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Introduction

Let E1,E2 . . .En be a set of bad events in probability space.

We need to prove that there is an element in the sample space that is not included in
any of the bad events.
Let the events be mutually independent. Hence,

P(∩i∈IEi ) =
∏
i∈I

P(Ei )

where I ⊂ [1, n]
Also if P(Ei ) < 1 for all i , then

P(∩n
i=1E i ) =

n∏
i=1

P(E i ) > 0

There exists an element of the sample space that is not included in any bad event.
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Introduction

The Lovasz local lemma generalizes the argument to the case where n events are not
mutually independent but the dependency is limited.

An event E is mutually independent of the events E1,E2, . . .En if for any subset I ⊂
[1,n],

P(E | ∩j∈I Ej ) = P(E)

The dependency between events can be represented in terms of a dependency graph.
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Definition

A dependency graph for a set of events E1,E2, . . .En is a graph G = (V ,E) such that
V = {1 . . . n} and for i = 1 . . . n, event Ei is mutually independent of the events
{Ej | (i, j) /∈ E}
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Theorem

Let E1 . . .En be a set of events and assume the following hold:

1. for all i , P(Ei ) ≤ p
2. the degree of the dependency graph given by E1 . . . ,En is bounded by d
3. 4 · d · p ≤ 1
Then,

P(∩n
i=1E i ) ≥ 0

Proof

Assume S ⊂ {1 . . . n}
By induction on s = 0, . . . n − 1 we prove that if |S | ≤ s , then for all k /∈ S ,

P(Ek | ∩j∈S E j ) ≤ 2 · p

Also, for this to be well defined when S is not empty

P(Ek | ∩j∈S E j ) ≥ 0
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Lovasz Local Lemma

Proof(Cont.)

True for s = 1 as P(E j ) ≥ 1− p ≥ 0
For s ≥ 1, that is S = {1, 2, . . . s}, then

P
(
∩s

i=1E i

)
=

s∏
i=1

P
(

E i | ∩i−1
j=1 E j

)

=
s∏

i=1

(1− P
(

Ei | ∩i−1
j=1 E j )

)
Using induction hypothesis,

≥
s∏

i=1

(1− 2 · p) ≥ 0
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Lovasz Local Lemma

Proof(Cont.)

Let S1 = {j ∈ S |(k , j) ∈ E} and S2 = S − S1.
If S2 = S, then Ek is mutually independent of the events E i , i ∈ S

P
(

Ek | ∩j∈S E j

)
= P(Ek ) ≤ p

Let |S2 | ≤ s
Let Fs be Fs = ∩j∈SE j
Also Fs = Fs1 ∩ Fs2
Applying Conditional Probability,

P(Ek | Fs) =
P(Ek ∩ Fs)

P(Fs)
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Establishing a lower bound on the denominator using |S1 | ≤ d

P(Fs1 |Fs2 ) = P(∩i∈s1 E i | ∩j∈s2 E j )

≥ 1−
∑
i∈s1

P(Ei | ∩j∈s2 E j )

≥ 1−
∑
i∈s1

2 · p

≥ 1− 2 · p · d

≥
1
2
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Proof(Cont.)

Using the upper bound and lower bound,

P(Ek |Fs) =
P(Ek ∩ Fs1 |Fs2 )

P(Fs1 |Fs2 )

≤
p

1/2
= 2 · p

Hence,

P(∩n
i=1E i ) =

n∏
i=1

P(E i | ∩i−1
j=1 E j )

=
n∏

i=1

(1− P(Ei | ∩i−1
j=1 E j ))
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≥
n∏

i=1

(1− 2 · p) ≥ 0
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Edge Disjoint Paths

Note

Let there exist n pairs of users need to communicate using edge-disjoint paths on a
network.
Each pair i = 1 . . . n can choose path from a collection Fi from m paths

Theorem

If any path in Fi shares edges with no more than k paths in Fj , where i 6= j and
8·n·k

m ≤ 1 , then there is a way to choose n edge-disjoint paths connecting the n pairs.

Proof

Let the probability space be defined by each pair choosing a path independently and
uniformly at random from its set of m paths.
Let Ei,j be the event that the paths chosen by i and j share at least one edge.
Path in Fi shares edges with no more than k paths in Fj . Hence,

p = P(Ei,j ) ≤
k
m
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Edge Disjoint Paths

Proof(Cont.)

Let d be the degree of the dependency graph.
Since event Ei,j is independent of all events Ei′ ,j′ when i

′
/∈ i, j and j

′
/∈ i, j , then

d ≤ 2 · n.
As

4 · d · p ≤
8 · n · k

m
≤ 1

All the conditions of Lovasz local lemma are satisfied and hence

P(πi /∈j E i,j ) ≥ 0

Hence there is a choice of paths such that the n paths are edge disjoint.
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Satisfiability

Theorem

If no variable in a k -SAT formula appears in more than T = 2k/4 · k clauses, then the
formula has a satisfying assignment.

Proof

Let there be a probability space defined by some variables that are randomly assigned.
Let Ei for i = 1 . . .m be an event that the i th clause is not satisfied by the random
assignment.
As each clause has k literals,

P(Ei ) = 2−k

Ei is independent of all the events related to clauses that do not share variables having
clause i .
Each variable in clause i cannot appear in more than T = 2k/4 · k clauses.
Hence the degree of dependency graph is bounded by d ≤ k · T ≤ 2k−2.
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Let Ei for i = 1 . . .m be an event that the i th clause is not satisfied by the random
assignment.
As each clause has k literals,

P(Ei ) = 2−k

Ei is independent of all the events related to clauses that do not share variables having
clause i .
Each variable in clause i cannot appear in more than T = 2k/4 · k clauses.
Hence the degree of dependency graph is bounded by d ≤ k · T ≤ 2k−2.
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Theorem(Cont.)

Applying Lovasz local lemma,

P(∩m
i=1E i ) ≥ 0
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