, for t < − ln(1−p):

MX (t) =
p

1−p
((1− (1−p)et )−1 −1).

Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Evaluate the variance of X , i.e., Var(X).

The derivatives

The first and second derivatives of MX (t) are:

M
(1)
X (t) = p(1− (1−p)et )−2et
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Moment Generating Functions

Geometric random variables

Hence, for t < − ln(1−p):

MX (t) =
p

1−p
((1− (1−p)et )−1 −1).

Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Evaluate the variance of X , i.e., Var(X).

The derivatives

The first and second derivatives of MX (t) are:

M
(1)
X (t) = p(1− (1−p)et )−2et

M
(2)
X (t) = 2p(1−p)(1− (1−p)et )−3e2t +p(1− (1−p)et )−2et
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Moment Generating Functions

Geometric random variables

Hence, for t < − ln(1−p):

MX (t) =
p

1−p
((1− (1−p)et )−1 −1).

Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Evaluate the variance of X , i.e., Var(X).

The derivatives

The first and second derivatives of MX (t) are:

M
(1)
X (t) = p(1− (1−p)et )−2et

M
(2)
X (t) = 2p(1−p)(1− (1−p)et )−3e2t +p(1− (1−p)et )−2et
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Moment Generating Functions

Theorem

Let X and Y be two random variables. If

MX (t) = MY (t)

for all t ∈ (−δ ,δ) for some δ > 0, then X and Y have the same distribution.
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Moment Generating Functions

Theorem

Let X and Y be two random variables. If

MX (t) = MY (t)

for all t ∈ (−δ ,δ) for some δ > 0, then X and Y have the same distribution.

Theorem

If X and Y are independent random variables, then

MX+Y (t) = MX (t)MY (t)
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Moment Generating Functions

Theorem

Let X and Y be two random variables. If

MX (t) = MY (t)

for all t ∈ (−δ ,δ) for some δ > 0, then X and Y have the same distribution.

Theorem

If X and Y are independent random variables, then

MX+Y (t) = MX (t)MY (t)

Proof.
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Moment Generating Functions

Theorem

Let X and Y be two random variables. If

MX (t) = MY (t)

for all t ∈ (−δ ,δ) for some δ > 0, then X and Y have the same distribution.

Theorem

If X and Y are independent random variables, then

MX+Y (t) = MX (t)MY (t)

Proof.

MX+Y (t) = E[et(X+Y)]
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Moment Generating Functions

Theorem

Let X and Y be two random variables. If

MX (t) = MY (t)

for all t ∈ (−δ ,δ) for some δ > 0, then X and Y have the same distribution.

Theorem

If X and Y are independent random variables, then

MX+Y (t) = MX (t)MY (t)

Proof.

MX+Y (t) = E[et(X+Y)] = E[etX etY ]
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Theorem

Let X and Y be two random variables. If

MX (t) = MY (t)

for all t ∈ (−δ ,δ) for some δ > 0, then X and Y have the same distribution.

Theorem

If X and Y are independent random variables, then

MX+Y (t) = MX (t)MY (t)

Proof.

MX+Y (t) = E[et(X+Y)] = E[etX etY ]

= E[etX ]E[etY ]
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Moment Generating Functions

Theorem

Let X and Y be two random variables. If

MX (t) = MY (t)

for all t ∈ (−δ ,δ) for some δ > 0, then X and Y have the same distribution.

Theorem

If X and Y are independent random variables, then

MX+Y (t) = MX (t)MY (t)

Proof.

MX+Y (t) = E[et(X+Y)] = E[etX etY ]

= E[etX ]E[etY ]

= MX (t)MY (t)
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Poisson Trials

Poisson Trials

We will develop Chernoff bounds for the tail distribution of Poisson trials.
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Poisson Trials

Poisson Trials

We will develop Chernoff bounds for the tail distribution of Poisson trials.
Poisson trials:
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Poisson Trials

Poisson Trials

We will develop Chernoff bounds for the tail distribution of Poisson trials.
Poisson trials:

Sum of independent 0−1 random variables.
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Poisson Trials

Poisson Trials

We will develop Chernoff bounds for the tail distribution of Poisson trials.
Poisson trials:

Sum of independent 0−1 random variables.

The distribution of the random variables in Poisson trials are not necessarily identical.
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Poisson Trials

Poisson Trials

We will develop Chernoff bounds for the tail distribution of Poisson trials.
Poisson trials:

Sum of independent 0−1 random variables.

The distribution of the random variables in Poisson trials are not necessarily identical.

Bernoulli trials are a special case of Poisson trials where the independent 0−1 random
variables have the same distribution.
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Poisson Trials

Poisson Trials

We will develop Chernoff bounds for the tail distribution of Poisson trials.
Poisson trials:

Sum of independent 0−1 random variables.

The distribution of the random variables in Poisson trials are not necessarily identical.

Bernoulli trials are a special case of Poisson trials where the independent 0−1 random
variables have the same distribution.

So Chernoff bounds will hold for the binomial distribution (sum of Bernoulli trials) and for
the more general sum of Poisson trials.
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Poisson Trials

Expectation

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi = 1) = pi and let
X = ∑n

i=1 Xi .
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Poisson Trials

Expectation

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi = 1) = pi and let
X = ∑n

i=1 Xi . Then:

µ = E[X ]
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Poisson Trials

Expectation

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi = 1) = pi and let
X = ∑n

i=1 Xi . Then:

µ = E[X ] = E[
n

∑
i=1

Xi ]
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Poisson Trials

Expectation

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi = 1) = pi and let
X = ∑n

i=1 Xi . Then:

µ = E[X ] = E[
n

∑
i=1

Xi ] =
n

∑
i=1

E[Xi ]
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Expectation

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi = 1) = pi and let
X = ∑n

i=1 Xi . Then:

µ = E[X ] = E[
n

∑
i=1

Xi ] =
n

∑
i=1

E[Xi ] =
n

∑
i=1

pi
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Poisson Trials

Expectation

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi = 1) = pi and let
X = ∑n

i=1 Xi . Then:

µ = E[X ] = E[
n

∑
i=1

Xi ] =
n

∑
i=1

E[Xi ] =
n

∑
i=1

pi

Moment generating functions

For the moment generating functions of each Xi :

MXi (t) = E[etXi ]
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Expectation

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi = 1) = pi and let
X = ∑n

i=1 Xi . Then:

µ = E[X ] = E[
n

∑
i=1

Xi ] =
n

∑
i=1

E[Xi ] =
n

∑
i=1

pi

Moment generating functions

For the moment generating functions of each Xi :

MXi (t) = E[etXi ]

= pi e
t +(1−pi )
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Expectation

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi = 1) = pi and let
X = ∑n

i=1 Xi . Then:

µ = E[X ] = E[
n

∑
i=1

Xi ] =
n

∑
i=1

E[Xi ] =
n

∑
i=1

pi

Moment generating functions

For the moment generating functions of each Xi :

MXi (t) = E[etXi ]

= pi e
t +(1−pi )

= 1+pi (et −1)
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Expectation

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi = 1) = pi and let
X = ∑n

i=1 Xi . Then:

µ = E[X ] = E[
n

∑
i=1

Xi ] =
n

∑
i=1

E[Xi ] =
n

∑
i=1

pi

Moment generating functions

For the moment generating functions of each Xi :

MXi (t) = E[etXi ]

= pi e
t +(1−pi )

= 1+pi (et −1)

≤ epi (et−1)
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Expectation

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi = 1) = pi and let
X = ∑n

i=1 Xi . Then:

µ = E[X ] = E[
n

∑
i=1

Xi ] =
n

∑
i=1

E[Xi ] =
n

∑
i=1

pi

Moment generating functions

For the moment generating functions of each Xi :

MXi (t) = E[etXi ]

= pi e
t +(1−pi )

= 1+pi (et −1)

≤ epi (et−1)
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Moment generating functions

Thus, for each Xi :

MXi (t) ≤ epi (et−1)
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Moment generating functions

Thus, for each Xi :

MXi (t) ≤ epi (et−1)

But what about MX (t)?
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Moment generating functions

Thus, for each Xi :

MXi (t) ≤ epi (et−1)

But what about MX (t)?
Recall that for X and Y independent:

MX+Y (t) = MX (t)MY (t)
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Moment generating functions

Thus, for each Xi :

MXi (t) ≤ epi (et−1)

But what about MX (t)?
Recall that for X and Y independent:

MX+Y (t) = MX (t)MY (t)

Hence:

MX (t) = Πn
i=1MXi (t)
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Moment generating functions

Thus, for each Xi :

MXi (t) ≤ epi (et−1)

But what about MX (t)?
Recall that for X and Y independent:

MX+Y (t) = MX (t)MY (t)

Hence:

MX (t) = Πn
i=1MXi (t)

≤ Πn
i=1epi (et−1)
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Moment generating functions

Thus, for each Xi :

MXi (t) ≤ epi (et−1)

But what about MX (t)?
Recall that for X and Y independent:

MX+Y (t) = MX (t)MY (t)

Hence:

MX (t) = Πn
i=1MXi (t)

≤ Πn
i=1epi (et−1)

= e∑n
i=1 pi (et−1)
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Moment generating functions

Thus, for each Xi :

MXi (t) ≤ epi (et−1)

But what about MX (t)?
Recall that for X and Y independent:

MX+Y (t) = MX (t)MY (t)

Hence:

MX (t) = Πn
i=1MXi (t)

≤ Πn
i=1epi (et−1)

= e∑n
i=1 pi (et−1)

= e(et−1)µ
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Example

Using the moment generating function of X :
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Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).
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Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Answer

For Poisson trials:

MX (t) = e(et−1)µ
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Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Answer

For Poisson trials:

MX (t) = e(et−1)µ

The first derivative of the moment generating function of X :

M
(1)
X (t) =
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Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Answer

For Poisson trials:

MX (t) = e(et−1)µ

The first derivative of the moment generating function of X :

M
(1)
X (t) = µe(et−1)µ+t
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Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Answer

For Poisson trials:

MX (t) = e(et−1)µ

The first derivative of the moment generating function of X :

M
(1)
X (t) = µe(et−1)µ+t

Hence:

E[X ] =
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Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Answer

For Poisson trials:

MX (t) = e(et−1)µ

The first derivative of the moment generating function of X :

M
(1)
X (t) = µe(et−1)µ+t

Hence:

E[X ] = M
(1)
X (0) ≤
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Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Answer

For Poisson trials:

MX (t) = e(et−1)µ

The first derivative of the moment generating function of X :

M
(1)
X (t) = µe(et−1)µ+t

Hence:

E[X ] = M
(1)
X (0) ≤ µe(e0−1)µ+0 =
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Example

Using the moment generating function of X :

Evaluate the expectation of X , i.e., E(X).

Answer

For Poisson trials:

MX (t) = e(et−1)µ

The first derivative of the moment generating function of X :

M
(1)
X (t) = µe(et−1)µ+t

Hence:

E[X ] = M
(1)
X (0) ≤ µe(e0−1)µ+0 = µ =

n

∑
i=1

pi
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Chernoff Bounds

Deriving Chernoff Bounds

We obtain the Chernoff bound for a random variable X by applying Markov’s inequality to etx for
some well-chosen value t .
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Chernoff Bounds

Deriving Chernoff Bounds

We obtain the Chernoff bound for a random variable X by applying Markov’s inequality to etx for
some well-chosen value t .
For any t > 0, we can derive the following inequality:

P(X ≥ a) = P(etx ≥ eta)
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Chernoff Bounds

Deriving Chernoff Bounds

We obtain the Chernoff bound for a random variable X by applying Markov’s inequality to etx for
some well-chosen value t .
For any t > 0, we can derive the following inequality:

P(X ≥ a) = P(etx ≥ eta) ≤
E[etX ]

eta
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Chernoff Bounds

Deriving Chernoff Bounds

We obtain the Chernoff bound for a random variable X by applying Markov’s inequality to etx for
some well-chosen value t .
For any t > 0, we can derive the following inequality:

P(X ≥ a) = P(etx ≥ eta) ≤
E[etX ]

eta

That is,

P(X ≥ a) ≤ min
t>0

E[etX ]

eta
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Chernoff Bounds

Deriving Chernoff Bounds

We obtain the Chernoff bound for a random variable X by applying Markov’s inequality to etx for
some well-chosen value t .
For any t > 0, we can derive the following inequality:

P(X ≥ a) = P(etx ≥ eta) ≤
E[etX ]

eta

That is,

P(X ≥ a) ≤ min
t>0

E[etX ]

eta

Similarly, for any t < 0:

P(X ≤ a) ≤ min
t<0

E[etX ]

eta
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Chernoff Bounds

Deriving Chernoff Bounds

We obtain the Chernoff bound for a random variable X by applying Markov’s inequality to etx for
some well-chosen value t .
For any t > 0, we can derive the following inequality:

P(X ≥ a) = P(etx ≥ eta) ≤
E[etX ]

eta

That is,

P(X ≥ a) ≤ min
t>0

E[etX ]

eta

Similarly, for any t < 0:

P(X ≤ a) ≤ min
t<0

E[etX ]

eta
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Chernoff Bounds

Note

Bounds for specific distributions are obtained by choosing appropriate values for t .
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Chernoff Bounds

Note

Bounds for specific distributions are obtained by choosing appropriate values for t .

Often we choose a value for t that gives convenient bounds (and not the minimum).
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Chernoff Bounds

Note

Bounds for specific distributions are obtained by choosing appropriate values for t .

Often we choose a value for t that gives convenient bounds (and not the minimum).

Bounds derived this way are (collectively) referred to as Chernoff bounds.
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Theorem - Chernoff Bounds

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ].
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Chernoff Bounds

Theorem - Chernoff Bounds

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then:

1 for any δ > 0,

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ
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Chernoff Bounds

Theorem - Chernoff Bounds

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then:

1 for any δ > 0,

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ

2 for any 0 < δ ≤ 1,

P(X ≥ (1+δ)µ) ≤ e−
µδ 2

3
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Chernoff Bounds

Theorem - Chernoff Bounds

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then:

1 for any δ > 0,

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ

2 for any 0 < δ ≤ 1,

P(X ≥ (1+δ)µ) ≤ e−
µδ 2

3

3 for R ≥ 6µ ,
P(X ≥ R) ≤ 2−R
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Chernoff Bounds

Theorem - Chernoff Bounds

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then:

1 for any δ > 0,

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ

2 for any 0 < δ ≤ 1,

P(X ≥ (1+δ)µ) ≤ e−
µδ 2

3

3 for R ≥ 6µ ,
P(X ≥ R) ≤ 2−R
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Chernoff Bounds

Note

The first bound is the strongest.
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Chernoff Bounds

Note

The first bound is the strongest.

We derive the other two from the first one.
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Chernoff Bounds

Note

The first bound is the strongest.

We derive the other two from the first one.

The other two are easier to compute in many situations.
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Chernoff Bounds

Proof.
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Chernoff Bounds

Proof.

First inequality - we want to show that for any δ > 0:

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ
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Chernoff Bounds

Proof.

First inequality - we want to show that for any δ > 0:

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ

For any t > 0, by Markov’s inequality:

P(X ≥ (1+δ)µ) = P(etX ≥ et(1+δ )µ )
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Chernoff Bounds

Proof.

First inequality - we want to show that for any δ > 0:

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ

For any t > 0, by Markov’s inequality:

P(X ≥ (1+δ)µ) = P(etX ≥ et(1+δ )µ )

≤
E[etX ]

et(1+δ )µ)
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Chernoff Bounds

Proof.

First inequality - we want to show that for any δ > 0:

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ

For any t > 0, by Markov’s inequality:

P(X ≥ (1+δ)µ) = P(etX ≥ et(1+δ )µ )

≤
E[etX ]

et(1+δ )µ)

≤
e(et−1)µ

et(1+δ )µ)
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Chernoff Bounds

Proof.

First inequality - we want to show that for any δ > 0:

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ

For any t > 0, by Markov’s inequality:

P(X ≥ (1+δ)µ) = P(etX ≥ et(1+δ )µ )

≤
E[etX ]

et(1+δ )µ)

≤
e(et−1)µ

et(1+δ )µ)

For any δ > 0, we can set t =
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Chernoff Bounds

Proof.

First inequality - we want to show that for any δ > 0:

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ

For any t > 0, by Markov’s inequality:

P(X ≥ (1+δ)µ) = P(etX ≥ et(1+δ )µ )

≤
E[etX ]

et(1+δ )µ)

≤
e(et−1)µ

et(1+δ )µ)

For any δ > 0, we can set t = ln(1+δ). Then:
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Chernoff Bounds

Proof.

First inequality - we want to show that for any δ > 0:

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ

For any t > 0, by Markov’s inequality:

P(X ≥ (1+δ)µ) = P(etX ≥ et(1+δ )µ )

≤
E[etX ]

et(1+δ )µ)

≤
e(et−1)µ

et(1+δ )µ)

For any δ > 0, we can set t = ln(1+δ). Then:

P(X ≥ (1+δ)µ) < (
eδ

(1+δ)(1+δ )
)µ
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Chernoff Bounds

Proof.

Second inequality: We want to show that for any 0 < δ ≤ 1,

P(X ≥ (1+δ)µ) ≤ e−
µδ 2

3
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Chernoff Bounds

Proof.

Second inequality: We want to show that for any 0 < δ ≤ 1,

P(X ≥ (1+δ)µ) ≤ e−
µδ 2

3

Hence, with respect to the first inequality, we want to show:

(
eδ

(1+δ)(1+δ )
)µ ≤ e−

µδ 2

3
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Chernoff Bounds

Proof.

Second inequality: We want to show that for any 0 < δ ≤ 1,

P(X ≥ (1+δ)µ) ≤ e−
µδ 2

3

Hence, with respect to the first inequality, we want to show:

(
eδ

(1+δ)(1+δ )
)µ ≤ e−

µδ 2

3

We take the logarithm of both sides:

ln(
eδ

(1+δ)(1+δ )
)µ ≤ ln(e−

µδ 2

3 )
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Chernoff Bounds

Proof.

Second inequality: We want to show that for any 0 < δ ≤ 1,

P(X ≥ (1+δ)µ) ≤ e−
µδ 2

3

Hence, with respect to the first inequality, we want to show:

(
eδ

(1+δ)(1+δ )
)µ ≤ e−

µδ 2

3

We take the logarithm of both sides:

ln(
eδ

(1+δ)(1+δ )
)µ ≤ ln(e−

µδ 2

3 )

which leads to the following condition (for the second inequality to hold):

f (δ) = δ − (1+δ) ln(1+δ)+
δ 2

3
≤ 0
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Chernoff Bounds

Proof.

We want to show that for 0 < δ ≤ 1, f (δ) ≤ 0.
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Chernoff Bounds

Proof.

We want to show that for 0 < δ ≤ 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):
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Chernoff Bounds

Proof.

We want to show that for 0 < δ ≤ 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) =− ln(1+δ)+ 2
3 δ
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Chernoff Bounds

Proof.

We want to show that for 0 < δ ≤ 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) =− ln(1+δ)+ 2
3 δ

f ′′(δ) = − 1
1+δ + 2

3
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Chernoff Bounds

Proof.

We want to show that for 0 < δ ≤ 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) =− ln(1+δ)+ 2
3 δ

f ′′(δ) = − 1
1+δ + 2

3

Note that:

f ′′(δ) < 0 for 0 ≤ δ <
1
2
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Chernoff Bounds

Proof.

We want to show that for 0 < δ ≤ 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) =− ln(1+δ)+ 2
3 δ

f ′′(δ) = − 1
1+δ + 2

3

Note that:

f ′′(δ) < 0 for 0 ≤ δ <
1
2

f ′′(δ) > 0 for δ >
1
2
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Chernoff Bounds

Proof.

We want to show that for 0 < δ ≤ 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) =− ln(1+δ)+ 2
3 δ

f ′′(δ) = − 1
1+δ + 2

3

Note that:

f ′′(δ) < 0 for 0 ≤ δ <
1
2

f ′′(δ) > 0 for δ >
1
2

That is, in the interval [0,1], f ′(δ) first decreases and then increases. But:
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Proof.

We want to show that for 0 < δ ≤ 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) =− ln(1+δ)+ 2
3 δ

f ′′(δ) = − 1
1+δ + 2

3

Note that:

f ′′(δ) < 0 for 0 ≤ δ <
1
2

f ′′(δ) > 0 for δ >
1
2

That is, in the interval [0,1], f ′(δ) first decreases and then increases. But:

f ′(0) = 0
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Proof.

We want to show that for 0 < δ ≤ 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) =− ln(1+δ)+ 2
3 δ

f ′′(δ) = − 1
1+δ + 2

3

Note that:

f ′′(δ) < 0 for 0 ≤ δ <
1
2

f ′′(δ) > 0 for δ >
1
2

That is, in the interval [0,1], f ′(δ) first decreases and then increases. But:

f ′(0) = 0

f ′(1) < 0 (since ln2 >
2
3 )
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Proof.

We want to show that for 0 < δ ≤ 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) =− ln(1+δ)+ 2
3 δ

f ′′(δ) = − 1
1+δ + 2

3

Note that:

f ′′(δ) < 0 for 0 ≤ δ <
1
2

f ′′(δ) > 0 for δ >
1
2

That is, in the interval [0,1], f ′(δ) first decreases and then increases. But:

f ′(0) = 0

f ′(1) < 0 (since ln2 >
2
3 )

Hence, f ′(δ) ≤ 0 for δ ∈ [0,1].
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Proof.

We want to show that for 0 < δ ≤ 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) =− ln(1+δ)+ 2
3 δ

f ′′(δ) = − 1
1+δ + 2

3

Note that:

f ′′(δ) < 0 for 0 ≤ δ <
1
2

f ′′(δ) > 0 for δ >
1
2

That is, in the interval [0,1], f ′(δ) first decreases and then increases. But:

f ′(0) = 0

f ′(1) < 0 (since ln2 >
2
3 )

Hence, f ′(δ) ≤ 0 for δ ∈ [0,1].
Since f (0) = 0, f (δ) ≤ 0 for 0 < δ ≤ 1.
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Proof.

Third inequality - we want to show that for R ≥ 6µ :

P(X ≥ R) ≤ 2−R
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Proof.

Third inequality - we want to show that for R ≥ 6µ :

P(X ≥ R) ≤ 2−R

We set R = (1+δ)µ .
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Proof.

Third inequality - we want to show that for R ≥ 6µ :

P(X ≥ R) ≤ 2−R

We set R = (1+δ)µ .
Then, for R ≥ 6µ , we have δ ≥ 5.
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Proof.

Third inequality - we want to show that for R ≥ 6µ :

P(X ≥ R) ≤ 2−R

We set R = (1+δ)µ .
Then, for R ≥ 6µ , we have δ ≥ 5.
Using the first inequality, we have:

P(X ≥ R) = P(X ≥ (1+δ)µ) ≤ (
eδ

(1+δ)(1+δ )
)µ
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Proof.

Third inequality - we want to show that for R ≥ 6µ :

P(X ≥ R) ≤ 2−R

We set R = (1+δ)µ .
Then, for R ≥ 6µ , we have δ ≥ 5.
Using the first inequality, we have:

P(X ≥ R) = P(X ≥ (1+δ)µ) ≤ (
eδ

(1+δ)(1+δ )
)µ

≤ (
e

1+δ
)(1+δ )µ
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Proof.

Third inequality - we want to show that for R ≥ 6µ :

P(X ≥ R) ≤ 2−R

We set R = (1+δ)µ .
Then, for R ≥ 6µ , we have δ ≥ 5.
Using the first inequality, we have:

P(X ≥ R) = P(X ≥ (1+δ)µ) ≤ (
eδ

(1+δ)(1+δ )
)µ

≤ (
e

1+δ
)(1+δ )µ

= (
e

1+δ
)R
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Proof.

Third inequality - we want to show that for R ≥ 6µ :

P(X ≥ R) ≤ 2−R

We set R = (1+δ)µ .
Then, for R ≥ 6µ , we have δ ≥ 5.
Using the first inequality, we have:

P(X ≥ R) = P(X ≥ (1+δ)µ) ≤ (
eδ

(1+δ)(1+δ )
)µ

≤ (
e

1+δ
)(1+δ )µ

= (
e

1+δ
)R

≤ (
e

6
)R
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Proof.

Third inequality - we want to show that for R ≥ 6µ :

P(X ≥ R) ≤ 2−R

We set R = (1+δ)µ .
Then, for R ≥ 6µ , we have δ ≥ 5.
Using the first inequality, we have:

P(X ≥ R) = P(X ≥ (1+δ)µ) ≤ (
eδ

(1+δ)(1+δ )
)µ

≤ (
e

1+δ
)(1+δ )µ

= (
e

1+δ
)R

≤ (
e

6
)R

≤ 2−R
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Theorem - Chernoff Bounds - Deviation below the mean

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then, for 0 < δ < 1:
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Theorem - Chernoff Bounds - Deviation below the mean

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then, for 0 < δ < 1:

1 P(X ≤ (1−δ)µ) ≤ ( e−δ

(1−δ )(1−δ ) )
µ
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Theorem - Chernoff Bounds - Deviation below the mean

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then, for 0 < δ < 1:

1 P(X ≤ (1−δ)µ) ≤ ( e−δ

(1−δ )(1−δ ) )
µ

2 P(X ≤ (1−δ)µ) ≤ e−
µδ 2

2
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Theorem - Chernoff Bounds - Deviation below the mean

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then, for 0 < δ < 1:

1 P(X ≤ (1−δ)µ) ≤ ( e−δ

(1−δ )(1−δ ) )
µ

2 P(X ≤ (1−δ)µ) ≤ e−
µδ 2

2

Note

Again, the first bound is stronger.
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Theorem - Chernoff Bounds - Deviation below the mean

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then, for 0 < δ < 1:

1 P(X ≤ (1−δ)µ) ≤ ( e−δ

(1−δ )(1−δ ) )
µ

2 P(X ≤ (1−δ)µ) ≤ e−
µδ 2

2

Note

Again, the first bound is stronger.

The second is derived from the first.
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Chernoff Bounds

Theorem - Chernoff Bounds - Deviation below the mean

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then, for 0 < δ < 1:

1 P(X ≤ (1−δ)µ) ≤ ( e−δ

(1−δ )(1−δ ) )
µ

2 P(X ≤ (1−δ)µ) ≤ e−
µδ 2

2

Note

Again, the first bound is stronger.

The second is derived from the first.

The second is generally easier to use and sufficient.
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Proof.

First inequality - we want to show that for 0 < δ < 1:

P(X ≤ (1−δ)µ) ≤ (
e−δ

(1−δ)(1−δ )
)µ
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Chernoff Bounds

Proof.

First inequality - we want to show that for 0 < δ < 1:

P(X ≤ (1−δ)µ) ≤ (
e−δ

(1−δ)(1−δ )
)µ

Again, we have to properly choose t .
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Chernoff Bounds

Proof.

First inequality - we want to show that for 0 < δ < 1:

P(X ≤ (1−δ)µ) ≤ (
e−δ

(1−δ)(1−δ )
)µ

Again, we have to properly choose t .For any t < 0, by Markov’s inequality:

P(X ≤ (1−δ)µ) =
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Proof.

First inequality - we want to show that for 0 < δ < 1:

P(X ≤ (1−δ)µ) ≤ (
e−δ

(1−δ)(1−δ )
)µ

Again, we have to properly choose t .For any t < 0, by Markov’s inequality:

P(X ≤ (1−δ)µ) = P(etX ≥ et(1−δ )µ))
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Proof.

First inequality - we want to show that for 0 < δ < 1:

P(X ≤ (1−δ)µ) ≤ (
e−δ

(1−δ)(1−δ )
)µ

Again, we have to properly choose t .For any t < 0, by Markov’s inequality:

P(X ≤ (1−δ)µ) = P(etX ≥ et(1−δ )µ))

≤
E[etX ]

et(1−δ )µ)
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Proof.

First inequality - we want to show that for 0 < δ < 1:

P(X ≤ (1−δ)µ) ≤ (
e−δ

(1−δ)(1−δ )
)µ

Again, we have to properly choose t .For any t < 0, by Markov’s inequality:

P(X ≤ (1−δ)µ) = P(etX ≥ et(1−δ )µ))

≤
E[etX ]

et(1−δ )µ)

≤
e(et−1)µ

et(1−δ )µ)
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Chernoff Bounds

Proof.

First inequality - we want to show that for 0 < δ < 1:

P(X ≤ (1−δ)µ) ≤ (
e−δ

(1−δ)(1−δ )
)µ

Again, we have to properly choose t .For any t < 0, by Markov’s inequality:

P(X ≤ (1−δ)µ) = P(etX ≥ et(1−δ )µ))

≤
E[etX ]

et(1−δ )µ)

≤
e(et−1)µ

et(1−δ )µ)

For 0 < δ < 1, we can set t =
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Chernoff Bounds

Proof.

First inequality - we want to show that for 0 < δ < 1:

P(X ≤ (1−δ)µ) ≤ (
e−δ

(1−δ)(1−δ )
)µ

Again, we have to properly choose t .For any t < 0, by Markov’s inequality:

P(X ≤ (1−δ)µ) = P(etX ≥ et(1−δ )µ))

≤
E[etX ]

et(1−δ )µ)

≤
e(et−1)µ

et(1−δ )µ)

For 0 < δ < 1, we can set t = ln(1−δ). Then:
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Proof.

First inequality - we want to show that for 0 < δ < 1:

P(X ≤ (1−δ)µ) ≤ (
e−δ

(1−δ)(1−δ )
)µ

Again, we have to properly choose t .For any t < 0, by Markov’s inequality:

P(X ≤ (1−δ)µ) = P(etX ≥ et(1−δ )µ))

≤
E[etX ]

et(1−δ )µ)

≤
e(et−1)µ

et(1−δ )µ)

For 0 < δ < 1, we can set t = ln(1−δ). Then:

P(X ≤ (1−δ)µ) ≤ (
e−δ

(1−δ)(1−δ )
)µ
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Proof.

Second inequality: We want to show that for any 0 < δ < 1,

P(X ≤ (1−δ)µ) ≤ e−
µδ 2

2
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Proof.

Second inequality: We want to show that for any 0 < δ < 1,

P(X ≤ (1−δ)µ) ≤ e−
µδ 2

2

Hence, with respect to the first inequality, we want to show:

(
e−δ

(1−δ)(1−δ )
)µ ≤ e−

µδ 2

2
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Proof.

Second inequality: We want to show that for any 0 < δ < 1,

P(X ≤ (1−δ)µ) ≤ e−
µδ 2

2

Hence, with respect to the first inequality, we want to show:

(
e−δ

(1−δ)(1−δ )
)µ ≤ e−

µδ 2

2 or
e−δ

(1−δ)(1−δ )
≤ e−

δ 2
2

We take the logarithm of both sides:

ln
e−δ

(1−δ)(1−δ )
≤ ln(e−

δ 2
2 )

Eirinakis Chernoff bounds



Tail bounds
Moment Generating Functions

Poisson Trials
Chernoff Bounds

Chernoff Bounds

Proof.

Second inequality: We want to show that for any 0 < δ < 1,

P(X ≤ (1−δ)µ) ≤ e−
µδ 2

2

Hence, with respect to the first inequality, we want to show:

(
e−δ

(1−δ)(1−δ )
)µ ≤ e−

µδ 2

2 or
e−δ

(1−δ)(1−δ )
≤ e−

δ 2
2

We take the logarithm of both sides:

ln
e−δ

(1−δ)(1−δ )
≤ ln(e−

δ 2
2 )

which leads to the following condition (for the second inequality to hold):

f (δ) = −δ − (1−δ) ln(1−δ)+
δ 2

2
≤ 0

Eirinakis Chernoff bounds



Tail bounds
Moment Generating Functions

Poisson Trials
Chernoff Bounds

Chernoff Bounds

Proof.

Again, we want to show that for 0 < δ < 1, f (δ) ≤ 0.
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Proof.

Again, we want to show that for 0 < δ < 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):
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Proof.

Again, we want to show that for 0 < δ < 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) = ln(1−δ)+δ
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Proof.

Again, we want to show that for 0 < δ < 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) = ln(1−δ)+δ
f ′′(δ) = − 1

1−δ +1
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Proof.

Again, we want to show that for 0 < δ < 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) = ln(1−δ)+δ
f ′′(δ) = − 1

1−δ +1

Note that:

f ′′(δ) < 0 for 0 ≤ δ < 1
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Proof.

Again, we want to show that for 0 < δ < 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) = ln(1−δ)+δ
f ′′(δ) = − 1

1−δ +1

Note that:

f ′′(δ) < 0 for 0 ≤ δ < 1

That is, in the interval [0,1], f ′(δ) decreases. But:
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Proof.

Again, we want to show that for 0 < δ < 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) = ln(1−δ)+δ
f ′′(δ) = − 1

1−δ +1

Note that:

f ′′(δ) < 0 for 0 ≤ δ < 1

That is, in the interval [0,1], f ′(δ) decreases. But:

f ′(0) = 0
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Proof.

Again, we want to show that for 0 < δ < 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) = ln(1−δ)+δ
f ′′(δ) = − 1

1−δ +1

Note that:

f ′′(δ) < 0 for 0 ≤ δ < 1

That is, in the interval [0,1], f ′(δ) decreases. But:

f ′(0) = 0

Hence, f ′(δ) ≤ 0 for δ ∈ [0,1).
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Proof.

Again, we want to show that for 0 < δ < 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) = ln(1−δ)+δ
f ′′(δ) = − 1

1−δ +1

Note that:

f ′′(δ) < 0 for 0 ≤ δ < 1

That is, in the interval [0,1], f ′(δ) decreases. But:

f ′(0) = 0

Hence, f ′(δ) ≤ 0 for δ ∈ [0,1).
So, f (δ) is non-increasing for δ ∈ [0,1).
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Proof.

Again, we want to show that for 0 < δ < 1, f (δ) ≤ 0.
First, we compute the derivatives of f (δ):

f ′(δ) = ln(1−δ)+δ
f ′′(δ) = − 1

1−δ +1

Note that:

f ′′(δ) < 0 for 0 ≤ δ < 1

That is, in the interval [0,1], f ′(δ) decreases. But:

f ′(0) = 0

Hence, f ′(δ) ≤ 0 for δ ∈ [0,1).
So, f (δ) is non-increasing for δ ∈ [0,1).
Since f (0) = 0, f (δ) ≤ 0 for 0 < δ < 1.
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Corollary

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then, for 0 < δ < 1:
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Corollary

Let X1, . . . ,Xn be a sequence of independent Poisson trials with P(Xi) = pi , X = ∑n
i=1 Xi , and

µ = E[X ]. Then, for 0 < δ < 1:

P(|X −µ | ≥ δ µ)≤ 2e−
µδ 2

3
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