Chernoff Bounds (Applications)

Pavlos Eirinakis¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

16 February, 2012

Confidence Interval

O Chernoff Bounds - Coin Flips

2 Confidence Interval

Better Bounds for Special Cases

Chernoff Bounds - Coin Flips

2 Confidence Interval

Better Bounds for Special Cases

Application: Set Balancing

Chernoff Bounds - Coin Flips

Example

Let X be the number of heads in a sequence of n independent fair coin flips.

Chernoff Bounds - Coin Flips

Example

Let X be the number of heads in a sequence of n independent fair coin flips.

Applying the Chernoff bound
$$P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\mu\delta^2}{3}}$$
 for $\delta = \sqrt{\frac{6\ln n}{n}}$.

Chernoff Bounds - Coin Flips

Example

Let X be the number of heads in a sequence of n independent fair coin flips.

Applying the Chernoff bound $P(|X - \mu| \ge \delta\mu) \le 2e^{-\frac{\mu\delta^2}{3}}$ for $\delta = \sqrt{\frac{6\ln n}{n}}$:

$$P(|X - \frac{n}{2}| \ge \frac{\sqrt{6n \ln n}}{2}) \le 2e^{-\frac{1}{3}\frac{n}{2}\frac{6\ln n}{n}}$$

Chernoff Bounds - Coin Flips

Example

Let X be the number of heads in a sequence of n independent fair coin flips.

Applying the Chernoff bound $P(|X - \mu| \ge \delta\mu) \le 2e^{-\frac{\mu\delta^2}{3}}$ for $\delta = \sqrt{\frac{6\ln n}{n}}$:

$$P(|X - \frac{n}{2}| \ge \frac{\sqrt{6n\ln n}}{2}) \le 2e^{-\frac{1}{3}\frac{n}{2}\frac{6\ln n}{n}} = \frac{2}{n}$$

Chernoff Bounds - Coin Flips

Example

Let X be the number of heads in a sequence of n independent fair coin flips.

Applying the Chernoff bound $P(|X - \mu| \ge \delta\mu) \le 2e^{-\frac{\mu\delta^2}{3}}$ for $\delta = \sqrt{\frac{6\ln n}{n}}$:

$$P(|X - \frac{n}{2}| \ge \frac{\sqrt{6n\ln n}}{2}) \le 2e^{-\frac{1}{3}\frac{n}{2}\frac{6\ln n}{n}} = \frac{2}{n}$$

Most of the times, the deviations from the mean are on the order of $O(\sqrt{n \ln n})$.

Chernoff Bounds - Coin Flips

Example

Consider the probability of having no more than $\frac{n}{4}$ heads or no fewer than $\frac{3n}{4}$ tails in a sequence of *n* independent fair coin flips

Chernoff Bounds - Coin Flips

Example

Consider the probability of having no more than $\frac{n}{4}$ heads or no fewer than $\frac{3n}{4}$ tails in a sequence of *n* independent fair coin flips and let *X* be the number of heads.

Chernoff Bounds - Coin Flips

Example

Consider the probability of having no more than $\frac{n}{4}$ heads or no fewer than $\frac{3n}{4}$ tails in a sequence of *n* independent fair coin flips and let *X* be the number of heads. Chebyshev's bound:

Chernoff Bounds - Coin Flips

Example

Consider the probability of having no more than $\frac{n}{4}$ heads or no fewer than $\frac{3n}{4}$ tails in a sequence of *n* independent fair coin flips and let *X* be the number of heads. Chebyshev's bound:

$$\mathsf{P}(|X - \mathsf{E}[X]| \ge lpha) \le rac{Var[X]}{lpha^2}$$

Chernoff Bounds - Coin Flips

Example

Consider the probability of having no more than $\frac{n}{4}$ heads or no fewer than $\frac{3n}{4}$ tails in a sequence of *n* independent fair coin flips and let *X* be the number of heads. Chebyshev's bound:

$$\mathsf{P}(|X - \mathsf{E}[X]| \ge lpha) \le rac{Var[X]}{lpha^2}$$

Chernoff Bounds - Coin Flips

Example

Consider the probability of having no more than $\frac{n}{4}$ heads or no fewer than $\frac{3n}{4}$ tails in a sequence of *n* independent fair coin flips and let *X* be the number of heads. Chebyshev's bound:

$$\mathsf{P}(|X - \mathsf{E}[X]| \ge lpha) \le rac{Var[X]}{lpha^2}$$

$$P(|X - \frac{n}{2}| \ge \frac{n}{4}) \le \frac{Var[X]}{(\frac{n}{4})^2}$$

Chernoff Bounds - Coin Flips

Example

Consider the probability of having no more than $\frac{n}{4}$ heads or no fewer than $\frac{3n}{4}$ tails in a sequence of *n* independent fair coin flips and let *X* be the number of heads. Chebyshev's bound:

$$\mathsf{P}(|X - \mathsf{E}[X]| \ge lpha) \le rac{Var[X]}{lpha^2}$$

$$P(|X - \frac{n}{2}| \ge \frac{n}{4}) \le \frac{\operatorname{Var}[X]}{(\frac{n}{4})^2}$$
$$= \frac{\frac{n}{4}}{(\frac{n}{4})^2}$$

Chernoff Bounds - Coin Flips

Example

Consider the probability of having no more than $\frac{n}{4}$ heads or no fewer than $\frac{3n}{4}$ tails in a sequence of *n* independent fair coin flips and let *X* be the number of heads. Chebyshev's bound:

$$\mathsf{P}(|X - \mathsf{E}[X]| \ge lpha) \le rac{Var[X]}{lpha^2}$$

$$P(|X - \frac{n}{2}| \ge \frac{n}{4}) \le \frac{Var[X]}{(\frac{n}{4})^2}$$
$$= \frac{\frac{n}{4}}{(\frac{n}{4})^2}$$
$$= \frac{4}{n}$$

Chernoff Bounds - Coin Flips

Example

Applying the Chernoff bound
$$P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\mu\delta^2}{3}}$$
 for $\delta = \frac{1}{2}$:

Chernoff Bounds - Coin Flips

Example

Applying the Chernoff bound
$$P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\mu\delta^2}{3}}$$
 for $\delta = \frac{1}{2}$:

$$P(|X - \frac{n}{2}| \ge \frac{n}{4}) \le 2e^{-\frac{1}{3}\frac{n}{2}\frac{1}{4}}$$

Chernoff Bounds - Coin Flips

Example

Applying the Chernoff bound $P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\mu\delta^2}{3}}$ for $\delta = \frac{1}{2}$:

$$P(|X - \frac{n}{2}| \ge \frac{n}{4}) \le 2e^{-\frac{1}{3}\frac{n}{2}\frac{1}{4}}$$
$$= \frac{2}{e^{\frac{n}{24}}}$$

Chernoff Bounds - Coin Flips

Example

Applying the Chernoff bound
$$P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\mu\delta^2}{3}}$$
 for $\delta = \frac{1}{2}$:

$$P(|X - \frac{n}{2}| \ge \frac{n}{4}) \le 2e^{-\frac{1}{3}\frac{n}{2}\frac{1}{4}}$$
$$= \frac{2}{e^{\frac{n}{74}}}$$

Chernoff's inequality gives a bound that is exponentially smaller than the bound obtained using Chebyshev's inequality.

Chernoff Bounds - Coin Flips

Example

Applying the Chernoff bound
$$P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\mu\delta^2}{3}}$$
 for $\delta = \frac{1}{2}$:

$$\begin{array}{rcl} \mathsf{P}(|X - \frac{n}{2}| \geq \frac{n}{4}) & \leq & 2e^{-\frac{1}{3}\frac{n}{2}\frac{1}{4}} \\ & = & \frac{2}{e^{\frac{n}{74}}} \end{array}$$

Chernoff's inequality gives a bound that is exponentially smaller than the bound obtained using Chebyshev's inequality.

Note

Hence, whether we use Markov's, Chebyshev's or Chernoff bounds depends on the information we have available:

Chernoff Bounds - Coin Flips

Example

Applying the Chernoff bound
$$P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\mu\delta^2}{3}}$$
 for $\delta = \frac{1}{2}$:

$$P(|X - \frac{n}{2}| \ge \frac{n}{4}) \le 2e^{-\frac{1}{3}\frac{n}{2}\frac{1}{4}} = \frac{2}{e^{\frac{n}{24}}}$$

Chernoff's inequality gives a bound that is exponentially smaller than the bound obtained using Chebyshev's inequality.

Note

Hence, whether we use Markov's, Chebyshev's or Chernoff bounds depends on the information we have available:

If we only know the expectation of X (i.e., E[X]), we use Markov's bound.

Chernoff Bounds - Coin Flips

Example

Applying the Chernoff bound
$$P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\mu\delta^2}{3}}$$
 for $\delta = \frac{1}{2}$:

$$\begin{array}{rcl} \mathsf{P}(|X - \frac{n}{2}| \geq \frac{n}{4}) & \leq & 2e^{-\frac{1}{3}\frac{n}{2}\frac{1}{4}} \\ & = & \frac{2}{e^{\frac{n}{24}}} \end{array}$$

Chernoff's inequality gives a bound that is exponentially smaller than the bound obtained using Chebyshev's inequality.

Note

Hence, whether we use Markov's, Chebyshev's or Chernoff bounds depends on the information we have available:

If we only know the expectation of X (i.e., E[X]), we use Markov's bound.

If we also know the variation of X (i.e., Var[X]), we use Chebyshev's bound.

Chernoff Bounds - Coin Flips

Example

Applying the Chernoff bound
$$P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\mu\delta^2}{3}}$$
 for $\delta = \frac{1}{2}$:

$$\begin{array}{rcl} \mathsf{P}(|X - \frac{n}{2}| \geq \frac{n}{4}) & \leq & 2e^{-\frac{1}{3}\frac{n}{2}\frac{1}{4}} \\ & = & \frac{2}{e^{\frac{n}{24}}} \end{array}$$

Chernoff's inequality gives a bound that is exponentially smaller than the bound obtained using Chebyshev's inequality.

Note

Hence, whether we use Markov's, Chebyshev's or Chernoff bounds depends on the information we have available:

- If we only know the expectation of X (i.e., E[X]), we use Markov's bound.
- If we also know the variation of X (i.e., Var[X]), we use Chebyshev's bound.
- If we also know that the variables are independent, we use Chernoff bound.

Chernoff Bounds - Coin Flips

Example

Applying the Chernoff bound
$$P(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\mu\delta^2}{3}}$$
 for $\delta = \frac{1}{2}$:

$$\begin{array}{rcl} \mathsf{P}(|X - \frac{n}{2}| \geq \frac{n}{4}) & \leq & 2e^{-\frac{1}{3}\frac{n}{2}\frac{1}{4}} \\ & = & \frac{2}{e^{\frac{n}{24}}} \end{array}$$

Chernoff's inequality gives a bound that is exponentially smaller than the bound obtained using Chebyshev's inequality.

Note

Hence, whether we use Markov's, Chebyshev's or Chernoff bounds depends on the information we have available:

- If we only know the expectation of X (i.e., E[X]), we use Markov's bound.
- If we also know the variation of X (i.e., Var[X]), we use Chebyshev's bound.
- If we also know that the variables are independent, we use Chernoff bound.

Confidence Interval

Confidence Interval

Definition

A 1 – γ confidence interval for a parameter p is an interval $[\bar{p} - \delta, \bar{p} + \delta]$ such that

$$P(p \in [\bar{p} - \delta, \bar{p} + \delta]) \ge 1 - \gamma$$

Confidence Interval

Definition

A 1 – γ confidence interval for a parameter p is an interval $[\bar{p} - \delta, \bar{p} + \delta]$ such that

$$P(p \in [\bar{p} - \delta, \bar{p} + \delta]) \ge 1 - \gamma$$

Motivation

We want to estimate the value of a parameter p in the whole population.

Confidence Interval

Definition

A 1 – γ confidence interval for a parameter p is an interval $[\bar{p} - \delta, \bar{p} + \delta]$ such that

$$P(p \in [\bar{p} - \delta, \bar{p} + \delta]) \ge 1 - \gamma$$

Motivation

We want to estimate the value of a parameter p in the whole population. Instead, we evaluate a sample n and estimate a value \bar{p} and an interval $[\bar{p} - \delta, \bar{p} + \delta]$ in which the value of p will be included with probability $1 - \gamma$.

Confidence Interval

Definition

A 1 – γ confidence interval for a parameter p is an interval $[\bar{p} - \delta, \bar{p} + \delta]$ such that

$$P(p \in [\bar{p} - \delta, \bar{p} + \delta]) \ge 1 - \gamma$$

Motivation

We want to estimate the value of a parameter *p* in the whole population. Instead, we evaluate a sample *n* and estimate a value \bar{p} and an interval $[\bar{p} - \delta, \bar{p} + \delta]$ in which the value of *p* will be included with probability $1 - \gamma$.

Note

We want both the interval size 2δ and the error probability γ to be as small as possible.

Confidence Interval

Definition

A 1 – γ confidence interval for a parameter p is an interval $[\bar{p} - \delta, \bar{p} + \delta]$ such that

$$P(p \in [\bar{p} - \delta, \bar{p} + \delta]) \ge 1 - \gamma$$

Motivation

We want to estimate the value of a parameter *p* in the whole population. Instead, we evaluate a sample *n* and estimate a value \bar{p} and an interval $[\bar{p} - \delta, \bar{p} + \delta]$ in which the value of *p* will be included with probability $1 - \gamma$.

Note

We want both the interval size 2δ and the error probability γ to be as small as possible.

Confidence Interval

Tradeoff between δ, γ and n

Among *n* samples, we find the specific value we are interested in exactly in $X = \overline{p}n$ samples.

Confidence Interval

Tradeoff between δ, γ and *n*

Among *n* samples, we find the specific value we are interested in exactly in $X = \bar{p}n$ samples. Hence, we want to find a tradeoff between the values of δ and γ and the size of the sample *n*.

Confidence Interval

Tradeoff between δ, γ and *n*

Among *n* samples, we find the specific value we are interested in exactly in $X = \bar{p}n$ samples. Hence, we want to find a tradeoff between the values of δ and γ and the size of the sample *n*. Note that

$$P(p \in [\bar{p} - \delta, \bar{p} + \delta]) = P(np \in [n(\bar{p} - \delta), n(\bar{p} + \delta)])$$

Confidence Interval

Tradeoff between δ, γ and *n*

Among *n* samples, we find the specific value we are interested in exactly in $X = \bar{p}n$ samples. Hence, we want to find a tradeoff between the values of δ and γ and the size of the sample *n*. Note that

$$P(p \in [\bar{p} - \delta, \bar{p} + \delta]) = P(np \in [n(\bar{p} - \delta), n(\bar{p} + \delta)])$$

Also, if $X = n\bar{p}$ has a binomial distribution, then E[X] = np.

Confidence Interval

Tradeoff between δ, γ and *n*

Among *n* samples, we find the specific value we are interested in exactly in $X = \bar{p}n$ samples. Hence, we want to find a tradeoff between the values of δ and γ and the size of the sample *n*. Note that

$$P(p \in [\bar{p} - \delta, \bar{p} + \delta]) = P(np \in [n(\bar{p} - \delta), n(\bar{p} + \delta)])$$

Also, if $X = n\overline{p}$ has a binomial distribution, then E[X] = np. Then, if $p \notin [\overline{p} - \delta, \overline{p} + \delta]$, we have one of the following:

Confidence Interval

Tradeoff between δ, γ and *n*

Among *n* samples, we find the specific value we are interested in exactly in $X = \bar{p}n$ samples. Hence, we want to find a tradeoff between the values of δ and γ and the size of the sample *n*. Note that

$$P(p \in [\bar{p} - \delta, \bar{p} + \delta]) = P(np \in [n(\bar{p} - \delta), n(\bar{p} + \delta)])$$

Also, if $X = n\overline{p}$ has a binomial distribution, then E[X] = np. Then, if $p \notin [\overline{p} - \delta, \overline{p} + \delta]$, we have one of the following:

• if $p < \overline{p} - \delta$, then $X = n\overline{p} > n(p + \delta) = E[X](1 + \frac{\delta}{p})$.

Confidence Interval

Tradeoff between δ, γ and *n*

Among *n* samples, we find the specific value we are interested in exactly in $X = \bar{p}n$ samples. Hence, we want to find a tradeoff between the values of δ and γ and the size of the sample *n*. Note that

$$P(p \in [\bar{p} - \delta, \bar{p} + \delta]) = P(np \in [n(\bar{p} - \delta), n(\bar{p} + \delta)])$$

Also, if $X = n\overline{p}$ has a binomial distribution, then E[X] = np. Then, if $p \notin [\overline{p} - \delta, \overline{p} + \delta]$, we have one of the following:

- if $p < \overline{p} \delta$, then $X = n\overline{p} > n(p + \delta) = E[X](1 + \frac{\delta}{p})$.
- (a) if $p > \overline{p} + \delta$, then $X = n\overline{p} < n(p \delta) = E[X](1 \frac{\delta}{p})$.

Confidence Interval

Tradeoff between δ, γ and *n*

Among *n* samples, we find the specific value we are interested in exactly in $X = \bar{p}n$ samples. Hence, we want to find a tradeoff between the values of δ and γ and the size of the sample *n*. Note that

$$P(p \in [\bar{p} - \delta, \bar{p} + \delta]) = P(np \in [n(\bar{p} - \delta), n(\bar{p} + \delta)])$$

Also, if $X = n\overline{p}$ has a binomial distribution, then E[X] = np. Then, if $p \notin [\overline{p} - \delta, \overline{p} + \delta]$, we have one of the following:

- if $p < \overline{p} \delta$, then $X = n\overline{p} > n(p + \delta) = E[X](1 + \frac{\delta}{p})$.
- (a) if $p > \overline{p} + \delta$, then $X = n\overline{p} < n(p \delta) = E[X](1 \frac{\delta}{p})$.

Tradeoff between δ, γ and n

Applying the following Chernoff bounds:

Tradeoff between δ, γ and n

Applying the following Chernoff bounds:

$$P(X \ge (1+\delta)\mu) < e^{-rac{\mu\delta^2}{3}}$$

Tradeoff between δ, γ and n

Applying the following Chernoff bounds:

$$P(X \ge (1+\delta)\mu) < e^{-rac{\mu\delta^2}{3}}$$
 and $P(X \le (1-\delta)\mu) \le e^{-rac{\mu\delta^2}{2}}$

Tradeoff between δ, γ and *n*

Applying the following Chernoff bounds:

$$P(X \ge (1+\delta)\mu) < \mathrm{e}^{-rac{\mu\delta^2}{3}}$$

and

$$P(X \leq (1-\delta)\mu) \leq e^{-\frac{\mu\delta^2}{2}}$$

and for $\delta < p$ (i.e., $\frac{\delta}{p} < 1$), we have:

 $P(p \notin [\bar{p} - \delta, \bar{p} + \delta]) =$

Tradeoff between δ, γ and n

Applying the following Chernoff bounds:

$$P(X \ge (1+\delta)\mu) < e^{-rac{\mu\delta^2}{3}}$$
 and $P(X \le (1-\delta)\mu) \le e^{-rac{\mu\delta^2}{3}}$

and for $\delta < p$ (i.e., $rac{\delta}{p} <$ 1), we have:

$$P(p \notin [\bar{p} - \delta, \bar{p} + \delta]) = P(X < np(1 - \frac{\delta}{p})) + P(X > np(1 + \frac{\delta}{p}))$$

 $-\frac{\mu\delta^2}{2}$

Tradeoff between δ, γ and n

Applying the following Chernoff bounds:

$$P(X \ge (1+\delta)\mu) < e^{-rac{\mu\delta^2}{3}}$$
 and $P(X \le (1-\delta)\mu) \le e^{-rac{\mu\delta^2}{3}}$

and for $\delta < p$ (i.e., $rac{\delta}{\rho} <$ 1), we have:

$$P(p \notin [\bar{p} - \delta, \bar{p} + \delta]) = P(X < np(1 - \frac{\delta}{p})) + P(X > np(1 + \frac{\delta}{p}))$$
$$< e^{-\frac{np(\frac{\delta}{p})^2}{2}} + e^{-\frac{np(\frac{\delta}{p})^2}{3}}$$

 $\frac{\mu\delta^2}{2}$

Tradeoff between δ, γ and *n*

P(p

Applying the following Chernoff bounds:

$$P(X \ge (1+\delta)\mu) < e^{-rac{\mu\delta^2}{3}}$$
 and $P(X \le (1-\delta)\mu) \le e^{-rac{\mu\delta^2}{2}}$

and for $\delta < p$ (i.e., $rac{\delta}{\rho} <$ 1), we have:

$$\not\in [\bar{p} - \delta, \bar{p} + \delta]) = P(X < np(1 - \frac{\delta}{p})) + P(X > np(1 + \frac{\delta}{p}))$$

$$< e^{-\frac{np(\frac{\delta}{p})^2}{2}} + e^{-\frac{np(\frac{\delta}{p})^2}{3}}$$

$$= e^{-\frac{n\beta^2}{2p}} + e^{-\frac{n\beta^2}{3p}}$$

Tradeoff between δ, γ and *n*

Applying the following Chernoff bounds:

$$P(X \ge (1+\delta)\mu) < e^{-rac{\mu\delta^2}{3}}$$
 and $P(X \le (1-\delta)\mu) \le e^{-rac{\mu\delta^2}{2}}$

and for $\delta < p$ (i.e., $rac{\delta}{\rho} <$ 1), we have:

$$P(p \notin [\bar{p} - \delta, \bar{p} + \delta]) = P(X < np(1 - \frac{\delta}{p})) + P(X > np(1 + \frac{\delta}{p}))$$
$$< e^{-\frac{np(\frac{\delta}{p})^2}{2}} + e^{-\frac{np(\frac{\delta}{p})^2}{3}}$$
$$= e^{-\frac{np^2}{2p}} + e^{-\frac{n\delta^2}{3p}}$$

The above bound is not useful because

Tradeoff between δ, γ and *n*

Applying the following Chernoff bounds:

$$P(X \ge (1+\delta)\mu) < e^{-rac{\mu\delta^2}{3}}$$
 and $P(X \le (1-\delta)\mu) \le e^{-rac{\mu\delta^2}{2}}$

and for $\delta < p$ (i.e., $rac{\delta}{\rho} <$ 1), we have:

$$P(p \notin [\bar{p} - \delta, \bar{p} + \delta]) = P(X < np(1 - \frac{\delta}{p})) + P(X > np(1 + \frac{\delta}{p}))$$
$$< e^{-\frac{np(\frac{\delta}{p})^2}{2}} + e^{-\frac{np(\frac{\delta}{p})^2}{3}}$$
$$= e^{-\frac{n\beta}{2p}} + e^{-\frac{n\beta}{2p}}$$

The above bound is not useful because it is expressed through p

Tradeoff between δ, γ and n

Applying the following Chernoff bounds:

$$P(X \ge (1+\delta)\mu) < e^{-rac{\mu\delta^2}{3}}$$
 and $P(X \le (1-\delta)\mu) \le e^{-rac{\mu\delta^2}{2}}$

and for $\delta < p$ (i.e., $rac{\delta}{p} <$ 1), we have:

$$P(p \notin [\bar{p} - \delta, \bar{p} + \delta]) = P(X < np(1 - \frac{\delta}{p})) + P(X > np(1 + \frac{\delta}{p}))$$
$$< e^{-\frac{np(\frac{\delta}{p})^2}{2}} + e^{-\frac{np(\frac{\delta}{p})^2}{3}}$$
$$= e^{-\frac{np(2)}{2p}} + e^{-\frac{n\delta^2}{3p}}$$

The above bound is not useful because it is expressed through *p* and the value of *p* is unknown.

Tradeoff between δ, γ and n

Applying the following Chernoff bounds:

$$P(X \ge (1+\delta)\mu) < e^{-\frac{\mu\delta^2}{3}}$$
 and $P(X \le (1-\delta)\mu) \le e^{-\frac{\mu\delta^2}{2}}$

and for $\delta < p$ (i.e., $rac{\delta}{p} <$ 1), we have:

$$P(p \notin [\bar{p} - \delta, \bar{p} + \delta]) = P(X < np(1 - \frac{\delta}{p})) + P(X > np(1 + \frac{\delta}{p}))$$
$$< e^{-\frac{np(\frac{\delta}{p})^2}{2}} + e^{-\frac{np(\frac{\delta}{p})^2}{3}}$$
$$= e^{-\frac{np(\delta)}{2p}} + e^{-\frac{n\delta^2}{3p}}$$

The above bound is not useful because it is expressed through p and the value of p is unknown. What can we do?

Tradeoff between δ, γ and n

Applying the following Chernoff bounds:

$$P(X \ge (1 + \delta)\mu) < e^{-\frac{\mu\delta^2}{3}}$$
 and $P(X \le (1 - \delta)\mu) \le e^{-\frac{\mu\delta^2}{2}}$

and for $\delta < p$ (i.e., $rac{\delta}{p} <$ 1), we have:

$$P(p \notin [\bar{p} - \delta, \bar{p} + \delta]) = P(X < np(1 - \frac{\delta}{p})) + P(X > np(1 + \frac{\delta}{p}))$$
$$< e^{-\frac{np(\frac{\delta}{p})^2}{2}} + e^{-\frac{np(\frac{\delta}{p})^2}{3}}$$
$$= e^{-\frac{n\delta^2}{2p}} + e^{-\frac{n\delta^2}{3p}}$$

The above bound is not useful because it is expressed through p and the value of p is unknown. What can we do?We can use the fact that $p \le 1$, hence:

$$P(p \notin [\bar{p} - \delta, \bar{p} + \delta]) < e^{-\frac{n\delta^2}{2}} + e^{-\frac{n\delta^2}{3}}$$

Tradeoff between δ, γ and n

Applying the following Chernoff bounds:

$$P(X \ge (1+\delta)\mu) < e^{-\frac{\mu\delta^2}{3}}$$
 and $P(X \le (1-\delta)\mu) \le e^{-\frac{\mu\delta^2}{2}}$

and for $\delta < p$ (i.e., $rac{\delta}{\rho} <$ 1), we have:

$$P(p \notin [\bar{p} - \delta, \bar{p} + \delta]) = P(X < np(1 - \frac{\delta}{p})) + P(X > np(1 + \frac{\delta}{p}))$$
$$< e^{-\frac{np(\frac{\delta}{p})^2}{2}} + e^{-\frac{np(\frac{\delta}{p})^2}{3}}$$
$$= e^{-\frac{n\delta^2}{2p}} + e^{-\frac{n\delta^2}{3p}}$$

The above bound is not useful because it is expressed through *p* and the value of *p* is unknown. What can we do?We can use the fact that $p \le 1$, hence:

$$P(p \notin [\bar{p} - \delta, \bar{p} + \delta]) < e^{-\frac{n\delta^2}{2}} + e^{-\frac{n\delta^2}{3}}$$

Setting $\gamma = e^{-\frac{n\delta^2}{2}} + e^{-\frac{n\delta^2}{3}}$, we obtain a tradeoff between δ, γ and n.

Better Bounds for Special Cases

Special Case

Consider the case where each random variable takes its value from the set $\{-1,1\}$ with the exact same probability (i.e., $p = \frac{1}{2}$).

Better Bounds for Special Cases

Special Case

Consider the case where each random variable takes its value from the set $\{-1,1\}$ with the exact same probability (i.e., $p = \frac{1}{2}$).

Theorem

Let X_1, \ldots, X_n be independent random variables with

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}$$

Better Bounds for Special Cases

Special Case

Consider the case where each random variable takes its value from the set $\{-1,1\}$ with the exact same probability (i.e., $p = \frac{1}{2}$).

Theorem

Let X_1, \ldots, X_n be independent random variables with

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}$$

Let $X = \sum_{i=1}^{n} X_i$. For any a > 0,

$$P(X \ge a) \le e^{-rac{a^2}{2n}}$$

Better Bounds for Special Cases

Special Case

Consider the case where each random variable takes its value from the set $\{-1,1\}$ with the exact same probability (i.e., $p = \frac{1}{2}$).

Theorem

Let X_1, \ldots, X_n be independent random variables with

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}$$

Let $X = \sum_{i=1}^{n} X_i$. For any a > 0,

$$P(X \ge a) \le e^{-rac{a^2}{2n}}$$

Better Bounds for Special Cases

Proof.

For any t > 0,

$$E[\mathbf{e}^{tX_i}] = \frac{1}{2}\mathbf{e}^t + \frac{1}{2}\mathbf{e}^{-t}$$

Better Bounds for Special Cases

Proof.

For any t > 0,

$$\Xi[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$

To estimate $E[e^{tX_i}]$, note that (by the Taylor series expansion for e^t):

Better Bounds for Special Cases

Proof.

For any t > 0,

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$

To estimate $E[e^{tX_i}]$, note that (by the Taylor series expansion for e^t):

$$e^t = 1 + \frac{t}{1!} + \frac{t^2}{2!} + \dots + \frac{t^i}{i!} + \dots$$

Better Bounds for Special Cases

Proof.

For any t > 0,

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$

To estimate $E[e^{tX_i}]$, note that (by the Taylor series expansion for e^t):

$$e^t = 1 + \frac{t}{1!} + \frac{t^2}{2!} + \dots + \frac{t^i}{i!} + \dots$$

and

$$e^{-t} = 1 - \frac{t}{1!} + \frac{t^2}{2!} + \dots + (-1)^i \frac{t^i}{i!} + \dots$$

Better Bounds for Special Cases

Proof.

For any t > 0,

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$

To estimate $E[e^{tX_i}]$, note that (by the Taylor series expansion for e^t):

$$e^t = 1 + \frac{t}{1!} + \frac{t^2}{2!} + \dots + \frac{t^i}{i!} + \dots$$

and

$$e^{-t} = 1 - \frac{t}{1!} + \frac{t^2}{2!} + \dots + (-1)^i \frac{t^i}{i!} + \dots$$

Better Bounds for Special Cases

Proof.

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$

Better Bounds for Special Cases

Proof.

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$
$$= \sum_{i\geq 0}\frac{t^{2i}}{(2i)!}$$

Better Bounds for Special Cases

Proof.

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$
$$= \sum_{i \ge 0} \frac{t^{2i}}{(2i)!}$$
$$\le \sum_{i \ge 0} \frac{(t^2/2)^i}{i!}$$

Better Bounds for Special Cases

Proof.

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$
$$= \sum_{i\geq 0} \frac{t^{2i}}{(2i)!}$$
$$\leq \sum_{i\geq 0} \frac{(t^2/2)^i}{i!}$$
$$= e^{\frac{t^2}{2}}$$

Better Bounds for Special Cases

Proof.

Thus:

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$
$$= \sum_{i\geq 0}\frac{t^{2i}}{(2i)!}$$
$$\leq \sum_{i\geq 0}\frac{(t^2/2)^i}{i!}$$
$$= e^{\frac{t^2}{2}}$$

Using this estimation, we can evaluate $E[e^{tX}]$:

$$E[e^{tX}] = \prod_{i=1}^{n} E[e^{e^{tX_i}}] \le e^{\frac{t^2n}{2}}$$

Better Bounds for Special Cases

Proof.

Thus:

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$
$$= \sum_{i\geq 0}\frac{t^{2i}}{(2i)!}$$
$$\leq \sum_{i\geq 0}\frac{(t^2/2)^i}{i!}$$
$$= e^{\frac{t^2}{2}}$$

Using this estimation, we can evaluate $E[e^{tX}]$:

$$E[e^{tX}] = \prod_{i=1}^{n} E[e^{e^{tX_i}}] \le e^{\frac{t^2n}{2}}$$

$$P(X \ge a) =$$

Better Bounds for Special Cases

Proof.

Thus:

$$E[e^{tX_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}$$
$$= \sum_{i\geq 0}\frac{t^{2i}}{(2i)!}$$
$$\leq \sum_{i\geq 0}\frac{(t^2/2)^i}{i!}$$
$$= e^{\frac{t^2}{2}}$$

Using this estimation, we can evaluate $E[e^{tX}]$:

$$E[e^{tX}] = \prod_{i=1}^{n} E[e^{e^{tX_i}}] \le e^{\frac{t^2n}{2}}$$

$$P(X \ge a) = P(e^{tX} \ge e^{ta})$$

F

Better Bounds for Special Cases

Proof.

Thus:

$$\begin{aligned} \mathbf{F}[\mathbf{e}^{tX_j}] &= \frac{1}{2}\mathbf{e}^t + \frac{1}{2}\mathbf{e}^- \\ &= \sum_{i\geq 0} \frac{t^{2i}}{(2i)!} \\ &\leq \sum_{i\geq 0} \frac{(t^2/2)^i}{i!} \\ &= \mathbf{e}^{\frac{t^2}{2}} \end{aligned}$$

Using this estimation, we can evaluate $E[e^{tX}]$:

$$E[e^{tX}] = \prod_{i=1}^{n} E[e^{e^{tX_i}}] \le e^{\frac{t^2n}{2}}$$

$$\mathsf{P}(\mathsf{X} \geq \mathsf{a}) = \mathsf{P}(\mathsf{e}^{t\mathsf{X}} \geq \mathsf{e}^{t\mathsf{a}}) \leq rac{\mathsf{E}[\mathsf{e}^{t\mathsf{X}}]}{\mathsf{e}^{t\mathsf{a}}}$$

F

Better Bounds for Special Cases

Proof.

Thus:

$$\begin{aligned} [e^{tX_i}] &= \frac{1}{2}e^t + \frac{1}{2}e^{-t} \\ &= \sum_{i \ge 0} \frac{t^{2i}}{(2i)!} \\ &\le \sum_{i \ge 0} \frac{(t^2/2)^i}{i!} \\ &= e^{\frac{t^2}{2}} \end{aligned}$$

Using this estimation, we can evaluate $E[e^{tX}]$:

$$E[e^{tX}] = \prod_{i=1}^{n} E[e^{e^{tX_i}}] \le e^{\frac{t^2n}{2}}$$

$$P(X \ge a) = P(e^{tX} \ge e^{ta}) \le rac{E[e^{tX}]}{e^{ta}} \le e^{rac{t^2n}{2} - ta}$$

F

Better Bounds for Special Cases

Proof.

Thus:

$$\begin{aligned} [e^{tX_i}] &= \frac{1}{2}e^t + \frac{1}{2}e^{-t} \\ &= \sum_{i \ge 0} \frac{t^{2i}}{(2i)!} \\ &\le \sum_{i \ge 0} \frac{(t^2/2)^i}{i!} \\ &= e^{\frac{t^2}{2}} \end{aligned}$$

Using this estimation, we can evaluate $E[e^{tX}]$:

$$E[e^{tX}] = \prod_{i=1}^{n} E[e^{e^{tX_i}}] \le e^{\frac{t^2n}{2}}$$

and, using Markov's bound (recall that t > 0):

$$P(X \ge a) = P(e^{tX} \ge e^{ta}) \le rac{E[e^{tX}]}{e^{ta}} \le e^{rac{t^2n}{2} - ta}$$

Better Bounds for Special Cases

Proof.

Proof. Recall that for any a > 0 we want to prove that

$$P(X \ge a) \le e^{-\frac{a^2}{2n}}$$

Better Bounds for Special Cases

Proof.

Proof. Recall that for any a > 0 we want to prove that

$$P(X \ge a) \le e^{-\frac{a^2}{2n}}$$

We have shown that

$$P(X \ge a) \le e^{\frac{t^2n}{2}-ta}$$

Better Bounds for Special Cases

Proof.

Proof. Recall that for any a > 0 we want to prove that

$$P(X \ge a) \le e^{-\frac{a^2}{2n}}$$

We have shown that

$$P(X \ge a) \le e^{\frac{t^2n}{2}-ta}$$

Therefore, we set t =

Better Bounds for Special Cases

Proof.

Proof. Recall that for any a > 0 we want to prove that

$$P(X \ge a) \le e^{-\frac{a^2}{2n}}$$

We have shown that

$$\mathsf{P}(X \ge a) \le e^{rac{t^2n}{2} - ta}$$

Therefore, we set $t = \frac{a}{n}$ to obtain:

$$P(X \ge a) \le e^{-\frac{a^2}{2n}}$$

Better Bounds for Special Cases

Proof.

Proof. Recall that for any a > 0 we want to prove that

$$P(X \ge a) \le e^{-\frac{a^2}{2n}}$$

We have shown that

$$\mathsf{P}(X \ge a) \le e^{\frac{t^2n}{2} - ta}$$

Therefore, we set $t = \frac{a}{n}$ to obtain:

$$P(X \ge a) \le e^{-rac{a^2}{2n}}$$

Note

By symmetry, we also have:

$$P(X \le a) \le e^{-\frac{a^2}{2n}}$$

Better Bounds for Special Cases

Corollary

Let X_1, \ldots, X_n be independent random variables with

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}$$

Better Bounds for Special Cases

Corollary

Let X_1, \ldots, X_n be independent random variables with

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}$$

Let $X = \sum_{i=1}^{n} X_i$. For any a > 0,

$$P(|X| \ge a) \le$$

Better Bounds for Special Cases

Corollary

Let X_1, \ldots, X_n be independent random variables with

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}$$

Let $X = \sum_{i=1}^{n} X_i$. For any a > 0,

$$P(|X| \ge a) \le 2e^{-\frac{a^2}{2n}}$$

Better Bounds for Special Cases

Transformation

We apply the transformation $Y_i = \frac{(X_i+1)}{2}$.

Better Bounds for Special Cases

Transformation

We apply the transformation $Y_i = \frac{(X_i+1)}{2}$. Why?

Better Bounds for Special Cases

Transformation

We apply the transformation $Y_i = \frac{(X_i+1)}{2}$. Why?

Corollary

Let Y_1, \ldots, Y_n be independent random variables with

$$P(Y_i = 1) = P(Y_i = 0) = \frac{1}{2}$$

Better Bounds for Special Cases

Transformation

We apply the transformation $Y_i = \frac{(X_i+1)}{2}$. Why?

Corollary

Let Y_1, \ldots, Y_n be independent random variables with

$$P(Y_i = 1) = P(Y_i = 0) = \frac{1}{2}$$

Let $Y = \sum_{i=1}^{n} Y_i$ and $\mu = E[Y] = \frac{n}{2}$.

Better Bounds for Special Cases

Transformation

We apply the transformation $Y_i = \frac{(X_i+1)}{2}$. Why?

Corollary

Let Y_1, \ldots, Y_n be independent random variables with

$$P(Y_i = 1) = P(Y_i = 0) = \frac{1}{2}$$

Let $Y = \sum_{i=1}^{n} Y_i$ and $\mu = E[Y] = \frac{n}{2}$. • For any a > 0, $P(Y \ge \mu + a) \le e^{-\frac{2a^2}{n}}$

Better Bounds for Special Cases

Transformation

We apply the transformation $Y_i = \frac{(X_i+1)}{2}$. Why?

Corollary

Let Y_1, \ldots, Y_n be independent random variables with

$$P(Y_i = 1) = P(Y_i = 0) = \frac{1}{2}$$

2

Let $Y = \sum_{i=1}^{n} Y_i$ and $\mu = E[Y] = \frac{n}{2}$.

• For any
$$a > 0$$
, $P(Y \ge \mu + a) \le e^{-\frac{2a^2}{n}}$

② For any
$$\delta >$$
 0, P(Y \geq (1 + $\delta)\mu$) \leq e $^{-\delta^{2}\mu}$

Better Bounds for Special Cases

Transformation

We apply the transformation $Y_i = \frac{(X_i+1)}{2}$. Why?

Corollary

Let Y_1, \ldots, Y_n be independent random variables with

$$P(Y_i = 1) = P(Y_i = 0) = \frac{1}{2}$$

Let
$$Y = \sum_{i=1}^{n} Y_i$$
 and $\mu = E[Y] = \frac{n}{2}$.

• For any
$$a > 0$$
, $P(Y \ge \mu + a) \le e^{-\frac{2a^2}{n}}$

② For any
$$\delta >$$
 0, $extsf{P}(extsf{Y} \geq (extsf{1} + \delta) \mu) \leq extsf{e}^{-\delta^2 \mu}$

Question

Why is the bound given by point (1) above special?

Better Bounds for Special Cases

Proof.

For point (1):

Better Bounds for Special Cases

Proof.

For point (1): Using the fact that $Y_i = (X_i + 1)/2$, we have that

Y =

Better Bounds for Special Cases

Proof.

For point (1): Using the fact that $Y_i = (X_i + 1)/2$, we have that

$$Y = \sum_{i=1}^{n} Y_i =$$

Better Bounds for Special Cases

Proof.

For point (1):

Using the fact that $Y_i = (X_i + 1)/2$, we have that

$$Y = \sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \frac{X_i + 1}{2} =$$

Better Bounds for Special Cases

Proof.

For point (1): Using the fact that $Y_i = (X_i + 1)/2$, we have that

$$Y = \sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \frac{X_i + 1}{2} = \frac{1}{2} \sum_{i=1}^{n} X_i + \frac{n}{2} =$$

Better Bounds for Special Cases

Proof.

For point (1): Using the fact that $Y_i = (X_i + 1)/2$, we have that

$$Y = \sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \frac{X_i + 1}{2} = \frac{1}{2} \sum_{i=1}^{n} X_i + \frac{n}{2} = \frac{1}{2} X + \mu$$

Better Bounds for Special Cases

Proof.

For point (1): Using the fact that $Y_i = (X_i + 1)/2$, we have that

$$Y = \sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \frac{X_i + 1}{2} = \frac{1}{2} \sum_{i=1}^{n} X_i + \frac{n}{2} = \frac{1}{2} X + \mu$$

Then:

$$P(Y \ge \mu + a) =$$

Better Bounds for Special Cases

Proof.

For point (1):

Using the fact that $Y_i = (X_i + 1)/2$, we have that

$$Y = \sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \frac{X_i + 1}{2} = \frac{1}{2} \sum_{i=1}^{n} X_i + \frac{n}{2} = \frac{1}{2} X + \mu$$

Then:

$$P(Y \ge \mu + a) = P(\frac{1}{2}X + \mu \ge \mu + a) =$$

Better Bounds for Special Cases

Proof.

For point (1):

Using the fact that $Y_i = (X_i + 1)/2$, we have that

$$Y = \sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \frac{X_i + 1}{2} = \frac{1}{2} \sum_{i=1}^{n} X_i + \frac{n}{2} = \frac{1}{2} X + \mu$$

Then:

$$P(Y \ge \mu + a) = P(\frac{1}{2}X + \mu \ge \mu + a) = P(X \ge 2a)$$

Better Bounds for Special Cases

Proof.

For point (1):

Using the fact that $Y_i = (X_i + 1)/2$, we have that

$$Y = \sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \frac{X_i + 1}{2} = \frac{1}{2} \sum_{i=1}^{n} X_i + \frac{n}{2} = \frac{1}{2} X + \mu$$

Then:

$$P(Y \ge \mu + a) = P(\frac{1}{2}X + \mu \ge \mu + a) = P(X \ge 2a)$$

Since, for any a > 0 (by the previous theorem), $P(X \ge a) \le e^{-\frac{a^2}{2n}}$, we have that:

Better Bounds for Special Cases

Proof.

For point (1):

Using the fact that $Y_i = (X_i + 1)/2$, we have that

$$Y = \sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \frac{X_i + 1}{2} = \frac{1}{2} \sum_{i=1}^{n} X_i + \frac{n}{2} = \frac{1}{2} X + \mu$$

Then:

$$P(Y \ge \mu + a) = P(\frac{1}{2}X + \mu \ge \mu + a) = P(X \ge 2a)$$

Since, for any a>0 (by the previous theorem), $P(X\geq a)\leq e^{-\frac{a^2}{2n}}$, we have that:

$$P(Y \ge \mu + a) =$$

Better Bounds for Special Cases

Proof.

For point (1):

Using the fact that $Y_i = (X_i + 1)/2$, we have that

$$Y = \sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \frac{X_i + 1}{2} = \frac{1}{2} \sum_{i=1}^{n} X_i + \frac{n}{2} = \frac{1}{2} X + \mu$$

Then:

$$P(Y \ge \mu + a) = P(\frac{1}{2}X + \mu \ge \mu + a) = P(X \ge 2a)$$

Since, for any a > 0 (by the previous theorem), $P(X \ge a) \le e^{-\frac{a^2}{2n}}$, we have that:

$$P(Y \ge \mu + a) = P(X \ge 2a) \le e^{-\frac{2a^2}{n}}$$

Better Bounds for Special Cases

Proof.

For point (1):

Using the fact that $Y_i = (X_i + 1)/2$, we have that

$$Y = \sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \frac{X_i + 1}{2} = \frac{1}{2} \sum_{i=1}^{n} X_i + \frac{n}{2} = \frac{1}{2} X + \mu$$

Then:

$$P(Y \ge \mu + a) = P(\frac{1}{2}X + \mu \ge \mu + a) = P(X \ge 2a)$$

Since, for any a > 0 (by the previous theorem), $P(X \ge a) \le e^{-\frac{a^2}{2n}}$, we have that:

$$P(Y \ge \mu + a) = P(X \ge 2a) \le e^{-\frac{2a^2}{n}}$$

which completes the proof for point (1).

Better Bounds for Special Cases

Proof.

For point (2):

Better Bounds for Special Cases

Proof.

For point (2): We will utilize our previous result:

$$P(Y \ge \mu + a) \le e^{-rac{2a^2}{n}}$$

Better Bounds for Special Cases

Proof.

For point (2): We will utilize our previous result:

$$P(Y \ge \mu + a) \le e^{-rac{2a^2}{n}}$$

For $a = \delta \mu$

Better Bounds for Special Cases

Proof.

For point (2): We will utilize our previous result:

$$P(Y \ge \mu + a) \le e^{-rac{2a^2}{n}}$$

$$P(Y \ge (1+\delta)\mu) =$$

Better Bounds for Special Cases

Proof.

For point (2): We will utilize our previous result:

$$P(Y \ge \mu + a) \le e^{-rac{2a^2}{n}}$$

$$\mathsf{P}(\mathsf{Y} \ge (\mathsf{1} + \delta)\mu) \quad = \quad \mathsf{P}(\mathsf{Y} \ge \mu + \delta\mu)$$

Better Bounds for Special Cases

Proof.

For point (2): We will utilize our previous result:

$$P(Y \ge \mu + a) \le e^{-rac{2a^2}{n}}$$

$$egin{array}{rl} {\sf P}({\sf Y}\geq(1+\delta)\mu)&=&{\sf P}({\sf Y}\geq\mu+\delta\mu)\ &<&e^{-rac{2(\delta\mu)^2}{n}} \end{array}$$

Better Bounds for Special Cases

Proof.

For point (2): We will utilize our previous result:

$$P(Y \ge \mu + a) \le e^{-rac{2a^2}{n}}$$

$$P(Y \ge (1+\delta)\mu) = P(Y \ge \mu + \delta\mu)$$
$$\leq e^{-\frac{2(\delta\mu)^2}{n}}$$
$$= e^{-\frac{(\delta\mu)^2}{2}}$$

Better Bounds for Special Cases

Proof.

For point (2): We will utilize our previous result:

$$P(Y \ge \mu + a) \le e^{-rac{2a^2}{n}}$$

For $a = \delta \mu$ (Note that since $\delta >$ 0, also $\delta \mu >$ 0):

$$P(Y \ge (1+\delta)\mu) = P(Y \ge \mu + \delta\mu)$$
$$\leq e^{-\frac{2(\delta\mu)^2}{n}}$$
$$= e^{-\frac{(\delta\mu)^2}{2}}$$
$$= e^{-\frac{(\delta\mu)^2}{\mu}}$$

Better Bounds for Special Cases

Proof.

For point (2): We will utilize our previous result:

$$P(Y \ge \mu + a) \le e^{-rac{2a^2}{n}}$$

For $a = \delta \mu$ (Note that since $\delta >$ 0, also $\delta \mu >$ 0):

$$\begin{array}{rcl} \mathsf{P}(\mathsf{Y} \ge (\mathsf{1} + \delta)\mu) & = & \mathsf{P}(\mathsf{Y} \ge \mu + \delta\mu) \\ & \leq & \mathsf{e}^{-\frac{2(\delta\mu)^2}{n}} \\ & = & \mathsf{e}^{-\frac{(\delta\mu)^2}{\frac{\mu}{2}}} \\ & = & \mathsf{e}^{-\frac{(\delta\mu)^2}{\mu}} \\ & = & \mathsf{e}^{-\delta^2\mu} \end{array}$$

Better Bounds for Special Cases

Corollary

Let Y_1, \ldots, Y_n be independent random variables with

$$P(Y_i = 1) = P(Y_i = 0) = \frac{1}{2}$$

Better Bounds for Special Cases

Corollary

Let Y_1, \ldots, Y_n be independent random variables with

$$P(Y_i = 1) = P(Y_i = 0) = \frac{1}{2}$$

Let $Y = \sum_{i=1}^{n} Y_i$ and $\mu = E[Y] = \frac{n}{2}$.

Better Bounds for Special Cases

Corollary

Let Y_1, \ldots, Y_n be independent random variables with

$$P(Y_i = 1) = P(Y_i = 0) = \frac{1}{2}$$

Let $Y = \sum_{i=1}^{n} Y_i$ and $\mu = E[Y] = \frac{n}{2}$. • For any $0 < a < \mu$, $P(Y \ge \mu - a) \le e^{-\frac{2a^2}{n}}$

Better Bounds for Special Cases

Corollary

Let Y_1, \ldots, Y_n be independent random variables with

$$P(Y_i = 1) = P(Y_i = 0) = \frac{1}{2}$$

Let
$$Y = \sum_{i=1}^{n} Y_i$$
 and $\mu = E[Y] = \frac{n}{2}$.
• For any $0 < a < \mu$, $P(Y \ge \mu - a) \le e^{-\frac{2a^2}{n}}$
• For any $0 < \delta < 1$, $P(Y \ge (1 - \delta)\mu) \le e^{-\delta^2\mu}$

Application: Set Balancing

Set balancing

Consider:

Application: Set Balancing

Set balancing

Consider:

• A *n*×*m* matrix **A** with entries in {0,1}, where *a_{ij}*, (*i* = 1,...*n*, *j* = 1,...*m*) corresponds to the element of the *i*th row and the *j*th column.

Application: Set Balancing

Set balancing

Consider:

- A n×m matrix A with entries in {0,1}, where a_{ij}, (i = 1,...n, j = 1,...m) corresponds to the element of the ith row and the jth column.
- A $m \times 1$ vector **b** with entries in $\{-1, 1\}$, where $b_j, (j = 1, ..., m)$ corresponds to the j^{th} element of **b**.

Application: Set Balancing

Set balancing

Consider:

- A n×m matrix A with entries in {0,1}, where a_{ij}, (i = 1,...n, j = 1,...m) corresponds to the element of the ith row and the jth column.
- A $m \times 1$ vector **b** with entries in $\{-1, 1\}$, where $b_j, (j = 1, ..., m)$ corresponds to the j^{th} element of **b**.
- A $n \times 1$ vector **c**, where $c_i, (i = 1, ..., n)$ corresponds to the *i*th element of **c**.

Application: Set Balancing

Set balancing

Consider:

- A n×m matrix A with entries in {0,1}, where a_{ij}, (i = 1,...n, j = 1,...m) corresponds to the element of the ith row and the jth column.
- A $m \times 1$ vector **b** with entries in $\{-1, 1\}$, where $b_j, (j = 1, ..., m)$ corresponds to the j^{th} element of **b**.
- A $n \times 1$ vector **c**, where $c_i, (i = 1, ..., n)$ corresponds to the *i*th element of **c**.

Given A, we want to find the entries of vector b that minimize

$$||\mathbf{A} \cdot \mathbf{b}||_{\infty} = \max_{i=1,\dots,n} |c_i|$$

Application: Set Balancing

Set balancing

Consider:

- A n×m matrix A with entries in {0,1}, where a_{ij}, (i = 1,...n, j = 1,...m) corresponds to the element of the ith row and the jth column.
- A m × 1 vector b with entries in {−1,1}, where b_j, (j = 1,...m) corresponds to the jth element of b.
- A $n \times 1$ vector **c**, where c_i , (i = 1, ..., n) corresponds to the i^{th} element of **c**.

Given A, we want to find the entries of vector b that minimize

$$\|\mathbf{A}\cdot\mathbf{b}\|_{\infty} = \max_{i=1,\dots,n} |c_i|$$

Motivation

This problem rises in designing statistical experiments.

Application: Set Balancing

Set balancing

Consider:

- A n×m matrix A with entries in {0,1}, where a_{ij}, (i = 1,...n, j = 1,...m) corresponds to the element of the ith row and the jth column.
- A $m \times 1$ vector **b** with entries in $\{-1, 1\}$, where $b_j, (j = 1, ..., m)$ corresponds to the j^{th} element of **b**.
- A $n \times 1$ vector **c**, where $c_i, (i = 1, ..., n)$ corresponds to the *i*th element of **c**.

Given A, we want to find the entries of vector b that minimize

$$|\mathbf{A} \cdot \mathbf{b}||_{\infty} = \max_{i=1,\dots,n} |c_i|$$

Motivation

This problem rises in designing statistical experiments. Each column of **A** represents a subject in the experiment and each row a feature.

Application: Set Balancing

Set balancing

Consider:

- A n×m matrix A with entries in {0,1}, where a_{ij}, (i = 1,...n, j = 1,...m) corresponds to the element of the ith row and the jth column.
- A $m \times 1$ vector **b** with entries in $\{-1, 1\}$, where $b_j, (j = 1, ..., m)$ corresponds to the j^{th} element of **b**.
- A $n \times 1$ vector **c**, where $c_i, (i = 1, ..., n)$ corresponds to the *i*th element of **c**.

Given A, we want to find the entries of vector b that minimize

$$\|\mathbf{A}\cdot\mathbf{b}\|_{\infty} = \max_{i=1,\dots,n} |c_i|$$

Motivation

This problem rises in designing statistical experiments. Each column of **A** represents a subject in the experiment and each row a feature. The vector **b** partitions the subjects into two disjoint groups (through multiplying either by 1 or by -1).

Application: Set Balancing

Set balancing

Consider:

- A n×m matrix A with entries in {0,1}, where a_{ij}, (i = 1,...n, j = 1,...m) corresponds to the element of the ith row and the jth column.
- A $m \times 1$ vector **b** with entries in $\{-1, 1\}$, where $b_j, (j = 1, ..., m)$ corresponds to the j^{th} element of **b**.
- A $n \times 1$ vector **c**, where c_i , (i = 1, ..., n) corresponds to the i^{th} element of **c**.

Given A, we want to find the entries of vector b that minimize

$$||\mathbf{A} \cdot \mathbf{b}||_{\infty} = \max_{i=1,\dots,n} |c_i|$$

Motivation

This problem rises in designing statistical experiments. Each column of **A** represents a subject in the experiment and each row a feature. The vector **b** partitions the subjects into two disjoint groups (through multiplying either by 1 or by -1). So we are looking a way to separate the participants into two groups so that each feature is roughly as balanced as possible between the two groups.

Application: Set Balancing

Randomized Algorithm

The proposed randomized algorithm works as follows:

Application: Set Balancing

Randomized Algorithm

The proposed randomized algorithm works as follows:

• It randomly chooses the entries of **b**, with $P(b_i = 1) = P(b_i = -1) = \frac{1}{2}$.

Application: Set Balancing

Randomized Algorithm

The proposed randomized algorithm works as follows:

- It randomly chooses the entries of **b**, with $P(b_i = 1) = P(b_i = -1) = \frac{1}{2}$.
- The choices for different entries are independent.

Application: Set Balancing

Randomized Algorithm

The proposed randomized algorithm works as follows:

- It randomly chooses the entries of **b**, with $P(b_i = 1) = P(b_i = -1) = \frac{1}{2}$.
- The choices for different entries are independent.

Note that this algorithm ignores the entries of A!

Application: Set Balancing

Randomized Algorithm

The proposed randomized algorithm works as follows:

- It randomly chooses the entries of **b**, with $P(b_i = 1) = P(b_i = -1) = \frac{1}{2}$.
- The choices for different entries are independent.

Note that this algorithm ignores the entries of A!

We will show that using this approach it is likely that we obtain a rather tight bound for $||\mathbf{A} \cdot \mathbf{b}||_{\infty}$ (i.e., $O(\sqrt{m \ln n})$).

Application: Set Balancing

Theorem

For a random vector ${\bm b}$ with entries chosen independently and with equal probability from the set $\{-1,1\},$

$$\mathsf{P}(||\mathbf{A}\cdot\mathbf{b}||_{\infty} \geq \sqrt{4m\ln n}) \leq \frac{2}{n}$$

Application: Set Balancing

Theorem

For a random vector ${\bm b}$ with entries chosen independently and with equal probability from the set $\{-1,1\},$

$$\mathsf{P}(||\mathbf{A}\cdot\mathbf{b}||_{\infty} \geq \sqrt{4m\ln n}) \leq \frac{2}{n}$$

Application: Set Balancing

Proof.

Consider the *i*th row of **A**: $\mathbf{a_i} = a_{i1}, \ldots, a_{im}$.

Application: Set Balancing

Proof.

Consider the *i*th row of **A**: $\mathbf{a}_i = a_{i1}, \dots, a_{im}$. Let *k* be the number of 1s in that row.

Application: Set Balancing

Proof.

Consider the *i*th row of **A**: $\mathbf{a}_i = a_{i1}, \dots, a_{im}$. Let *k* be the number of 1s in that row. If $k \le \sqrt{4m \ln n}$, then it is obvious that $|\mathbf{a}_i \cdot \mathbf{b}| = |c_i| \le \sqrt{4m \ln n}$ for any values of **b**.

Application: Set Balancing

Proof.

Consider the *i*th row of **A**: $\mathbf{a}_i = a_{i1}, \dots, a_{im}$. Let *k* be the number of 1s in that row. If $k \le \sqrt{4m \ln n}$, then it is obvious that $|\mathbf{a}_i \cdot \mathbf{b}| = |c_i| \le \sqrt{4m \ln n}$ for any values of **b**. If $k > \sqrt{4m \ln n}$, then the *k* non-zero terms in $Z_i = \sum_{j=1}^m a_{ij} b_j$ are independent random variables.

Application: Set Balancing

Proof.

Consider the *i*th row of **A**: $\mathbf{a}_i = a_{i1}, \dots, a_{im}$. Let *k* be the number of 1s in that row. If $k \le \sqrt{4m \ln n}$, then it is obvious that $|\mathbf{a}_i \cdot \mathbf{b}| = |c_i| \le \sqrt{4m \ln n}$ for any values of **b**. If $k > \sqrt{4m \ln n}$, then the *k* non-zero terms in $Z_i = \sum_{j=1}^m a_{ij}b_j$ are independent random variables. Each such random variable has a probability equal to $\frac{1}{2}$ to be either +1 or -1.

Application: Set Balancing

Proof.

Consider the *i*th row of **A**: $\mathbf{a}_i = a_{i1}, \dots, a_{im}$. Let *k* be the number of 1s in that row. If $k \leq \sqrt{4m \ln n}$, then it is obvious that $|\mathbf{a}_i \cdot \mathbf{b}| = |c_i| \leq \sqrt{4m \ln n}$ for any values of **b**. If $k > \sqrt{4m \ln n}$, then the *k* non-zero terms in $Z_i = \sum_{j=1}^m a_{ij}b_j$ are independent random variables. Each such random variable has a probability equal to $\frac{1}{2}$ to be either +1 or -1. Hence, Z_i corresponds to the sum of Poisson trials with possible outcome in $\{-1,1\}$ and probability $\frac{1}{2}$ for each outcome.

Application: Set Balancing

Proof.

Consider the *i*th row of **A**: $\mathbf{a}_i = a_{i1}, \dots, a_{im}$. Let *k* be the number of 1s in that row.

If $k \le \sqrt{4m \ln n}$, then it is obvious that $|\mathbf{a}_i \cdot \mathbf{b}| = |\mathbf{c}_i| \le \sqrt{4m \ln n}$ for any values of **b**.

If $k > \sqrt{4m \ln n}$, then the k non-zero terms in $Z_i = \sum_{i=1}^m a_{ij} b_i$ are independent random variables.

Each such random variable has a probability equal to $\frac{1}{2}$ to be either +1 or -1.

Hence, Z_i corresponds to the sum of Poisson trials with possible outcome in $\{-1,1\}$ and probability $\frac{1}{2}$ for each outcome.

Therefore, we can use the previously obtained results, namely that for a > 0:

$$P(|X| \ge a) \le 2e^{-\frac{a^2}{2n}}$$

Application: Set Balancing

Proof.

Consider the *i*th row of **A**: $\mathbf{a}_i = a_{i1}, \dots, a_{im}$. Let *k* be the number of 1s in that row. If $k \le \sqrt{4m \ln n}$, then it is obvious that $|\mathbf{a}_i \cdot \mathbf{b}| = |c_i| \le \sqrt{4m \ln n}$ for any values of **b**. If $k > \sqrt{4m \ln n}$, then the *k* non-zero terms in $Z_i = \sum_{j=1}^m a_{ij} b_j$ are independent random variables. Each such random variable has a probability equal to $\frac{1}{2}$ to be either +1 or -1. Hence, Z_i corresponds to the sum of Poisson trials with possible outcome in $\{-1, 1\}$ and probability $\frac{1}{2}$ for each outcome. Therefore, we can use the previously obtained results, namely that for a > 0:

$$P(|X| \ge a) \le 2e^{-\frac{a^2}{2n}}$$

Thus, we will have:

$$P(|Z_i| > \sqrt{4m\ln n}) \le 2e^{\frac{-4m\ln n}{2k}}$$

Application: Set Balancing

Proof.

Consider the *i*th row of **A**: $\mathbf{a}_i = a_{i1}, \dots, a_{im}$. Let *k* be the number of 1s in that row. If $k \le \sqrt{4m \ln n}$, then it is obvious that $|\mathbf{a}_i \cdot \mathbf{b}| = |c_i| \le \sqrt{4m \ln n}$ for any values of **b**. If $k > \sqrt{4m \ln n}$, then the *k* non-zero terms in $Z_i = \sum_{j=1}^m a_{ij} b_j$ are independent random variables. Each such random variable has a probability equal to $\frac{1}{2}$ to be either +1 or -1. Hence, Z_i corresponds to the sum of Poisson trials with possible outcome in $\{-1, 1\}$ and probability $\frac{1}{2}$ for each outcome. Therefore, we can use the previously obtained results, namely that for a > 0:

$$P(|X| \ge a) \le 2e^{-\frac{a^2}{2n}}$$

Thus, we will have:

$$P(|Z_i| > \sqrt{4m \ln n}) \le 2e^{\frac{-4m \ln n}{2k}} \le \frac{2}{n^2}$$

Application: Set Balancing

Proof.

Consider the *i*th row of **A**: $\mathbf{a}_i = a_{i1}, \dots, a_{im}$. Let *k* be the number of 1s in that row. If $k \leq \sqrt{4m \ln n}$, then it is obvious that $|\mathbf{a}_i \cdot \mathbf{b}| = |c_i| \leq \sqrt{4m \ln n}$ for any values of **b**. If $k > \sqrt{4m \ln n}$, then the *k* non-zero terms in $Z_i = \sum_{j=1}^m a_{ij} b_j$ are independent random variables. Each such random variable has a probability equal to $\frac{1}{2}$ to be either +1 or -1. Hence, Z_i corresponds to the sum of Poisson trials with possible outcome in $\{-1,1\}$ and probability $\frac{1}{2}$ for each outcome. Therefore, we can use the previously obtained results, namely that for a > 0:

$$P(|X| \ge a) \le 2e^{-\frac{a^2}{2n}}$$

Thus, we will have:

$$P(|Z_i| > \sqrt{4m \ln n}) \le 2e^{\frac{-4m \ln n}{2k}} \le \frac{2}{n^2}$$

Since we are interested for all Z_i , i = 1, ..., n, the probability for the bound $\sqrt{4m \ln n}$ to fail is $\frac{2}{n}$.