Random Variables - Expectation

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

19 January, 2012

Expectation of a function of a random variable

Expectation

Expectation of a function of a random variable

- Expectation
- Expectation of a function of a random variable
- Linearity of Expectation

Random Variables Expectation Expectation of a function of a random variable Linearity of Expectation Conditional Expectation

Main points

Random experiment,

Random Variables Expectation Expectation of a function of a random variable Linearity of Expectation Conditional Expectation

Main points

Random experiment, sample spaces,

Random Variables Expectation Expectation of a function of a random variable Linearity of Expectation Conditional Expectation

Main points

Random experiment, sample spaces, events,

Random Variables Expectation Expectation of a function of a random variable Linearity of Expectation Conditional Expectation

Main points

Random experiment, sample spaces, events,

Random Variables Expectation Expectation of a function of a random variable Linearity of Expectation Conditional Expectation

Main points

Random experiment, sample spaces, events, combining events,

Random Variables Expectation Expectation of a function of a random variable Linearity of Expectation Conditional Expectation

Main points

Random experiment, sample spaces, events, combining events, conditional probability,

Random Variables Expectation Expectation of a function of a random variable Linearity of Expectation Conditional Expectation

Main points

Random experiment, sample spaces, events, combining events, conditional probability, independence.

Random Variables

Motivation

Subramani Probability Theory

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome,

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g.,

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7.

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

Let X denote the random variable that is defined as the sum of two fair dice.

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

$$P\{X=1\} =$$

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

$$P\{X=1\} = 0$$

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

$$P\{X = 1\} = 0$$

$$P\{X = 2\} = \frac{1}{36}$$

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

$$P\{X = 1\} = 0$$

$$P\{X = 2\} = \frac{1}{36}$$

Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1),or

Example

$$P\{X = 1\} = 0$$

$$P\{X = 2\} = \frac{1}{36}$$

$$\vdots$$

$$P\{X = 12\} = \frac{1}{36}$$

Example

Example

Example

Example

Example

Example

$$P\{Y = 0\} =$$

Example

Example

$$P\{Y=0\} = \frac{1}{4}$$

Example

Example

$$P\{Y = 0\} = \frac{1}{4}$$

 $P\{Y = 1\} =$

Example

Example

$$P\{Y = 0\} = \frac{1}{4}$$
$$P\{Y = 1\} = \frac{1}{2}$$

Example

Example

$$P\{Y = 0\} = \frac{1}{4}$$
$$P\{Y = 1\} = \frac{1}{2}$$
$$P\{Y = 2\} =$$

Example

Example

$$P\{Y = 0\} = \frac{1}{4}$$
$$P\{Y = 1\} = \frac{1}{2}$$
$$P\{Y = 2\} = \frac{1}{4}$$

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads. What values can Y take?

 $P\{Y = 0\} = \frac{1}{4}$ $P\{Y = 1\} = \frac{1}{2}$ $P\{Y = 2\} = \frac{1}{4}$

Definition

A random variable that can take on only a countable number of possible values is said to be *discrete*.

Example

Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads. What values can Y take?

 $P\{Y = 0\} = \frac{1}{4}$ $P\{Y = 1\} = \frac{1}{2}$ $P\{Y = 2\} = \frac{1}{4}$

Definition

A random variable that can take on only a countable number of possible values is said to be *discrete*. For a discrete random variable *X*, the probability mass function (pmf) p(a) is defined as:

$$p(a) = P\{X = a\}.$$

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes;

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a "success" and the other a "failure".

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a "success" and the other a "failure". If we let the random variable X assume the value 1, if the experiment was a success and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable.

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a "success" and the other a "failure". If we let the random variable X assume the value 1, if the experiment was a success and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable. The probability mass function of X is given by:

$$p(1) = P\{X = 1\} = p$$

The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a "success" and the other a "failure". If we let the random variable X assume the value 1, if the experiment was a success and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable. The probability mass function of X is given by:

$$p(1) = P\{X = 1\} = p$$

$$p(0) = P\{X = 0\} = 1 - p$$

where $0 \le p \le 1$ is the probability that the experiment results in a success.

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable.

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable. The probability mass function of X is given by:

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable. The probability mass function of X is given by:

 $p(i) = P\{X = i\} =$

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable. The probability mass function of X is given by:

$$p(i) = P\{X = i\} = C(n, i) \cdot p^{i} \cdot (1 - p)^{n-i}, i = 0, 1, 2, \dots n$$

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable. The probability mass function of X is given by:

$$p(i) = P\{X = i\} = C(n, i) \cdot p^{i} \cdot (1 - p)^{n-i}, i = 0, 1, 2, \dots n$$

Example

Consider the experiment of tossing four fair coins.

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable. The probability mass function of X is given by:

$$p(i) = P\{X = i\} = C(n, i) \cdot p^{i} \cdot (1 - p)^{n-i}, i = 0, 1, 2, \dots n$$

Example

Consider the experiment of tossing four fair coins. What is the probability that you will get two heads and two tails?

The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable. The probability mass function of X is given by:

$$p(i) = P\{X = i\} = C(n, i) \cdot p^{i} \cdot (1 - p)^{n-i}, i = 0, 1, 2, \dots n$$

Example

Consider the experiment of tossing four fair coins. What is the probability that you will get two heads and two tails?

Solution

Let the event of heads turning up denote a "success."

Example (contd.)

Solution

Let the event of heads turning up denote a "success." Accordingly, we are interested in the probability of getting exactly two successes in four Bernoulli trials.

Example (contd.)

Solution

Let the event of heads turning up denote a "success." Accordingly, we are interested in the probability of getting exactly two successes in four Bernoulli trials. As discussed above,

p(2) =

Example (contd.)

Solution

Let the event of heads turning up denote a "success." Accordingly, we are interested in the probability of getting exactly two successes in four Bernoulli trials. As discussed above,

$$p(2) = C(4,2) \cdot (\frac{1}{2})^2$$

Example (contd.)

Solution

Let the event of heads turning up denote a "success." Accordingly, we are interested in the probability of getting exactly two successes in four Bernoulli trials. As discussed above,

$$p(2) = C(4,2) \cdot (\frac{1}{2})^2 \cdot (1-\frac{1}{2})^2$$

Example (contd.)

Solution

Let the event of heads turning up denote a "success." Accordingly, we are interested in the probability of getting exactly two successes in four Bernoulli trials. As discussed above,

$$p(2) = C(4,2) \cdot (\frac{1}{2})^2 \cdot (1-\frac{1}{2})^2$$
$$= \frac{3}{8}$$

The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs.

The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs. If X is the random variable that counts the number of trials until the first success, then X is said to be a geometric random variable.

The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs. If X is the random variable that counts the number of trials until the first success, then X is said to be a geometric random variable. The probability mass function of X is given by:

 $p(i) = P\{X = i\} =$

The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs. If X is the random variable that counts the number of trials until the first success, then X is said to be a geometric random variable. The probability mass function of X is given by:

$$p(i) = P\{X = i\} = (1 - p)^{i-1} \cdot p, i = 1, 2, \dots$$

Recap Random Variables Expectation

Expectation of a function of a random variable Linearity of Expectation Conditional Expectation

Expectation

Definition

Let X denote a discrete random variable with probability mass function p(x).

Expectation

Definition

Let X denote a discrete random variable with probability mass function p(x). The expected value of X, denoted by E[X] is defined by:

$$E[X] = \sum_{x} x \cdot p(x)$$

Expectation

Definition

Let X denote a discrete random variable with probability mass function p(x). The expected value of X, denoted by E[X] is defined by:

$$E[X] = \sum_{x} x \cdot p(x)$$

Note

E[X] is the weighted average of the possible values that X can assume, each value being weighted by the probability that X assumes that value.

Expectation

Definition

Let X denote a discrete random variable with probability mass function p(x). The expected value of X, denoted by E[X] is defined by:

$$E[X] = \sum_{x} x \cdot p(x)$$

Note

E[X] is the weighted average of the possible values that X can assume, each value being weighted by the probability that X assumes that value.

Example

Let X denote the random variable that records the outcome of tossing a fair die.

Expectation

Definition

Let X denote a discrete random variable with probability mass function p(x). The expected value of X, denoted by E[X] is defined by:

$$E[X] = \sum_{x} x \cdot p(x)$$

Note

E[X] is the weighted average of the possible values that X can assume, each value being weighted by the probability that X assumes that value.

Example

Let X denote the random variable that records the outcome of tossing a fair die. What is E[X]?

Expectation of a Bernoulli Random Variable

Example

Let X denote a Bernoulli Random Variable with p denoting the probability of success.

Expectation of a Bernoulli Random Variable

Example

Let X denote a Bernoulli Random Variable with p denoting the probability of success. What is E[X]?

Expectation of a Bernoulli Random Variable

Example

Let X denote a Bernoulli Random Variable with p denoting the probability of success. What is E[X]? Solution:

$$E[X] = 1 \cdot p + 0 \cdot (1-p)$$

Expectation of a Bernoulli Random Variable

Example

Let X denote a Bernoulli Random Variable with p denoting the probability of success. What is E[X]? Solution:

$$E[X] = 1 \cdot p + 0 \cdot (1 - p)$$
$$= p$$

Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p.

Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is E[X]?

Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is E[X]? Solution:

$$E[X] = \sum_{i=0}^{n} i \cdot p(i)$$
, by definition

Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is E[X]? Solution:

E

$$[X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$
$$= \sum_{i=0}^{n} i \cdot C(n, i) \cdot p^{i} \cdot (1-p)^{n-1}$$

Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is E[X]? Solution:

$$[X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$
$$= \sum_{i=0}^{n} i \cdot C(n, i) \cdot p^{i} \cdot (1-p)^{n-i}$$
$$= \sum_{i=0}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$$

Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is E[X]? Solution:

Ε

$$X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=0}^{n} i \cdot C(n, i) \cdot p^{i} \cdot (1-p)^{n-i}$$

$$= \sum_{i=0}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$$

Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is E[X]? Solution:

$$E[X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$

= $\sum_{i=0}^{n} i \cdot C(n, i) \cdot p^{i} \cdot (1-p)^{n-i}$
= $\sum_{i=0}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$
= $\sum_{i=1}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$
= $\sum_{i=1}^{n} \frac{n!}{(i-1)!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$

Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is E[X]? Solution:

$$E[X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=0}^{n} i \cdot C(n, i) \cdot p^{i} \cdot (1-p)^{n-i}$$

$$= \sum_{i=0}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$$

$$= \sum_{i=1}^{n} \frac{n!}{(i-1)!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$$

$$= n \cdot p \sum_{i=1}^{n} \frac{(n-1)!}{(i-1)!(n-i)!} \cdot p^{i-1} \cdot (1-p)^{n-i}$$

Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is E[X]? Solution:

E[X]

$$= \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=0}^{n} i \cdot C(n, i) \cdot p^{i} \cdot (1-p)^{n-i}$$

$$= \sum_{i=0}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$$

$$= \sum_{i=1}^{n} \frac{n!}{(i-1)!(n-i)!} \cdot p^{i} \cdot (1-p)^{n-i}$$

$$= n \cdot p \sum_{i=1}^{n} \frac{(n-1)!}{(i-1)!(n-i)!} \cdot p^{i-1} \cdot (1-p)^{n-i}$$

Expectation of a Binomial Random Variable (contd.)

Example

$$E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot (n-k-1)!} \cdot p^k \cdot (1-p)^{n-k-1}$$

Expectation of a Binomial Random Variable (contd.)

Example

$$E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot (n-k-1)!} \cdot p^k \cdot (1-p)^{n-k-1}$$
$$= n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot ((n-1)-k)!} \cdot p^k \cdot (1-p)^{(n-1)-k}$$

Expectation of a Binomial Random Variable (contd.)

Example

$$E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot (n-k-1)!} \cdot p^k \cdot (1-p)^{n-k-1}$$

= $n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot ((n-1)-k)!} \cdot p^k \cdot (1-p)^{(n-1)-k}$
= $n \cdot p \sum_{k=0}^{n-1} C(n-1,k) \cdot p^k \cdot (1-p)^{(n-1)-k}$

Expectation of a Binomial Random Variable (contd.)

Example

$$E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot (n-k-1)!} \cdot p^k \cdot (1-p)^{n-k-1}$$

= $n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot ((n-1)-k)!} \cdot p^k \cdot (1-p)^{(n-1)-k}$
= $n \cdot p \sum_{k=0}^{n-1} C(n-1,k) \cdot p^k \cdot (1-p)^{(n-1)-k}$
= $n \cdot p \cdot \sum_{k=0}^{n-1} C(n-1,k) \cdot p^k \cdot (1-p)^{(n-1)-k}$

Expectation of a Binomial Random Variable (contd.)

Example

$$E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot (n-k-1)!} \cdot p^k \cdot (1-p)^{n-k-1}$$

= $n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot ((n-1)-k)!} \cdot p^k \cdot (1-p)^{(n-1)-k}$
= $n \cdot p \sum_{k=0}^{n-1} C(n-1,k) \cdot p^k \cdot (1-p)^{(n-1)-k}$
= $n \cdot p \cdot [p+(1-p)]^{n-1}$, Binomial theorem
= $n \cdot p \cdot 1$

Expectation of a Binomial Random Variable (contd.)

Example

$$E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot (n-k-1)!} \cdot p^k \cdot (1-p)^{n-k-1}$$

= $n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot ((n-1)-k)!} \cdot p^k \cdot (1-p)^{(n-1)-1}$
= $n \cdot p \sum_{k=0}^{n-1} C(n-1,k) \cdot p^k \cdot (1-p)^{(n-1)-k}$
= $n \cdot p \cdot [p+(1-p)]^{n-1}$, Binomial theorem
= $n \cdot p \cdot 1$
= $n \cdot p$

Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p.

Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is E[X]?

Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is E[X]? Solution:

$$[X] = \sum_{i=1}^{\infty} i \cdot p(i)$$
, by definition

Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is E[X]? Solution:

$$\begin{aligned} \mathbf{F}[X] &= \sum_{i=1}^{\infty} i \cdot p(i), \text{ by definition} \\ &= \sum_{i=1}^{\infty} i \cdot (1-p)^{i-1} \cdot p \end{aligned}$$

Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is E[X]? Solution:

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} i \cdot p(i), \text{ by definition}$$
$$= \sum_{i=1}^{\infty} i \cdot (1-p)^{i-1} \cdot p$$
$$= \sum_{i=1}^{\infty} i \cdot q^{i-1} \cdot p, \text{ where } q = 1 - 1$$

p

Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is E[X]? Solution:

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} i \cdot p(i), \text{ by definition}$$
$$= \sum_{i=1}^{\infty} i \cdot (1-p)^{i-1} \cdot p$$
$$= \sum_{i=1}^{\infty} i \cdot q^{i-1} \cdot p, \text{ where } q = 1-p$$
$$= p \cdot \sum_{i=1}^{\infty} i \cdot q^{i-1}$$

Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is E[X]? Solution:

$$[X] = \sum_{i=1}^{\infty} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=1}^{\infty} i \cdot (1-p)^{i-1} \cdot p$$

$$= \sum_{i=1}^{\infty} i \cdot q^{i-1} \cdot p, \text{ where } q = 1 - 1$$

$$= p \cdot \sum_{i=1}^{\infty} i \cdot q^{i-1}$$

$$= p \cdot \sum_{i=1}^{\infty} \frac{d}{dq} [q^{i}]$$

p

Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is E[X]? Solution:

$$[X] = \sum_{i=1}^{\infty} i \cdot \rho(i), \text{ by definition}$$
$$= \sum_{i=1}^{\infty} i \cdot (1-\rho)^{i-1} \cdot \rho$$
$$= \sum_{i=1}^{\infty} i \cdot q^{i-1} \cdot \rho, \text{ where } q = 1 - 1$$
$$= \rho \cdot \sum_{i=1}^{\infty} i \cdot q^{i-1}$$
$$= \rho \cdot \sum_{i=1}^{\infty} \frac{d}{dq} [q^{i}]$$

p

Expectation of a Geometric Random Variable (contd.)

Example

$$E[X] = p \cdot \frac{d}{dq} [\sum_{i=1}^{\infty} q^{i}]$$

Expectation of a Geometric Random Variable (contd.)

Example

$$E[X] = p \cdot \frac{d}{dq} [\sum_{i=1}^{\infty} q^{i}]$$
$$= p \cdot \frac{d}{dq} [\frac{q}{1-q}]$$

Expectation of a Geometric Random Variable (contd.)

Example

$$\begin{aligned} \mathbf{F}[X] &= \rho \cdot \frac{d}{dq} \left[\sum_{i=1}^{\infty} q^i \right] \\ &= \rho \cdot \frac{d}{dq} \left[\frac{q}{1-q} \right] \\ &= \rho \cdot \frac{(1-q) \cdot \frac{d}{dq} [q] - q \cdot \frac{d}{dq} [1-q]}{(1-q)^2} \end{aligned}$$

Expectation of a Geometric Random Variable (contd.)

Example

$$\begin{aligned} \mathbf{F}[X] &= \rho \cdot \frac{d}{dq} [\sum_{i=1}^{\infty} q^{i}] \\ &= \rho \cdot \frac{d}{dq} [\frac{q}{1-q}] \\ &= \rho \cdot \frac{(1-q) \cdot \frac{d}{dq} [q] - q \cdot \frac{d}{dq} [1-q]}{(1-q)^{2}} \\ &= \rho \cdot \frac{(1-q) \cdot 1 - q \cdot (-1)}{(1-q)^{2}} \end{aligned}$$

Expectation of a Geometric Random Variable (contd.)

Example

$$[X] = \rho \cdot \frac{d}{dq} [\sum_{i=1}^{\infty} q^i]$$

$$= \rho \cdot \frac{d}{dq} [\frac{q}{1-q}]$$

$$= \rho \cdot \frac{(1-q) \cdot \frac{d}{dq} [q] - q \cdot \frac{d}{dq} [1-q]}{(1-q)^2}$$

$$= \rho \cdot \frac{(1-q) \cdot 1 - q \cdot (-1)}{(1-q)^2}$$

$$= \rho \cdot \frac{1}{(1-q)^2}$$

Е

Expectation of a Geometric Random Variable (contd.)

Example

$$X] = \rho \cdot \frac{d}{dq} [\sum_{i=1}^{\infty} q^{i}]$$

$$= \rho \cdot \frac{d}{dq} [\frac{q}{1-q}]$$

$$= \rho \cdot \frac{(1-q) \cdot \frac{d}{dq} [q] - q \cdot \frac{d}{dq} [1-q]}{(1-q)^{2}}$$

$$= \rho \cdot \frac{(1-q) \cdot 1 - q \cdot (-1)}{(1-q)^{2}}$$

$$= \rho \cdot \frac{1}{(1-q)^{2}}$$

$$= \rho \cdot \frac{1}{p^{2}}$$

Е

Expectation of a Geometric Random Variable (contd.)

Example

$$X] = \rho \cdot \frac{d}{dq} [\sum_{i=1}^{\infty} q^{i}]$$

$$= \rho \cdot \frac{d}{dq} [\frac{q}{1-q}]$$

$$= \rho \cdot \frac{(1-q) \cdot \frac{d}{dq} [q] - q \cdot \frac{d}{dq} [1-q]}{(1-q)^{2}}$$

$$= \rho \cdot \frac{(1-q) \cdot 1 - q \cdot (-1)}{(1-q)^{2}}$$

$$= \rho \cdot \frac{1}{(1-q)^{2}}$$

$$= \rho \cdot \frac{1}{p^{2}}$$

$$= \frac{1}{p}$$

Recap Random Variables Expectation

Expectation of a function of a random variable Linearity of Expectation Conditional Expectation

Exercises

Example

Consider the following game:

Exercises

Example

Consider the following game: A fair die is tossed. If the die turns up 6, person A wins one dollar. Otherwise, he loses a dollar.

Exercises

Example

Consider the following game: A fair die is tossed. If the die turns up 6, person *A* wins one dollar. Otherwise, he loses a dollar. How much money can *A* expect to make from this game?

Exercises

Example

Consider the following game: A fair die is tossed. If the die turns up 6, person *A* wins one dollar. Otherwise, he loses a dollar. How much money can *A* expect to make from this game?

Example

Consider the following variation to the above game:

Exercises

Example

Consider the following game: A fair die is tossed. If the die turns up 6, person *A* wins one dollar. Otherwise, he loses a dollar. How much money can *A* expect to make from this game?

Example

Consider the following variation to the above game: The die is tossed till a 6 turns up. For each toss that does not turn up 6, *A* loses one dollar. If the toss turns up 6, *A* gets 6 dollars. How much money can *A* expect to make from this game?

Exercises

Example

Consider the following game: A fair die is tossed. If the die turns up 6, person *A* wins one dollar. Otherwise, he loses a dollar. How much money can *A* expect to make from this game?

Example

Consider the following variation to the above game: The die is tossed till a 6 turns up. For each toss that does not turn up 6, A loses one dollar. If the toss turns up 6, A gets 6 dollars. How much money can A expect to make from this game?

Example

Consider yet another variation to the initial game:

Exercises

Example

Consider the following game: A fair die is tossed. If the die turns up 6, person *A* wins one dollar. Otherwise, he loses a dollar. How much money can *A* expect to make from this game?

Example

Consider the following variation to the above game: The die is tossed till a 6 turns up. For each toss that does not turn up 6, *A* loses one dollar. If the toss turns up 6, *A* gets 6 dollars. How much money can *A* expect to make from this game?

Example

Consider yet another variation to the initial game: The die is tossed ten times. For each toss that turns up an even number, *A* gets 5 dollars. For tosses turning up an odd number, *A* loses 4 dollars. How much money can *A* expect to make from this game?

Expectation of a function of a random variable

Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the random variable itself.

Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the random variable itself. For instance, in the coin-tossing experiment, we could be interested in the square of the number of successes.

Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the random variable itself. For instance, in the coin-tossing experiment, we could be interested in the square of the number of successes. The question of interest then is how to determine the expectation of a function of a random variable, given that we only know the distribution of the random variable.

Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the random variable itself. For instance, in the coin-tossing experiment, we could be interested in the square of the number of successes. The question of interest then is how to determine the expectation of a function of a random variable, given that we only know the distribution of the random variable.

Example

Let X be a random variable, with the following pmf:

$$p(0) = 0.3, \ p(1) = 0.5, \ p(2) = 0.2$$

Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the random variable itself. For instance, in the coin-tossing experiment, we could be interested in the square of the number of successes. The question of interest then is how to determine the expectation of a function of a random variable, given that we only know the distribution of the random variable.

Example

Let X be a random variable, with the following pmf:

$$p(0) = 0.3, \ p(1) = 0.5, \ p(2) = 0.2$$

Compute $E[X^2]$.

Expectation of functions of random variables (contd.)

Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$.

Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$. Observe that Y is also a random variable.

Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take?

Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4.

Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y.

Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,

Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,

 $P\{Y=0\} = P\{X^2=0\} = P\{X=0\} = 0.3$

Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,

$$P\{Y=0\} = P\{X^2=0\} = P\{X=0\} = 0.3$$

Similarly,

$$P\{Y=1\} = P\{X^2=1\} = P\{X=1\} = 0.5$$

Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,

$$P\{Y=0\} = P\{X^2=0\} = P\{X=0\} = 0.3$$

Similarly,

$$P{Y = 1} = P{X2 = 1} = P{X = 1} = 0.5$$

$$P{Y = 4} = P{X2 = 4} = P{X = 2} = 0.2$$

Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,

$$P\{Y=0\} = P\{X^2=0\} = P\{X=0\} = 0.3$$

Similarly,

$$P{Y = 1} = P{X2 = 1} = P{X = 1} = 0.5$$

$$P{Y = 4} = P{X2 = 4} = P{X = 2} = 0.2$$

Accordingly,

Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,

$$P\{Y=0\} = P\{X^2=0\} = P\{X=0\} = 0.3$$

Similarly,

$$P{Y = 1} = P{X2 = 1} = P{X = 1} = 0.5$$

$$P{Y = 4} = P{X2 = 4} = P{X = 2} = 0.2$$

Accordingly,

$$E[Y] = E[X^2] = 0 \cdot 0.3 + 1 \cdot 0.5 + 4 \cdot 0.2 = 1.3$$

Expectation of functions - The Direct Approach

Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

$$E[g(X)] = \sum_{x} g(x) \cdot p(x)$$

Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

$$E[g(X)] = \sum_{x} g(x) \cdot p(x)$$

Proof.

Exercise.

Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

$$E[g(X)] = \sum_{x} g(x) \cdot p(x)$$

Proof.

Exercise.

Note

Applying the above theorem to the previous problem,

Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

$$E[g(X)] = \sum_{x} g(x) \cdot p(x)$$

Proof.

Exercise.

Note

Applying the above theorem to the previous problem,

$$E[X^2] =$$

Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf p(), and g() is any real-valued function, then,

$$E[g(X)] = \sum_{x} g(x) \cdot p(x)$$

Proof.

Exercise.

Note

Applying the above theorem to the previous problem,

$$E[X^2] = 0^2 \cdot 0.3 + 1^2 \cdot 0.5 + 2^2 \cdot 0.2 = 1.3$$

Linearity of Expectation

Proposition

Subramani Probability Theory

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space.

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E[\sum_{i=1}^{n} a_i \cdot X_i] = \sum_{i=1}^{n} a_i \cdot E[X_i]$$

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E[\sum_{i=1}^{n} a_i \cdot X_i] = \sum_{i=1}^{n} a_i \cdot E[X_i]$$

Lemma

Let X and Y denote two random variables. Then, E[X + Y] = E[X] + E[Y].

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E[\sum_{i=1}^{n} a_i \cdot X_i] = \sum_{i=1}^{n} a_i \cdot E[X_i]$$

Lemma

Let X and Y denote two random variables. Then, E[X + Y] = E[X] + E[Y].

Lemma

Let X denote a random variable and let c denote a constant. Then, $E[c \cdot X] = c \cdot E[X]$.

Linearity of Expectation (contd.)

Linearity of Expectation (contd.)

Note

Note that linearity of expectation holds even when the random variables are **not** independent.

Linearity of Expectation (contd.)

Note

Note that linearity of expectation holds even when the random variables are **not** independent.

Theorem

If X and Y are independent random variables, then

Linearity of Expectation (contd.)

Note

Note that linearity of expectation holds even when the random variables are **not** independent.

Theorem

If X and Y are independent random variables, then $E[X \cdot Y] =$

Linearity of Expectation (contd.)

Note

Note that linearity of expectation holds even when the random variables are **not** independent.

Theorem

If X and Y are independent random variables, then $E[X \cdot Y] = E[X] \cdot E[Y]$.

Linearity of Expectation (contd.)

Note

Note that linearity of expectation holds even when the random variables are **not** independent.

Theorem

If X and Y are independent random variables, then $E[X \cdot Y] = E[X] \cdot E[Y]$.

Example

What is the expected value of the sum of the upturned faces, when two fair dice are tossed?

Another Application

Example

Compute the expected value of the Binomial random variable.

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

 $X_i = 1,$

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

 $X_i = 1$, if the ith trial is a success

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

$$X_i = 1$$
, if the ith trial is a success

= 0, otherwise

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

$$X_i = 1$$
, if the ith trial is a success
= 0, otherwise

Accordingly, the Binomial random variable (say X) can be expressed as:

 $X = X_1 + X_2 + \ldots X_n$

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

$$X_i = 1$$
, if the ith trial is a success
= 0, otherwise

Accordingly, the Binomial random variable (say X) can be expressed as:

 $X = X_1 + X_2 + \ldots X_n$

However, each X_i is Bernoulli random variable with probability of success p!

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

$$X_i = 1$$
, if the ith trial is a success
= 0, otherwise

Accordingly, the Binomial random variable (say X) can be expressed as:

 $X = X_1 + X_2 + \ldots X_n$

However, each X_i is Bernoulli random variable with probability of success p! Hence, using linearity of expectation,

E[X] =

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

$$X_i = 1$$
, if the ith trial is a success
= 0, otherwise

Accordingly, the Binomial random variable (say X) can be expressed as:

 $X = X_1 + X_2 + \ldots X_n$

$$E[X] = E[X_1 + X_2 + \dots + X_n]$$

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

$$X_i = 1$$
, if the ith trial is a success
= 0, otherwise

Accordingly, the Binomial random variable (say X) can be expressed as:

 $X = X_1 + X_2 + \ldots X_n$

$$E[X] = E[X_1 + X_2 + \dots + X_n]$$
$$= \sum_{i=1}^n E[X_i]$$

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

$$X_i = 1$$
, if the ith trial is a success
= 0, otherwise

Accordingly, the Binomial random variable (say X) can be expressed as:

$$X = X_1 + X_2 + \ldots X_n$$

$$E[X] = E[X_1 + X_2 + \dots + X_n] = \sum_{i=1}^n \rho_i$$

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

$$X_i = 1$$
, if the ith trial is a success
= 0, otherwise

Accordingly, the Binomial random variable (say X) can be expressed as:

$$X = X_1 + X_2 + \ldots X_n$$

$$E[X] = E[X_1 + X_2 + \dots + X_n] = \sum_{i=1}^n \rho_i$$

= $\sum_{i=1}^n E[X_i]$ = $n \cdot p$

Jensen's inequality

Jensen's inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Jensen's inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function

Jensen's inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function - A function $f : \Re \to \Re$ is said to be convex,

Jensen's inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function - A function $f : \Re \to \Re$ is said to be convex, if for any x_1, x_2 and

Jensen's inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function - A function $f : \Re \to \Re$ is said to be convex, if for any x_1, x_2 and any λ , $0 \le \lambda \le 1$,

Jensen's inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function - A function $f : \Re \to \Re$ is said to be convex, if for any x_1, x_2 and any λ , $0 \le \lambda \le 1$,

 $f(\lambda \cdot \mathbf{x}_1 + (1 - \lambda) \cdot \mathbf{x}_2) \leq \lambda \cdot f(\mathbf{x}_1) + (1 - \lambda) \cdot f(\mathbf{x}_2)$

Jensen's inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function - A function $f : \Re \to \Re$ is said to be convex, if for any x_1, x_2 and any λ , $0 \le \lambda \le 1$,

$$f(\lambda \cdot \mathbf{x}_1 + (1 - \lambda) \cdot \mathbf{x}_2) \leq \lambda \cdot f(\mathbf{x}_1) + (1 - \lambda) \cdot f(\mathbf{x}_2)$$

Jensen's inequality

Jensen's inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function - A function $f : \Re \to \Re$ is said to be convex, if for any x_1, x_2 and any λ , $0 \le \lambda \le 1$,

$$f(\lambda \cdot \mathbf{x}_1 + (1 - \lambda) \cdot \mathbf{x}_2) \le \lambda \cdot f(\mathbf{x}_1) + (1 - \lambda) \cdot f(\mathbf{x}_2)$$

Jensen's inequality

If $f : \Re \to \Re$ is a convex function, and X is a random variable, then

 $f(E[X]) \leq E[f(X)]$

Conditional Expectation

Conditional Expectation

Definition

Let *X* and *Y* denote two random variables. The conditional expectation of *X*, given that Y = y, is defined as follows:

$$E[X \mid Y = y] = \sum_{x} x \cdot Pr(X = x \mid Y = y).$$

Conditional Expectation

Definition

Let *X* and *Y* denote two random variables. The conditional expectation of *X*, given that Y = y, is defined as follows:

$$E[X \mid Y = y] = \sum_{x} x \cdot Pr(X = x \mid Y = y).$$

Example

Let X_1 and X_2 denote the random variables monitoring the upturned faces of two tossed dice and let $X = X_1 + X_2$.

Conditional Expectation

Definition

Let X and Y denote two random variables. The conditional expectation of X, given that Y = y, is defined as follows:

$$E[X \mid Y = y] = \sum_{x} x \cdot Pr(X = x \mid Y = y).$$

Example

Let X_1 and X_2 denote the random variables monitoring the upturned faces of two tossed dice and let $X = X_1 + X_2$. What is $E[X | X_1 = 2]$ and $E[X_1 | X = 5]$?

Conditional Expectation

Definition

Let X and Y denote two random variables. The conditional expectation of X, given that Y = y, is defined as follows:

$$\mathsf{E}[X \mid Y = y] = \sum_{x} x \cdot \mathsf{Pr}(X = x \mid Y = y).$$

Example

Let X_1 and X_2 denote the random variables monitoring the upturned faces of two tossed dice and let $X = X_1 + X_2$. What is $E[X | X_1 = 2]$ and $E[X_1 | X = 5]$?

Theorem

Let X and Y denote two random variables.

Conditional Expectation

Definition

Let X and Y denote two random variables. The conditional expectation of X, given that Y = y, is defined as follows:

$$E[X \mid Y = y] = \sum_{x} x \cdot Pr(X = x \mid Y = y).$$

Example

Let X_1 and X_2 denote the random variables monitoring the upturned faces of two tossed dice and let $X = X_1 + X_2$. What is $E[X | X_1 = 2]$ and $E[X_1 | X = 5]$?

Theorem

Let X and Y denote two random variables. Then,

$$E[X] = \sum_{y} Pr(Y = y) \cdot E[X \mid Y = y]$$

Conditional Expectation (contd.)

Proof.

Subramani Probability Theory

Conditional Expectation (contd.)

Proof.

$$\sum_{y} Pr(Y = y) \cdot E[X \mid Y = y] =$$

Conditional Expectation (contd.)

Proof.

$$\sum_{y} Pr(Y = y) \cdot E[X \mid Y = y] = \sum_{y} Pr(Y = y) \cdot \sum_{x} x \cdot Pr(X = x \mid Y = y)$$

Conditional Expectation (contd.)

Proof.

$$\sum_{y} Pr(Y = y) \cdot E[X \mid Y = y] = \sum_{y} Pr(Y = y) \cdot \sum_{x} x \cdot Pr(X = x \mid Y = y)$$
$$= \sum_{x} \sum_{y} x \cdot Pr(X = x \mid Y = y) \cdot Pr(Y = y)$$

Conditional Expectation (contd.)

Proof.

$$\sum_{y} Pr(Y = y) \cdot E[X \mid Y = y] = \sum_{y} Pr(Y = y) \cdot \sum_{x} x \cdot Pr(X = x \mid Y = y)$$
$$= \sum_{x} \sum_{y} x \cdot Pr(X = x \mid Y = y) \cdot Pr(Y = y)$$
$$= \sum_{x} x \cdot \sum_{y} Pr(X = x \mid Y = y) \cdot Pr(Y = y)$$

Conditional Expectation (contd.)

Proof.

$$\sum_{y} Pr(Y = y) \cdot E[X \mid Y = y] = \sum_{y} Pr(Y = y) \cdot \sum_{x} x \cdot Pr(X = x \mid Y = y)$$
$$= \sum_{x} \sum_{y} x \cdot Pr(X = x \mid Y = y) \cdot Pr(Y = y)$$
$$= \sum_{x} x \cdot \sum_{y} Pr(X = x \mid Y = y) \cdot Pr(Y = y)$$
$$= \sum_{x} x \cdot Pr(X = x)$$

Conditional Expectation (contd.)

Proof.

$$\sum_{y} Pr(Y = y) \cdot E[X | Y = y] = \sum_{y} Pr(Y = y) \cdot \sum_{x} x \cdot Pr(X = x | Y = y)$$
$$= \sum_{x} \sum_{y} x \cdot Pr(X = x | Y = y) \cdot Pr(Y = y)$$
$$= \sum_{x} x \cdot \sum_{y} Pr(X = x | Y = y) \cdot Pr(Y = y)$$
$$= \sum_{x} x \cdot Pr(X = x)$$
$$= E[X]$$

Conditional Expectation (contd.)

Conditional Expectation (contd.)

Definition

The expression E[X | Y] is a random variable and takes on the values E[X | Y = y], when Y = y.

Conditional Expectation (contd.)

Definition

The expression E[X | Y] is a random variable and takes on the values E[X | Y = y], when Y = y.

Theorem

Let X and Y denote any two random variables.

Conditional Expectation (contd.)

Definition

The expression E[X | Y] is a random variable and takes on the values E[X | Y = y], when Y = y.

Theorem

Let X and Y denote any two random variables. Then,

 $E[X] = E[E[X \mid Y]]$