Introduction to Markov Chains

Julian Dymacek¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

8 March, 2012

Outline

Outline

- Graphical
- Transition Matrix

- 2 Applications
 - Application: 2-SAT
 - Application: 3-SAT

- Classes
- The Gambler's Ruin

Applications Definitions Graphical Transition Matrix

Graphical Representation

State Diagram

- Directed graph
- Each vertex is a state
- Each edge is a transition
- Move from state to state

Stop Light

Applications Gra Definitions Tra

Graphical Transition Matrix

Graphical Representation

Stop Light Revisited

Applications Definitions

Graphical Representation

Example

Graphical

Transition Matrix

Questions

- What is the sum of the transition probabilities from a state? 1
- Where have we seen this before? Miner problem
- Which distribution did we use to solve the problem? Geometric
- What property of the Geometric distribution did we use? "Memoryless"

Representations Applications

Definitions

Graphical Transition Matrix

Markov Chain Definition

Definitions

A stochastic process $X = \{X(t) : t \in T\}$ is a collection of random variables where *t* represents time and X(t) is the state of the process at time *t*. We can also write $X(t) = X_t$. If X_t assumes values from a countably infinite set we say *X* is a **discrete space** process. If X_t assumes values from a finite set, we say *X* is a **finite** process. If *T* is a countably infinite set we say *X* is a **discrete time** process.

Definition

A discrete time stochastic process X_0, X_1, X_2, \cdots is a **Markov chain** if

$$P(X_t = a_t | X_{t-1} = a_{t-1}, X_{t-2} = a_{t-2}, \cdots, X_0 = a_0) = P(X_t = a_t | X_{t-1} = a_{t-1})$$

Does this mean that X_t is independent of X_0, X_1, \dots, X_{t-2} ? No.

Applications Definitions Graphical Transition Matrix

Transition Matrix Representation

A Transition Matrix

$$\mathbf{P} = \begin{pmatrix} P_{0,0} & P_{0,1} & \cdots & P_{0,j} & \cdots \\ P_{1,0} & P_{1,1} & \cdots & P_{1,j} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ P_{i,0} & P_{i,1} & \cdots & P_{i,j} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}$$

where $P_{i,j} = P(X_t = j | X_{t-1} = i)$. In other words, $P_{i,j}$ is the transition probability of state *i* to state *j*.

Transition Matrix

What can we say about the sum of the elements of row *i*? $\sum_{i>0} P_{i,j} = 1$

Applications Definitions Graphical Transition Matrix

Graphical and Matrix

Graphical

Matrix

$$\mathbf{P} = \begin{bmatrix} 0 & \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{2} & 0 & \frac{1}{3} & \frac{1}{6} \\ 0 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

Question

What is the probability that, starting in state 0, we are in state 3 in exactly 3 steps? What are the paths? Total is $\frac{41}{192}$

Applications Definitions Graphical Transition Matrix

Transition Matrix

Transition probability to future states

 $p_i(t) = \sum_{j \ge 0} p_j(t-1) \cdot P_{j,i}$ where $p_i(t)$ denotes the probability of being in state *i* at time *t*. Explain what this is saying.

m-step Transition

For any $m \ge 0$ we can define the *m*-step transition probability by

$$P_{i,j}^{m} = P(X_{t+m} = j \mid X_{t} = i)$$

= $\sum_{k \ge 0} P_{i,k} \cdot P_{k,j}^{m-1}$ (1)

Applications Definitions Graphical Transition Matrix

Matrix

Matrix

$$\mathbf{P} = \begin{bmatrix} 0 & \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{2} & 0 & \frac{1}{3} & \frac{1}{6} \\ 0 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

Question

What is the probability that, starting in state 0, we are in state 3 in exactly 3 steps?

$$\mathbf{P^2} = \begin{bmatrix} \frac{1}{8} & \frac{3}{8} & \frac{13}{48} & \frac{11}{48} \\ 0 & \frac{5}{24} & \frac{9}{24} & \frac{11}{24} \\ 0 & 0 & 1 & 0 \\ \frac{1}{4} & \frac{1}{8} & \frac{23}{48} & \frac{7}{48} \end{bmatrix}$$
$$\mathbf{P^3} = \begin{bmatrix} \frac{3}{16} & \frac{7}{48} & \frac{69}{64} & \frac{192}{192} \\ \frac{5}{48} & \frac{5}{24} & \frac{144}{144} & \frac{36}{60} \\ 0 & 0 & 1 & 0 \\ \frac{1}{16} & \frac{107}{196} & \frac{47}{192} & \frac{47}{192} \end{bmatrix}$$

Julian Dymacek

Graphical Transition Matrix

Matrix

Matrix $\mathbf{P}^{3} = \begin{bmatrix} \frac{3}{16} & \frac{7}{48} & \frac{29}{64} & \frac{41}{192} \\ \frac{5}{48} & \frac{5}{24} & \frac{7}{144} & \frac{5}{36} \\ 0 & 0 & 1 & 0 \\ \frac{1}{16} & \frac{13}{96} & \frac{107}{192} & \frac{47}{192} \end{bmatrix}$

Question

What is the probability that we get to state 3 in exactly 3 steps starting from a state chosen uniformly at random? $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}) \cdot \mathbf{P}^3 =$? $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}) \cdot \mathbf{P}^3 = (\frac{17}{192}, \frac{47}{384}, \frac{737}{1152}, \frac{43}{288})$

Application: 2-SAT Application: 3-SAT

Example

2-SAT

Are there values for x_1 , x_2 , and x_3 which cause this formula to evaluate to true?

 $(x_1, x_2)(x_2, \bar{x_3})(x_1, \bar{x_2})(x_3, x_1)$

Yes.

$$x_1 = T, x_2 = T, x_3 = T$$

How about this one?

$$(x_1, x_2)(x_1, \bar{x_2})(\bar{x_1}, x_2)(\bar{x_1}, \bar{x_2})$$

No.

Application: 2-SAT Application: 3-SAT

Definition

The satisfiability (SAT) problem is a Boolean formula made of the conjunction(AND) of clauses where each clause is made of the disjunction(OR) of Boolean variables or the negation of a Boolean variable. The problem 2-SAT deals with each clause containing exactly two literals.

Question

Let *n* be the number of variables. What is the order of the number of clauses? $O(n^2)$ Why?

Application: 2-SAT Application: 3-SAT

A solution

- Do something random! Assign values picked uniformly at random to each of the variables.
- If the formula isn't satisfiable, pick a clause that is wrong and flip a variable.
- Keep going for some number of times

Application: 2-SAT Application: 3-SAT

2-SAT Algorithm

- 1: Start with an arbitrary truth assignment
- 2: for up to $2 \cdot m \cdot n^2$ times, terminating if all clauses are satisfied do
- Choose an arbitrary clause that is not satisfied
- 4: Choose uniformly at random one of the literals in the clause and switch the value of its variable

5: end for

- 6: if a valid truth assignment was found then
- 7: return the valid truth assignment
- 8: else
- 9: return return that the formula is unsatisfiable
- 10: end if

Algorithm 3.1: Randomized 2-SAT Algorithm

Questions:

- What could go wrong?
- Will the algorithm return a false positive?
- Will the algorithm return a false negative?
- How long do we expect it to run? We need to figure this out.

Application: 2-SAT Application: 3-SAT

2-SAT Analysis: Intution

A man walks into a bar ... ouch

Consider a man at a bar, who has had a few too many root beers. Each time he stumbles he might go forward or he might go backward.

- How might we model this? A chain of states!
- What are the states? How far he is from the bar.
- What are the transitions? Step to step.
- What are the probabilites? $\frac{1}{2}$ to move forward and $\frac{1}{2}$ to move backward.
- Should he be able to move backward into the bar? No.

Application: 2-SAT Application: 3-SAT

2-SAT Analysis

Lemma

Assume that 2-SAT formula with *n* variables has a satisfying assignment and that the 2-SAT algorithm is allowed to run until it finds a satisfying assignment. Then the expected number of steps until the algorithm finds the assignment is at most n^2 .

Application: 2-SAT Application: 3-SAT

Lemma

Proof

Assume the formula is satisfiable and let *S* be a solution. Let A_i represent the variable assignment after the *i*th step and let X_i be the number of variables in A_i that have the same value in *S*. When $X_i = n$ what happens in the algorithm? It terminates with satisfying values.(In the worst case)

So how does X_i change over time?

Look at X_0 . What does this mean? Zero variables are assigned satisfying values.

$$P(X_{i+1} = 1 | X_i = 0) = 1$$

Now what about X_i for $0 \le i \le n - 1$? Two directions to consider, increasing the number of matches and decreasing the number of matches.

$$\begin{array}{ll} P(X_{i+1} = j+1 & | & X_i = j) \geq 1/2 \\ P(X_{i+1} = j-1 & | & X_i = j) \leq 1/2 \end{array}$$

Why? If the clause isn't right, then both of the literals are wrong.

Application: 2-SAT Application: 3-SAT

Lemma Cont.

Proof Cont.

Is X_0, X_1, X_2, \cdots a Markov chain? Not necessarily since the probability can change depending on previous states. So consider the Markov chain:

$$Y_0 = X_0$$

$$P(Y_{i+1} = 1 | Y_i = 0) = 1$$

$$P(Y_{i+1} = j + 1 | Y_i = j) = 1/2$$

$$P(Y_{i+1} = j - 1 | Y_i = j) = 1/2$$

The expected time to reach *n* is larger for *Y* than for *X*. Let h_j be the expected number of steps to reach *n* when starting from *j*. So $h_n = 0$ and $h_0 = h_1 + 1$ What about h_j ? Let Z_j be a random variable representing the number of steps to reach *n* from state *j*. Now if $1 \le j \le n-1$ then half the time the next state will be j - 1 and $Z_j = 1 + Z_{j-1}$. Likewise, half of the time the next state will be j + 1 and $Z_j = 1 + Z_{j+1}$.

Application: 2-SAT Application: 3-SAT

Lemma Cont.

Proof Cont.

So

$$\mathbf{E}[Z_j] = \mathbf{E}[1/2 \cdot (1 + Z_{j-1}) + 1/2 \cdot (1 + Z_{j+1})] = h_j$$

Therefore

$$h_j = \frac{h_{j-1}+1}{2} + \frac{h_{j+1}+1}{2}$$
$$= \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$$

And so we have

$$h_n = 0$$

$$h_0 = h_1 + 1$$

$$h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$$

We can use induction to show $h_{j+1} = h_j - 2 \cdot j - 1$ and hence $h_0 = h_1 + 1 = h_2 + 1 + 3 = \dots = \sum_{i=0}^{n-1} 2 \cdot i + 1 = n^2$.

Theorem

Theorem

The 2-SAT algorithm always returns a correct answer if the formula is unsatisfiable. If the formula is satisfiable, then with probability at least $1 - 2^{-m}$ then algorithm returns a satisfying assignment.

Proof

Suppose the formula is satisfiable. Divide the execution of the algorithm into segments of $2 \cdot n^2$ steps each. We want to know that if it is given that no satisfying assignment was found in the first i - 1 segments then what is the conditional probability that the algorithm did not find a satisfying assignment in the *i*th segment? What is the expected time to find a satisfying assignment? n^2 Let *Z* be the number of steps from the start of segment *i* until the algorithm finds a solution. We have $P(Z > 2 \cdot n^2)$ What bound to use? Markov's and therefore $P(Z > 2 \cdot n^2) \le \frac{n^2}{2 \cdot n^2} = \frac{1}{2}$. So after *m* iterations what is the probability that the algorithm fails to find the satisfying assignment? $(1/2)^m$

Application: 2-SAT Application: 3-SAT

Definition

3-SAT

The problem 3-SAT deals with each clause containing exactly three literals.

Example

Are there values for x_1, x_2, x_3 and x_4 which cause this formula to evaluate to true?

 $(x_1, \bar{x_2}, x_4)(x_2, \bar{x_3}, \bar{x_4})(x_3, \bar{x_4}, x_1)$

Yes.

Questions

Is 3-SAT a more difficult problem than 2-SAT? Yep. 3-SAT is NP-Complete. How many possible truth assignments are there? 2^n What is different about 3-SAT that makes it more difficult?

3-SAT Algorithm

- 1: Start with an arbitrary truth assignment
- 2: for up to m times, terminating if all clauses are satisfied do
- 3: Choose an arbitrary clause that is not satisfied
- 4: Choose uniformly at random one of the literals in the clause and switch the value of its variable
- 5: end for
- 6: if a valid truth assignment was found then
- 7: return the valid truth assignment
- 8: else
- 9: return return that the formula is unsatisfiable
- 10: end if

Algorithm 3.2: 3-SAT Algorithm

Application: 2-SAT Application: 3-SAT

Bounds

Expected time

Similar to the 2-SAT algorithm so start the same way. Let *S* be the satisfying assignment and let the assignment after *i* steps be A_i and let X_i be the number of variables of A_i which match *S*. So for $1 \le j \le n - 1$,

$P(X_{i+1}=j+1)$	$X_i = j \ge 1/3$
$P(X_{i+1}=j-1)$	$X_i = j \le 2/3$

Using another Markov chain Y_0, Y_1, \cdots such that $Y_0 = X_0$ and

$$\begin{array}{c|ccc} P(Y_{i+1} & | & Y_i = 0) = 1 \\ P(Y_{i+1} = j+1 & | & Y_i = j) = 1/3 \\ P(Y_{i+1} = j-1 & | & Y_i = j) = 2/3 \end{array}$$

The chain is more likely to go down than up.

Application: 2-SAT Application: 3-SAT

Bounds cont.

Expected time cont.

Again we let h_j be the expected number of steps to reach *n* when starting from *j*.

$$h_n = 0$$

$$h_0 = h_1 + 1$$

$$h_j = \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1, 1 \le j \le n - 1$$

Solution: $h_j = 2^{n+2} - 2^{j+2} - 3(n-j)$ hence $\Theta(2^n)$ steps. Not an improvement!

Application: 2-SAT Application: 3-SAT

3-SAT Algorithm Modified

- 1: for up to m times, terminating if all clauses are satisfied do
- 2: Choose an arbitrary clause that is not satisfied
- 3: for up to $3 \cdot n$ times, terminating if all clauses are satisfied do
- 4: Start with an arbitrary truth assignment
- 5: Choose uniformly at random one of the literals in the clause and switch the value of its variable
- 6: end for
- 7: end for
- 8: if a valid truth assignment was found then
- 9: return the valid truth assignment
- 10: else
- 11: return return that the formula is unsatisfiable
- 12: end if

Algorithm 3.3: 3-SAT Algorithm Modified

Question

- What is different about this algorithm? Each time choosing an arbitrary truth assignment
- Why do this? Over time we expect to get fewer assignments right, so reset.
- What kind of distribution is the arbitrary assignment? Uniform
- What is the distribution of the number of correct literals? Binomial

Application: 2-SAT Application: 3-SAT

Bounds

Analysis

Let q_j be the lower bound on the probability that this algorithm reaches *S* when it starts with exactly *j* variables that do not agree with *S*. What is the probability of moving down? (2/3) How many different moves are there $C(j + 2 \cdot k, k)$ What is the probability of *k* moves down and j + k moves up in a sequence of $j + 2 \cdot k$ moves?

Hence, $C(j + 2 \cdot k, k) \cdot (2/3)^k \cdot (1/3)^{j+k}$ Therefore $q_j \ge \max_{k=0, \dots, j} C(j + 2 \cdot k, k) \cdot (2/3)^k \cdot (1/3)^{j+k}$ for $j + 2 \cdot k \le 3 \cdot n$. So for j = k we get $q_j \ge C(3 \cdot j, j) \cdot (2/3)^j \cdot (1/3)^{2 \cdot j}$

Application: 2-SAT Application: 3-SAT

Bounds cont.

Analysis Cont.

Using the following form of Stirling's Formula

$$\sqrt{2\pi m} \cdot \left(\frac{m^m}{e}\right) \le m! \le 2 \cdot \sqrt{2 \cdot \pi \cdot m} \cdot \left(\frac{m^m}{e}\right)$$

When j > 0 we get

$$C(3 \cdot j, j) = \frac{3 \cdot j!}{j! 2 \cdot j!}$$

$$\geq \frac{\sqrt{2 \cdot \pi \cdot 3 \cdot j}}{4 \cdot \sqrt{2 \cdot \pi \cdot j} \cdot \sqrt{2 \cdot \pi \cdot 2 \cdot j}} \cdot \left(\frac{3 \cdot j}{e}\right)^{3 \cdot j} \cdot \left(\frac{e}{2 \cdot j}\right)^{2 \cdot j} \cdot \left(\frac{e}{j}\right)^{j}$$

$$= \frac{\sqrt{3}}{8 \cdot \sqrt{\pi \cdot j}} \cdot \left(\frac{27}{4}\right)^{j}$$

$$= \frac{c}{\sqrt{j}} \cdot \left(\frac{27}{4}\right)^{j}$$

Where $c = \sqrt{3/8} \cdot \sqrt{\pi}$

Application: 2-SAT Application: 3-SAT

Bounds cont.

Analysis Cont.

Hence, for j > 0,

$$\begin{array}{rcl} q_{j} & \geq & \mathcal{C}(3 \cdot j, j) \cdot \left(\frac{2}{3}\right)^{j} \cdot \left(\frac{1}{3}\right)^{2 \cdot j} \\ & \geq & \frac{c}{\sqrt{j}} \cdot \left(\frac{27}{4}\right)^{j} \cdot \left(\frac{2}{3}\right)^{j} \cdot \left(\frac{1}{3}\right)^{2 \cdot j} \\ & \geq & \frac{c}{\sqrt{j}} \cdot \frac{1}{2^{j}} \end{array}$$

Having found a lower bound for q_j we can derive a lower bound for q, the probability that the algorithm reaches S in $3 \cdot n$ steps. Let *MM* be the event that a random assignment has *j* mismatches with *S*. So *q* is the sum of $P(MM)q_j$. So $q \ge \frac{c}{\sqrt{n}} \cdot \left(\frac{3}{4}\right)^n$ is a geometric random variable. The expected number of assignments is 1/q and hence the algorithm is bounded by $O(n^{3/2} \cdot (4/3)^n)$

Classes The Gambler's Ruin

Classes

Definiton

State *i* is **accessible** from state *j* if, for some integer $n \ge 0$, $P_{i,j}^n > 0$ If two states *i* and *j* are accessible from each other, we say they **communicate** and write $i \leftrightarrow j$.

Graph Representation

What does this mean in graphical terms? $i \leftrightarrow j$ if and only if there are directed paths connecting *i* to *j* and *j* to *i*.

Classes cont.

Communicating Relation

The communicating relation defines an equivalence relation.

- **1** reflexive for any state $i, i \leftrightarrow i$
- **2** symmetric if $i \leftrightarrow j$ then $j \leftrightarrow i$
- **3** transitive if $i \leftrightarrow j$ and $j \leftrightarrow k$ then $i \leftrightarrow k$

Communicating Classes

The communicating relation partitions the states into disjoint equivalence classes, which are referred to as **communicating classes**. Is it possible to move from one class to another? Yes. Is it possible to move back? There is no way back.

Classes The Gambler's Ruin

Irreducible

Definition

A Markov chain is **irreducible** if all states belong to one communicating class. This means that every pair of states has a non-zero probability that the first state can reach the second state.

Lemma

A finite Markov chain is irreducible if and only if its graph representation is a strongly connected graph.

Classes The Gambler's Ruin

Transient and Recurrent States

Definition

Let: $r_{i,j}^t = P(X_t = j \text{ and, for } 1 \le s \le t - 1, X_s \ne j \mid X_0 = i)$ which is the probability that starting in state *i* the first transition to *j* is at time *t*. A state is **recurrent** if $\sum_{t \ge 1} r_{i,i}^t = 1$ and it is **transient** if $\sum_{t \ge 1} r_{i,i}^t < 1$. A Markov chain is recurrent if every state in the chain is recurrent.

Question

- What does this mean intuitively for a recurrent state? If state *i* is recurrent, once the chain visits state *i*, then it will eventually return to the state.
- If state *i* is transient, then starting at state *i*, the chain will return to *i* with some fixed probability $p = \sum_{t>1} r_{i,i}^t$
- If one state is recurrent then all states in the communicating class of the state are recurrent.

Classes The Gambler's Ruin

Transient and Recurrent States cont.

Expected time

The expected time to return to state *i* after starting at *i* is $h_{i,i} = \sum_{t \ge 1} t \cdot r_{i,i}^t$ and the expected time to reach *j* from *i* is $h_{i,j} = \sum_{t \ge 1} t \cdot r_{i,j}^t$.

Definition

A recurrent state *i* is **positive recurrent** if $h_{i,i} < \infty$. Otherwise it is **null recurrent**.

Lemma

In a finite Markov chain:

- at least one state is recurrent; and
- 2 all recurrent states are positive recurrent.

Classes The Gambler's Ruin

Periodic, Aperiodic and Ergodic

Definition

A state *j* in a discrete time Markov chain is **periodic** if there exists an integer $\delta > 1$ such that $P(X_{t+s} = j \mid X_t = j) = 0$ unless *s* is divisible by δ . A discrete time Markov chain is periodic if any state in the chain is periodic. A state or chain that is not periodic is **aperiodic**. Example (Think even integers!)

Definition

An aperiodic, positive recurrent state is an **ergodic** state. A Markov chain is ergodic if all its states are ergodic.

Corollary

Any finite, irreducible and aperiodic Markov chain is an ergodic chain.

Corollary Proof

A finite chain has at least one recurrent state and if it is irreducible then all its states are recurrent. In a finite chain all recurrent states are positive recurrent.

Classes The Gambler's Ruin

The Gambler's Ruin

The Gambler's Ruin

Consider a sequence of independent, fair gambling games between two players. In each round a player can win 1 dollar or lose 1 dollar. Winning a dollar has a probability of $\frac{1}{2}$ as does losing a dollar. Also let ℓ_1 be the max amount that player 1 can lose and ℓ_2 be the max amount that player can win. If the state $-\ell_1$ is reached then player 1 is ruined and likewise if ℓ_2 is reached then player 2 is ruined. Let the state of the system be the amount of money player 1 has won at time *t*. At the start player 1 has not won any money so the first state is 0.

Is the Gambler's Ruin a Markov Chain? If we are in state ℓ_2 at time *t* what states can we move to? Make states $-\ell_1$ and ℓ_2 recurrent and absorbing.

Classes The Gambler's Ruin

The Gambler's Ruin cont.

Question

What is the probability that player 1 wins ℓ_2 dollars before losing ℓ_1 dollars? If $\ell_1=\ell_2$ 1/2. $\ell_1\neq\ell_2?$

Solution

What do we know about the states $-\ell_1$ and ℓ_2 ? They are recurrent states. Let P_i^t be the probability that after t steps the chain is in state i. For states other than $-\ell_1$ and ℓ_2 what is $\lim_{t\to\infty} P_i^t = ? 0$. Let q be the probability that the game ends with player 1 winning ℓ_2 .

$$\lim_{t\to\infty}P^t_{\ell_2}=q$$

What is the expected gain of player 1 in each step? 0! Let W^t be the gain of player 1 after *t* steps so $\mathbf{E}[W^t] = 0$, and $\mathbf{E}[W^t] = \sum_{i=-\ell_1}^{\ell_2} i \cdot P_i^t = 0$ So $\lim_{t\to\infty} \mathbf{E}[W^t] = \ell_2 \cdot q - \ell_1 \cdot (1 - q) = 0$ Hence

$$q = \frac{\ell_1}{\ell_1 + \ell_2}$$

What does this mean? The probability of winning (or losing) is proportional to the amount of money a player is willing to lose (or win).