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Most of the times, the deviations from the mean are on the order of O(+/nInn).
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Chernoff’s inequality gives a bound that is exponentially smaller than the bound obtained using
Chebyshev’s inequality.
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We apply the transformation Y; = (X‘;’l).

Why?

Corollary

Let Y1,...,Y, be independent random variables with
1
P(Yi=1)=P(Yi=0)= >
LetY =3, Yiand y =E[Y] = 3.

aZ
Q Foranya>0,P(Y > u+a) ge’zT
Q Forany 8> 0, P(Y > (14 8)u) < e %H

Why is the bound given by point (1) above special?
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For point (1):
Using the fact that Y; = (X; +1)/2, we have that

Xi +1

Y= Yi=

S+ 0=ty
;. 5 =X TH

M=
N‘
Il

NP~

M-

Then:
1
P(Y Zﬂ+a)=P(EX+HZH+a)=P(X > 2a)

2
Since, for any a > 0 (by the previous theorem), P(X > a) < e~ , we have that:

aZ
P(Y > p+a)=P(X>2a)<e ‘n

which completes the proof for point (1).
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For point (2):
We will utilize our previous result:

2a2
P(Y>u+a)<e n

Fora= oy
(Note that since & > 0, also o > 0):

P(Y > (1+9)u)

Il
o
<
A%
=
e
(o3
=
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Corollary

Let Y1,...,Y, be independent random variables with

P(Y; :1):P(Yi:0):%

LetY =31, Y;and u =E[Y] = 3.
a2
Q ForanyO0<a< 4, P(Y Zu—a)ge’zT
Q Forany0<d<1,P(Y > (1—3)u) <e %
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Set balancing

Consider:

9 Anxm matrix A with entries in {0,1}, where aj, (i = 1,...n, j = 1,...m) corresponds to
the element of the i™ row and the j™ column.

@ Am x 1 vector b with entries in {—1,1}, where bj,(j = 1,...m) corresponds to the j"
element of b.

@ An x 1 vector c, where cj, (i = 1,...n) corresponds to the i" element of c.
Given A, we want to find the entries of vector b that minimize

lIA-blle = max ci
i=1,..n

| \

Motivation

This problem rises in designing statistical experiments. Each column of A represents a subject in
the experiment and each row a feature.The vector b partitions the subjects into two disjoint
groups (through multiplying either by 1 or by —1). So we are looking a way to separate the
participants into two groups so that each feature is roughly as balanced as possible between the
two groups.

-
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Randomized Algorithm

The proposed randomized algorithm works as follows:
@ It randomly chooses the entries of b, with P(b; = 1) =P (b; = —1) = 3.
@ The choices for different entries are independent.

Note that this algorithm ignores the entries of A!
We will show that using this approach it is likely that we obtain a rather tight bound for ||A -b||c

(i.e., O(vmInn)).
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Consider the i" row of A: & = aj1,. .., aim.

Let k be the number of 1s in that row.

If k < +/4minn, then it is obvious that |a; - b| = |cj| < v/4mInn for any values of b.

If k > +/4mInn, then the k non-zero terms in Z; = 1, a;;b; are independent random variables.
Each such random variable has a probability equal to % to be either +1 or —1.

Hence, Z; corresponds to the sum of Poisson trials with possible outcome in {—1,1} and
probability % for each outcome.

Therefore, we can use the previously obtained results, namely that for a > 0:

2
P(IX|>a) <2e" %

Thus, we will have:
= 2
P(1Zi| > VAminn) <2e a < 5

Since we are interested for all Z;,i = 1,...n, the probability for the bound v/4mInn to fail is %

O
o
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