The Lovasz Local Lemma

Haritha Eruvuru1

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

24 April, 2012

Outline

Lovasz Local Lemma

- Introduction
- Edge Disjoint Paths
- Edge Disjoint PathsSatisfiability

Outline

Lovasz Local Lemma

- Introduction
- Edge Disjoint Paths
- Edge Disjoint Paths
- Satisfiability

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Introduction

Introduction

Haritha Eruvuru Randomized Algorithms

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Introduction

Introduction

Let $E_1, E_2 \dots E_n$ be a set of bad events in probability space.

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Introduction

Introduction

Let $E_1, E_2 \dots E_n$ be a set of bad events in probability space.

We need to prove that there is an element in the sample space that is not included in any of the bad events.

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Introduction

Introduction

Let $E_1, E_2 \dots E_n$ be a set of bad events in probability space.

We need to prove that there is an element in the sample space that is not included in any of the bad events.

Let the events be mutually independent. Hence,

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Introduction

Introduction

Let $E_1, E_2 \dots E_n$ be a set of bad events in probability space.

We need to prove that there is an element in the sample space that is not included in any of the bad events.

Let the events be mutually independent. Hence,

 $P(\cap_{i\in I}E_i)=\prod_{i\in I}P(E_i)$

where $I \subset [1, n]$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Introduction

Introduction

Let $E_1, E_2 \dots E_n$ be a set of bad events in probability space.

We need to prove that there is an element in the sample space that is not included in any of the bad events.

Let the events be mutually independent. Hence,

$$P(\cap_{i\in I}E_i)=\prod_{i\in I}P(E_i)$$

where $I \subset [1, n]$ Also if $P(E_i) < 1$ for all *i*, then

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Introduction

Introduction

Let $E_1, E_2 \dots E_n$ be a set of bad events in probability space.

We need to prove that there is an element in the sample space that is not included in any of the bad events.

Let the events be mutually independent. Hence,

$$P(\cap_{i\in I}E_i)=\prod_{i\in I}P(E_i)$$

where $I \subset [1, n]$ Also if $P(E_i) < 1$ for all *i*, then

$$P(\cap_{i=1}^{n}\overline{E}_{i})=\prod_{i=1}^{n}P(\overline{E}_{i})>0$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Introduction

Introduction

Let $E_1, E_2 \dots E_n$ be a set of bad events in probability space.

We need to prove that there is an element in the sample space that is not included in any of the bad events.

Let the events be mutually independent. Hence,

$$P(\cap_{i\in I}E_i)=\prod_{i\in I}P(E_i)$$

where $I \subset [1, n]$ Also if $P(E_i) < 1$ for all *i*, then

$$P(\bigcap_{i=1}^{n}\overline{E}_{i})=\prod_{i=1}^{n}P(\overline{E}_{i})>0$$

There exists an element of the sample space that is not included in any bad event.

ntroduction

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Introduction

Haritha Eruvuru Randomized Algorithms

Edge Disjoint Path Edge Disjoint Path Satisfiability

Lovasz Local Lemma

Introduction

The Lovasz local lemma generalizes the argument to the case where *n* events are not mutually independent but the dependency is limited.

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Introduction

The Lovasz local lemma generalizes the argument to the case where *n* events are not mutually independent but the dependency is limited.

An event *E* is mutually independent of the events $E_1, E_2, \ldots E_n$ if for any subset $I \subset [1,n]$,

 $P(E \mid \cap_{j \in I} E_j) = P(E)$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Introduction

The Lovasz local lemma generalizes the argument to the case where *n* events are not mutually independent but the dependency is limited.

An event *E* is mutually independent of the events E_1, E_2, \ldots, E_n if for any subset $I \subset [1,n]$,

$$\mathsf{P}(E \mid \cap_{j \in I} E_j) = \mathsf{P}(E)$$

The dependency between events can be represented in terms of a dependency graph.

Introductio

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Definition

Haritha Eruvuru Randomized Algorithms

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Definition

A dependency graph for a set of events $E_1, E_2, \ldots E_n$ is a graph G = (V, E) such that $V = \{1 \ldots n\}$ and for $i = 1 \ldots n$, event E_i is mutually independent of the events $\{E_j \mid (i, j) \notin E\}$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Theorem

Let $E_1 \ldots E_n$ be a set of events and assume the following hold:

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Theorem

Let $E_1 \dots E_n$ be a set of events and assume the following hold: 1. for all *i*, $P(E_i) \le p$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Theorem

Let $E_1 \ldots E_n$ be a set of events and assume the following hold:

- 1. for all $i, P(E_i) \leq p$
- 2. the degree of the dependency graph given by $E_1 \dots, E_n$ is bounded by d

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Theorem

Let $E_1 \ldots E_n$ be a set of events and assume the following hold: 1. for all *i*, $P(E_i) \le p$ 2. the degree of the dependency graph given by $E_1 \ldots, E_n$ is bounded by *d* 3. $4 \cdot d \cdot p \le 1$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Theorem

Let $E_1 \dots E_n$ be a set of events and assume the following hold: 1. for all *i*, $P(E_i) \leq p$ 2. the degree of the dependency graph given by $E_1 \dots, E_n$ is bounded by *d* 3. $4 \cdot d \cdot p \leq 1$ Then,

 $P(\cap_{i=1}^{n}\overline{E}_{i})\geq 0$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Theorem

Let $E_1 \ldots E_n$ be a set of events and assume the following hold: 1. for all *i*, $P(E_i) \leq p$ 2. the degree of the dependency graph given by $E_1 \ldots, E_n$ is bounded by *d* 3. $4 \cdot d \cdot p \leq 1$ Then,

 $P(\cap_{i=1}^{n}\overline{E}_{i})\geq 0$

Proof

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Theorem

Let $E_1 \ldots E_n$ be a set of events and assume the following hold: 1. for all *i*, $P(E_i) \leq p$ 2. the degree of the dependency graph given by $E_1 \ldots, E_n$ is bounded by *d* 3. $4 \cdot d \cdot p \leq 1$ Then,

 $P(\cap_{i=1}^{n}\overline{E}_{i})\geq 0$

Proof

Assume $S \subset \{1 \dots n\}$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Theorem

Let $E_1 \ldots E_n$ be a set of events and assume the following hold: 1. for all *i*, $P(E_i) \leq p$ 2. the degree of the dependency graph given by $E_1 \ldots, E_n$ is bounded by *d* 3. $4 \cdot d \cdot p \leq 1$ Then,

$$P(\cap_{i=1}^{n}\overline{E}_{i})\geq 0$$

Proof

Assume $S \subset \{1 \dots n\}$ By induction on $s = 0, \dots n - 1$ we prove that if $|S| \le s$, then for all $k \notin S$,

$$P(E_k \mid \cap_{j \in S} \overline{E}_j) \leq 2 \cdot p$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Theorem

Let $E_1 \ldots E_n$ be a set of events and assume the following hold: 1. for all *i*, $P(E_i) \le p$ 2. the degree of the dependency graph given by $E_1 \ldots, E_n$ is bounded by *d* 3. $4 \cdot d \cdot p \le 1$ Then,

$$P(\cap_{i=1}^{n}\overline{E}_{i})\geq 0$$

Proof

Assume $S \subset \{1 \dots n\}$ By induction on $s = 0, \dots n - 1$ we prove that if $|S| \le s$, then for all $k \notin S$,

$$P(E_k \mid \cap_{j \in S} \overline{E}_j) \leq 2 \cdot p$$

Also, for this to be well defined when S is not empty

 $P(E_k \mid \cap_{j \in S} \overline{E}_j) \geq 0$

Edge Disjoint P

Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Haritha Eruvuru Randomized Algorithms

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

True for s = 1 as $P(\overline{E}_j) \ge 1 - p \ge 0$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

True for s = 1 as $P(\overline{E}_j) \ge 1 - p \ge 0$ For $s \ge 1$, that is $S = \{1, 2, \dots s\}$, then

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

True for s = 1 as $P(\overline{E}_j) \ge 1 - p \ge 0$ For $s \ge 1$, that is $S = \{1, 2, \dots s\}$, then

$$\mathsf{P}\left(\bigcap_{i=1}^{s}\overline{E}_{i}\right)=\prod_{i=1}^{s}\mathsf{P}\left(\overline{E}_{i}\mid\bigcap_{j=1}^{i-1}\overline{E}_{j}\right)$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

True for s = 1 as $P(\overline{E}_j) \ge 1 - p \ge 0$ For $s \ge 1$, that is $S = \{1, 2, \dots s\}$, then

$$\mathbf{P}\left(\bigcap_{i=1}^{s}\overline{E}_{i}\right)=\prod_{i=1}^{s}\mathbf{P}\left(\overline{E}_{i}\mid\bigcap_{j=1}^{i-1}\overline{E}_{j}\right)$$

$$=\prod_{i=1}^{s}(1-P\left(E_{i}\mid\cap_{j=1}^{i-1}\overline{E}_{j}\right))$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

True for s = 1 as $P(\overline{E}_j) \ge 1 - p \ge 0$ For $s \ge 1$, that is $S = \{1, 2, \dots s\}$, then

$$P\left(\cap_{i=1}^{s}\overline{E}_{i}\right) = \prod_{i=1}^{s} P\left(\overline{E}_{i} \mid \cap_{j=1}^{i-1} \overline{E}_{j}\right)$$

$$=\prod_{i=1}^{s}(1-P\left(E_{i}\mid\cap_{j=1}^{i-1}\overline{E}_{j}\right))$$

Using induction hypothesis,

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

True for s = 1 as $P(\overline{E}_j) \ge 1 - p \ge 0$ For $s \ge 1$, that is $S = \{1, 2, \dots s\}$, then

$$P\left(\cap_{i=1}^{s}\overline{E}_{i}\right) = \prod_{i=1}^{s} P\left(\overline{E}_{i} \mid \cap_{j=1}^{i-1} \overline{E}_{j}\right)$$

$$=\prod_{i=1}^{s}(1-P\left(E_{i}\mid\cap_{j=1}^{i-1}\overline{E}_{j}\right))$$

Using induction hypothesis,

$$\geq \prod_{i=1}^s (1-2 \cdot p) \geq 0$$

Edge Disjoint Pa

Lovasz Local Lemma

Proof(Cont.)

Haritha Eruvuru Randomized Algorithms

Edge Disjoint Path Edge Disjoint Path Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Let
$$S_1 = \{j \in S \mid (k, j) \in E\}$$
 and $S_2 = S - S_1$.

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Let $S_1 = \{j \in S \mid (k, j) \in E\}$ and $S_2 = S - S_1$. If $S_2 = S$, then E_k is mutually independent of the events $\overline{E}_i, i \in S$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Let $S_1 = \{j \in S \mid (k, j) \in E\}$ and $S_2 = S - S_1$. If $S_2 = S$, then E_k is mutually independent of the events $\overline{E}_i, i \in S$

$$P\left(E_k \mid \cap_{j \in S} \overline{E}_j\right) = P(E_k) \leq p$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Let $S_1 = \{j \in S \mid (k, j) \in E\}$ and $S_2 = S - S_1$. If $S_2 = S$, then E_k is mutually independent of the events $\overline{E}_i, i \in S$

$$P\left(E_k \mid \cap_{j \in S} \overline{E}_j\right) = P(E_k) \leq p$$

Let $|S_2| \leq s$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Let $S_1 = \{j \in S \mid (k, j) \in E\}$ and $S_2 = S - S_1$. If $S_2 = S$, then E_k is mutually independent of the events $\overline{E}_i, i \in S$

$$P\left(E_k \mid \cap_{j \in S} \overline{E}_j\right) = P(E_k) \leq p$$

Let $|S_2| \leq s$ Let F_s be $F_s = \bigcap_{j \in S} \overline{E}_j$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Let $S_1 = \{j \in S \mid (k, j) \in E\}$ and $S_2 = S - S_1$. If $S_2 = S$, then E_k is mutually independent of the events $\overline{E}_i, i \in S$

$$P\left(E_k \mid \cap_{j \in S} \overline{E}_j\right) = P(E_k) \leq p$$

 $\begin{array}{l} \text{Let } |S_2| \leq s \\ \text{Let } F_s \text{ be } F_s = \cap_{j \in S} \overline{E}_j \\ \text{Also } F_s = F_{s_1} \cap F_{s_2} \end{array}$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Let $S_1 = \{j \in S \mid (k, j) \in E\}$ and $S_2 = S - S_1$. If $S_2 = S$, then E_k is mutually independent of the events $\overline{E}_i, i \in S$

$$P\left(E_k \mid \cap_{j \in S} \overline{E}_j\right) = P(E_k) \leq p$$

Let $|S_2| \leq s$ Let F_s be $F_s = \bigcap_{j \in S} \overline{E}_j$ Also $F_s = F_{s_1} \cap F_{s_2}$ Applying Conditional Probability,

$$P(E_k \mid F_s) = \frac{P(E_k \cap F_s)}{P(F_s)}$$

Edge Disjoint Pat Edge Disjoint Pat

Lovasz Local Lemma

Proof(Cont.)

Haritha Eruvuru Randomized Algorithms

Edge Disjoint Path Edge Disjoint Path Satisfiability

Lovasz Local Lemma

Proof(Cont.)

 $P(E_k \cap F_s) = P(E_k \cap F_{s_1} \cap F_{s_2})$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

$$P(E_k \cap F_s) = P(E_k \cap F_{s_1} \cap F_{s_2})$$

 $P(E_k \cap F_{s_1} \mid F_{s_2}) \cdot P(F_{s_2})$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

$$P(E_k \cap F_s) = P(E_k \cap F_{s_1} \cap F_{s_2})$$

 $P(E_k \cap F_{s_1} \mid F_{s_2}) \cdot P(F_{s_2})$

 $P(F_s) = P(F_{s_1} \cap F_{s_2})$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

$$P(E_k \cap F_s) = P(E_k \cap F_{s_1} \cap F_{s_2})$$

 $P(E_k \cap F_{s_1} \mid F_{s_2}) \cdot P(F_{s_2})$

$$P(F_s) = P(F_{s_1} \cap F_{s_2})$$

 $= P(F_{s_1} \mid F_{s_2}) \cdot P(F_{s_2})$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

$$P(E_k \cap F_s) = P(E_k \cap F_{s_1} \cap F_{s_2})$$

 $P(E_k \cap F_{s_1} \mid F_{s_2}) \cdot P(F_{s_2})$

 $P(F_s) = P(F_{s_1} \cap F_{s_2})$

 $= P(F_{s_1} \mid F_{s_2}) \cdot P(F_{s_2})$

$$P(E_k | F_s) = \frac{P(E_k \cap F_{s_1} | F_{s_2})}{P(F_{s_1} | F_{s_2})}$$

ntroduction

Edge Disjoint Path Edge Disjoint Path Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Haritha Eruvuru Randomized Algorithms

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

The probability of an intersection of events is bounded by the probability of any one of the events and as E_k is independent of the events in S_2 ,

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

The probability of an intersection of events is bounded by the probability of any one of the events and as E_k is independent of the events in S_2 ,

 $P(E_k \cap F_{s_1} | F_{s_2}) \leq P(E_k | F_{s_2}) = P(E_k) \leq p$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

The probability of an intersection of events is bounded by the probability of any one of the events and as E_k is independent of the events in S_2 ,

$$P(E_k \cap F_{s_1} | F_{s_2}) \leq P(E_k | F_{s_2}) = P(E_k) \leq p$$

 $|S_2| \leq |S| = s$, applying induction hypothesis to,

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

The probability of an intersection of events is bounded by the probability of any one of the events and as E_k is independent of the events in S_2 ,

$$P(E_k \cap F_{s_1} | F_{s_2}) \leq P(E_k | F_{s_2}) = P(E_k) \leq p$$

 $|S_2| \leq |S| = s$, applying induction hypothesis to,

 $P(E_i | F_{s_2}) = P(E_i | \cap_{j \in S_2} \overline{E}_j)$

ntroduction

Edge Disjoint Pati Edge Disjoint Pati Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

$$P(F_{s_1} | F_{s_2}) = P(\cap_{i \in s_1} \overline{E}_i | \cap_{j \in s_2} \overline{E}_j)$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

$$P(F_{s_1} | F_{s_2}) = P(\cap_{i \in s_1} \overline{E}_i | \cap_{j \in s_2} \overline{E}_j)$$

$$\geq 1 - \sum_{i \in s_1} P(E_i \mid \cap_{j \in s_2} \overline{E}_j)$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

$$P(F_{s_1} | F_{s_2}) = P(\cap_{i \in s_1} \overline{E}_i | \cap_{j \in s_2} \overline{E}_j)$$

$$\geq 1 - \sum_{i \in s_1} P(E_i \mid \cap_{j \in s_2} \overline{E}_j)$$

$$\geq 1 - \sum_{i \in s_1} 2 \cdot p$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

$$P(F_{s_1} | F_{s_2}) = P(\cap_{i \in s_1} \overline{E}_i | \cap_{j \in s_2} \overline{E}_j)$$

$$\geq 1 - \sum_{i \in s_1} P(E_i \mid \cap_{j \in s_2} \overline{E}_j)$$

$$\geq 1 - \sum_{i \in s_1} 2 \cdot p$$

$$\geq 1 - 2 \cdot p \cdot d$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Establishing a lower bound on the denominator using $|S_1| \leq d$ $P(F_{s_1} | F_{s_2}) = P(\cap_{i \in s_1} \overline{E}_i | \cap_{i \in s_2} \overline{E}_i)$ $\geq 1 - \sum_{i \in s_1} P(E_i \mid \cap_{j \in s_2} \overline{E}_j)$ $\geq 1 - \sum_{i \in s_1} 2 \cdot p$ $> 1 - 2 \cdot p \cdot d$ $\geq \frac{1}{2}$

ntroduction

Edge Disjoint I Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Using the upper bound and lower bound,

$$\mathsf{P}(E_k | F_s) = \frac{\mathsf{P}(E_k \cap F_{s_1} | F_{s_2})}{\mathsf{P}(F_{s_1} | F_{s_2})}$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Using the upper bound and lower bound,

$$P(E_k | F_s) = \frac{P(E_k \cap F_{s_1} | F_{s_2})}{P(F_{s_1} | F_{s_2})}$$

$$\leq rac{p}{1/2} = 2 \cdot p$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Using the upper bound and lower bound,

$$P(E_k | F_s) = \frac{P(E_k \cap F_{s_1} | F_{s_2})}{P(F_{s_1} | F_{s_2})}$$

$$\leq \frac{p}{1/2} = 2 \cdot p$$

$$P(\cap_{i=1}^{n}\overline{E}_{i}) = \prod_{i=1}^{n} P(\overline{E}_{i} \mid \cap_{j=1}^{i-1} \overline{E}_{j})$$

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Using the upper bound and lower bound,

$$P(E_k | F_s) = \frac{P(E_k \cap F_{s_1} | F_{s_2})}{P(F_{s_1} | F_{s_2})}$$

$$\leq \frac{p}{1/2} = 2 \cdot p$$

$$P(\bigcap_{i=1}^{n}\overline{E}_{i}) = \prod_{i=1}^{n} P(\overline{E}_{i} \mid \bigcap_{j=1}^{i-1} \overline{E}_{j})$$
$$- \prod_{i=1}^{n} (1 - P(E_{i} \mid \bigcap_{j=1}^{i-1} \overline{E}_{j}))$$

$$= \prod_{i=1} (1 - P(E_i \mid \cap_{j=1}^{i-1} \overline{E}_j))$$

Introductio

Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Lovasz Local Lemma

Proof(Cont.)

Haritha Eruvuru Randomized Algorithms

Edge Disjoint Pat Edge Disjoint Pat

Lovasz Local Lemma

Proof(Cont.)

$$\geq \prod_{i=1}^n (1-2 \cdot p) \geq 0$$

Introduction

Outline

Lovasz Local Lemma

- Introduction
- Edge Disjoint Paths
- Edge Disjoint Paths
- Satisfiability

ntroduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Edge Disjoint Paths

Note

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Edge Disjoint Paths

Note

Let there exist *n* pairs of users need to communicate using edge-disjoint paths on a network.

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Edge Disjoint Paths

Note

Let there exist *n* pairs of users need to communicate using edge-disjoint paths on a network.

Each pair $i = 1 \dots n$ can choose path from a collection F_i from m paths

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Edge Disjoint Paths

Note

Let there exist *n* pairs of users need to communicate using edge-disjoint paths on a network.

Each pair $i = 1 \dots n$ can choose path from a collection F_i from m paths

Theorem

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Edge Disjoint Paths

Note

Let there exist *n* pairs of users need to communicate using edge-disjoint paths on a network.

Each pair $i = 1 \dots n$ can choose path from a collection F_i from m paths

Theorem

If any path in F_i shares edges with no more than k paths in F_j , where $i \neq j$ and $\frac{8 \cdot n \cdot k}{m} \leq 1$, then there is a way to choose n edge-disjoint paths connecting the n pairs.

Proof

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Edge Disjoint Paths

Note

Let there exist *n* pairs of users need to communicate using edge-disjoint paths on a network.

Each pair $i = 1 \dots n$ can choose path from a collection F_i from m paths

Theorem

If any path in F_i shares edges with no more than k paths in F_j , where $i \neq j$ and $\frac{8 \cdot n \cdot k}{m} \leq 1$, then there is a way to choose n edge-disjoint paths connecting the n pairs.

Proof

Let the probability space be defined by each pair choosing a path independently and uniformly at random from its set of *m* paths.

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Edge Disjoint Paths

Note

Let there exist *n* pairs of users need to communicate using edge-disjoint paths on a network.

Each pair $i = 1 \dots n$ can choose path from a collection F_i from m paths

Theorem

If any path in F_i shares edges with no more than k paths in F_j , where $i \neq j$ and $\frac{8 \cdot n \cdot k}{n} \leq 1$, then there is a way to choose n edge-disjoint paths connecting the n pairs.

Proof

Let the probability space be defined by each pair choosing a path independently and uniformly at random from its set of m paths.

Let $E_{i,j}$ be the event that the paths chosen by *i* and *j* share at least one edge.

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Edge Disjoint Paths

Note

Let there exist *n* pairs of users need to communicate using edge-disjoint paths on a network.

Each pair $i = 1 \dots n$ can choose path from a collection F_i from m paths

Theorem

If any path in F_i shares edges with no more than k paths in F_j , where $i \neq j$ and $\frac{8 \cdot n \cdot k}{n} \leq 1$, then there is a way to choose n edge-disjoint paths connecting the n pairs.

Proof

Let the probability space be defined by each pair choosing a path independently and uniformly at random from its set of *m* paths.

Let $E_{i,j}$ be the event that the paths chosen by *i* and *j* share at least one edge. Path in F_i shares edges with no more than *k* paths in F_i . Hence,

$$p = P(E_{i,j}) \leq \frac{k}{m}$$

Outline

Lovasz Local Lemma

- Introduction
- Edge Disjoint Paths
- Edge Disjoint Paths
- Satisfiability

ntroduction Edge Disjoint Paths E<mark>dge Disjoint Paths</mark> Satisfiability

Edge Disjoint Paths

Proof(Cont.)

Haritha Eruvuru Randomized Algorithms

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Edge Disjoint Paths

Proof(Cont.)

Let *d* be the degree of the dependency graph.

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Edge Disjoint Paths

Proof(Cont.)

Let *d* be the degree of the dependency graph. Since event $E_{i,j}$ is independent of all events $E_{i',j'}$ when $i' \notin i, j$ and $j' \notin i, j$, then $d \leq 2 \cdot n$.

Edge Disjoint Paths

Proof(Cont.)

Let *d* be the degree of the dependency graph. Since event $E_{i,j}$ is independent of all events $E_{j',j'}$ when $i' \notin i, j$ and $j' \notin i, j$, then $d \leq 2 \cdot n$. As

$$4 \cdot d \cdot p \leq \frac{8 \cdot n \cdot k}{m} \leq 1$$

Edge Disjoint Paths

Proof(Cont.)

Let *d* be the degree of the dependency graph. Since event $E_{i,j}$ is independent of all events $E_{i',j'}$ when $i' \notin i, j$ and $j' \notin i, j$, then $d \leq 2 \cdot n$. As

$$4 \cdot d \cdot p \leq \frac{8 \cdot n \cdot k}{m} \leq 1$$

All the conditions of Lovasz local lemma are satisfied and hence

$$P(\pi_{i\notin j}\overline{E}_{i,j})\geq 0$$

Edge Disjoint Paths

Proof(Cont.)

Let *d* be the degree of the dependency graph. Since event $E_{i,j}$ is independent of all events $E_{i',j'}$ when $i' \notin i, j$ and $j' \notin i, j$, then $d \leq 2 \cdot n$. As

$$4 \cdot d \cdot p \leq \frac{8 \cdot n \cdot k}{m} \leq 1$$

All the conditions of Lovasz local lemma are satisfied and hence

$$P(\pi_{i\notin j}\overline{E}_{i,j})\geq 0$$

Hence there is a choice of paths such that the *n* paths are edge disjoint.

Introduction

Outline

Lovasz Local Lemma

- Introduction
- Edge Disjoint Paths
- Edge Disjoint Paths
- Satisfiability

ntroduction Edge Disjoint Paths Edge Disjoint Paths Batisfiability

Satisfiability

Theorem

Haritha Eruvuru Randomized Algorithms

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Satisfiability

Theorem

If no variable in a *k*-SAT formula appears in more than $T = 2^k/4 \cdot k$ clauses, then the formula has a satisfying assignment.

Proof

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Satisfiability

Theorem

If no variable in a *k*-SAT formula appears in more than $T = 2^k/4 \cdot k$ clauses, then the formula has a satisfying assignment.

Proof

Let there be a probability space defined by some variables that are randomly assigned.

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Satisfiability

Theorem

If no variable in a k-SAT formula appears in more than $T = 2^k/4 \cdot k$ clauses, then the formula has a satisfying assignment.

Proof

Let there be a probability space defined by some variables that are randomly assigned. Let E_i for $i = 1 \dots m$ be an event that the *i*th clause is not satisfied by the random assignment.

Satisfiability

Theorem

If no variable in a k-SAT formula appears in more than $T = 2^k/4 \cdot k$ clauses, then the formula has a satisfying assignment.

Proof

Let there be a probability space defined by some variables that are randomly assigned. Let E_i for $i = 1 \dots m$ be an event that the *i*th clause is not satisfied by the random assignment.

As each clause has k literals,

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Satisfiability

Theorem

If no variable in a k-SAT formula appears in more than $T = 2^k/4 \cdot k$ clauses, then the formula has a satisfying assignment.

Proof

Let there be a probability space defined by some variables that are randomly assigned. Let E_i for $i = 1 \dots m$ be an event that the *i*th clause is not satisfied by the random assignment.

As each clause has k literals,

$$P(E_i) = 2^{-k}$$

Satisfiability

Theorem

If no variable in a k-SAT formula appears in more than $T = 2^k/4 \cdot k$ clauses, then the formula has a satisfying assignment.

Proof

Let there be a probability space defined by some variables that are randomly assigned. Let E_i for $i = 1 \dots m$ be an event that the *i*th clause is not satisfied by the random assignment.

As each clause has k literals,

$$P(E_i) = 2^{-k}$$

 E_i is independent of all the events related to clauses that do not share variables having clause *i*.

Satisfiability

Theorem

If no variable in a k-SAT formula appears in more than $T = 2^k/4 \cdot k$ clauses, then the formula has a satisfying assignment.

Proof

Let there be a probability space defined by some variables that are randomly assigned. Let E_i for $i = 1 \dots m$ be an event that the *i*th clause is not satisfied by the random assignment.

As each clause has k literals,

$$P(E_i) = 2^{-k}$$

 E_i is independent of all the events related to clauses that do not share variables having clause *i*.

Each variable in clause *i* cannot appear in more than $T = 2^k/4 \cdot k$ clauses.

Satisfiability

Theorem

If no variable in a k-SAT formula appears in more than $T = 2^k/4 \cdot k$ clauses, then the formula has a satisfying assignment.

Proof

Let there be a probability space defined by some variables that are randomly assigned. Let E_i for $i = 1 \dots m$ be an event that the *i*th clause is not satisfied by the random assignment.

As each clause has k literals,

$$P(E_i) = 2^{-k}$$

 E_i is independent of all the events related to clauses that do not share variables having clause *i*.

Each variable in clause *i* cannot appear in more than $T = 2^k/4 \cdot k$ clauses.

Hence the degree of dependency graph is bounded by $d \le k \cdot T \le 2^{k-2}$.

ntroduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Satisfiability

Theorem(Cont.)

Haritha Eruvuru Randomized Algorithms

ntroduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Satisfiability

Theorem(Cont.)

Applying Lovasz local lemma,

Haritha Eruvuru Randomized Algorithms

Introduction Edge Disjoint Paths Edge Disjoint Paths Satisfiability

Satisfiability

Theorem(Cont.)

Applying Lovasz local lemma,

 $P(\cap_{i=1}^{m}\overline{E}_{i}) \geq 0$