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Questions

What is the sum of the transition probabilities from a state? 1

Where have we seen this before? Miner problem

Which distribution did we use to solve the problem? Geometric

What property of the Geometric distribution did we use? “Memoryless”
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Markov Chain Definition

Definitions

A stochastic process X = {X(t) : t ∈ T} is a collection of random variables where t
represents time and X(t) is the state of the process at time t . We can also write
X(t) = Xt . If Xt assumes values from a countably infinite set we say X is a discrete
space process. If Xt assumes values from a finite set, we say X is a finite process. If
T is a countably infinite set we say X is a discrete time process.

Definition

A discrete time stochastic process X0,X1,X2, · · · is a Markov chain if

P(Xt = at |Xt−1 = at−1,Xt−2 = at−2, · · · ,X0 = a0) = P(Xt = at | Xt−1 = at−1)

Does this mean that Xt is independent of X0,X1, · · · ,Xt−2? No.
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Transition Matrix Representation

A Transition Matrix

P =



P0,0 P0,1 · · · P0,j · · ·
P1,0 P1,1 · · · P1,j · · ·

...
...

. . .
...

. . .
Pi,0 Pi,1 · · · Pi,j · · ·

...
...

. . .
...

. . .


where Pi,j = P(Xt = j | Xt−1 = i). In other words, Pi,j is the transition probability of
state i to state j .

Transition Matrix

What can we say about the sum of the elements of row i?
∑

j≥0 Pi,j = 1
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Matrix

P =


0 1

4 0 3
4

1
2 0 1

3
1
6

0 0 1 0
0 1

2
1
4

1
4


Question

What is the probability that, starting in state 0, we are in state 3 in exactly 3 steps?
What are the paths? Total is 41

192
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Transition Matrix

Transition probability to future states

pi (t) =
∑

j≥0 pj (t − 1) · Pj,i where pi (t) denotes the probability of being in state i at
time t . Explain what this is saying.

m-step Transition

For any m ≥ 0 we can define the m-step transition probability by

Pm
i,j = P(Xt+m = j | Xt = i)

=
∑
k≥0

Pi,k · Pm−1
k,j

(1)
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Matrix

P =


0 1

4 0 3
4

1
2 0 1

3
1
6

0 0 1 0
0 1

2
1
4

1
4



Question

What is the probability that, starting in state 0, we are in state 3 in exactly 3 steps?

P2 =


1
8

3
8

13
48

11
48

0 5
24

9
24

10
24

0 0 1 0
1
4

1
8

23
48

7
48



P3 =


3

16
7
48

29
64

41
192

5
48

5
24

79
144

5
36

0 0 1 0
1

16
13
96

107
192

47
192


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Matrix

P3 =


3

16
7

48
29
64

41
192

5
48

5
24

79
144

5
36

0 0 1 0
1
16

13
96

107
192

47
192



Question

What is the probability that we get to state 3 in exactly 3 steps starting from a state
chosen uniformly at random? ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) · P3 =?

( 1
4 ,

1
4 ,

1
4 ,

1
4 ) · P3 = ( 17

192 ,
47

384 ,
737

1152 ,
43
288 )
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2-SAT

Example

Are there values for x1, x2, and x3 which cause this formula to evaluate to true?

(x1, x2)(x2, x̄3)(x1, x̄2)(x3, x1)

Yes.
x1 = T , x2 = T , x3 = T

How about this one?
(x1, x2)(x1, x̄2)(x̄1, x2)(x̄1, x̄2)

No.
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2-SAT

Definition

The satisfiability (SAT) problem is a Boolean formula made of the conjunction(AND) of
clauses where each clause is made of the disjunction(OR) of Boolean variables or the
negation of a Boolean variable. The problem 2-SAT deals with each clause containing
exactly two literals.

Question

Let n be the number of variables.
What is the order of the number of clauses? O(n2)
Why?
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2-SAT

A solution

Do something random! Assign values picked uniformly at random to each of the
variables.

If the formula isn’t satisfiable, pick a clause that is wrong and flip a variable.

Keep going for some number of times
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2-SAT Algorithm

1: Start with an arbitrary truth assignment
2: for up to 2 · m · n2 times, terminating if all clauses are satisfied do
3: Choose an arbitrary clause that is not satisfied
4: Choose uniformly at random one of the literals in the clause and switch the value of its variable
5: end for
6: if a valid truth assignment was found then
7: return the valid truth assignment
8: else
9: return return that the formula is unsatisfiable

10: end if

Algorithm 3.1: Randomized 2-SAT Algorithm

Questions:

What could go wrong?

Will the algorithm return a false positive?

Will the algorithm return a false negative?

How long do we expect it to run? We need to figure this out.
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2-SAT Analysis: Intution

A man walks into a bar . . . ouch

Consider a man at a bar, who has had a few too many root beers. Each time he
stumbles he might go forward or he might go backward.

How might we model this? A chain of states!

What are the states? How far he is from the bar.

What are the transitions? Step to step.

What are the probabilites? 1
2 to move forward and 1

2 to move backward.

Should he be able to move backward into the bar? No.
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2-SAT Analysis

Lemma

Assume that 2-SAT formula with n variables has a satisfying assignment and that the
2-SAT algorithm is allowed to run until it finds a satisfying assignment. Then the
expected number of steps until the algorithm finds the assignment is at most n2.
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Lemma

Proof

Assume the formula is satisfiable and let S be a solution. Let Ai represent the variable
assignment after the i th step and let Xi be the number of variables in Ai that have the
same value in S. When Xi = n what happens in the algorithm? It terminates with
satisfying values.(In the worst case)
So how does Xi change over time?
Look at X0. What does this mean? Zero variables are assigned satisfying values.

P(Xi+1 = 1 | Xi = 0) = 1

Now what about Xi for 0 ≤ i ≤ n − 1? Two directions to consider, increasing the
number of matches and decreasing the number of matches.

P(Xi+1 = j + 1 | Xi = j) ≥ 1/2

P(Xi+1 = j − 1 | Xi = j) ≤ 1/2

Why? If the clause isn’t right, then both of the literals are wrong.
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Lemma Cont.

Proof Cont.

Is X0,X1,X2, · · · a Markov chain?
Not necessarily since the probability can change depending on previous states.
So consider the Markov chain:

Y0 = X0

P(Yi+1 = 1 | Yi = 0) = 1

P(Yi+1 = j + 1 | Yi = j) = 1/2

P(Yi+1 = j − 1 | Yi = j) = 1/2

The expected time to reach n is larger for Y than for X . Let hj be the expected number
of steps to reach n when starting from j . So hn = 0 and h0 = h1 + 1 What about hj ?
Let Zj be a random variable representing the number of steps to reach n from state j .
Now if 1 ≤ j ≤ n − 1 then half the time the next state will be j − 1 and Zj = 1 + Zj−1.
Likewise, half of the time the next state will be j + 1 and Zj = 1 + Zj+1.

Julian Dymacek Introduction to Markov Chains



Representations
Applications

Definitions

Application: 2-SAT
Application: 3-SAT

Lemma Cont.

Proof Cont.

So

E[Zj ] = E[1/2 · (1 + Zj−1) + 1/2 · (1 + Zj+1)] = hj

Therefore

hj =
hj−1 + 1

2
+

hj+1 + 1
2

=
hj−1

2
+

hj+1

2
+ 1

And so we have

hn = 0

h0 = h1 + 1

hj =
hj−1

2
+

hj+1

2
+ 1

We can use induction to show hj+1 = hj − 2 · j − 1 and hence
h0 = h1 + 1 = h2 + 1 + 3 = · · · =

∑n−1
i=0 2 · i + 1 = n2.
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Theorem

Theorem

The 2-SAT algorithm always returns a correct answer if the formula is unsatisfiable. If
the formula is satisfiable, then with probability at least 1− 2−m then algorithm returns a
satisfying assignment.

Proof

Suppose the formula is satisfiable. Divide the execution of the algorithm into segments
of 2 · n2 steps each. We want to know that if it is given that no satisfying assignment
was found in the first i − 1 segments then what is the conditional probability that the
algorithm did not find a satisfying assignment in the i th segment? What is the expected
time to find a satisfying assignment? n2 Let Z be the number of steps from the start of
segment i until the algorithm finds a solution. We have P(Z > 2 · n2) What bound to
use? Markov’s and therefore P(Z > 2 · n2) ≤ n2

2·n2 = 1
2 . So after m iterations what is

the probability that the algorithm fails to find the satisfying assignment? (1/2)m

Julian Dymacek Introduction to Markov Chains



Representations
Applications

Definitions

Application: 2-SAT
Application: 3-SAT

3-SAT

Definition

The problem 3-SAT deals with each clause containing exactly three literals.

Example

Are there values for x1, x2, x3and x4 which cause this formula to evaluate to true?

(x1, x̄2, x4)(x2, x̄3, x̄4)(x3, x̄4, x1)

Yes.

Questions

Is 3-SAT a more difficult problem than 2-SAT? Yep. 3-SAT is NP-Complete.
How many possible truth assignments are there? 2n

What is different about 3-SAT that makes it more difficult?
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3-SAT Algorithm

1: Start with an arbitrary truth assignment
2: for up to m times, terminating if all clauses are satisfied do
3: Choose an arbitrary clause that is not satisfied
4: Choose uniformly at random one of the literals in the clause and switch the value of its variable
5: end for
6: if a valid truth assignment was found then
7: return the valid truth assignment
8: else
9: return return that the formula is unsatisfiable

10: end if

Algorithm 3.2: 3-SAT Algorithm
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Bounds

Expected time

Similar to the 2-SAT algorithm so start the same way.
Let S be the satisfying assignment and let the assignment after i steps be Ai and let Xi
be the number of variables of Ai which match S. So for 1 ≤ j ≤ n − 1,

P(Xi+1 = j + 1 | Xi = j) ≥ 1/3

P(Xi+1 = j − 1 | Xi = j) ≤ 2/3

Using another Markov chain Y0,Y1, · · · such that Y0 = X0 and

P(Yi+1 | Yi = 0) = 1

P(Yi+1 = j + 1 | Yi = j) = 1/3

P(Yi+1 = j − 1 | Yi = j) = 2/3

The chain is more likely to go down than up.
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Bounds cont.

Expected time cont.

Again we let hj be the expected number of steps to reach n when starting from j .

hn = 0

h0 = h1 + 1

hj =
2hj−1

3
+

hj+1

3
+ 1, 1 ≤ j ≤ n − 1

Solution: hj = 2n+2 − 2j+2 − 3(n − j) hence Θ(2n) steps.
Not an improvement!
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3-SAT Algorithm Modified

1: for up to m times, terminating if all clauses are satisfied do
2: Choose an arbitrary clause that is not satisfied
3: for up to 3 · n times, terminating if all clauses are satisfied do
4: Start with an arbitrary truth assignment
5: Choose uniformly at random one of the literals in the clause and switch the value of its

variable
6: end for
7: end for
8: if a valid truth assignment was found then
9: return the valid truth assignment

10: else
11: return return that the formula is unsatisfiable
12: end if

Algorithm 3.3: 3-SAT Algorithm Modified

Question

What is different about this algorithm? Each time choosing an arbitrary truth
assignment

Why do this? Over time we expect to get fewer assignments right, so reset.

What kind of distribution is the arbitrary assignment? Uniform

What is the distribution of the number of correct literals? Binomial
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Bounds

Analysis

Let qj be the lower bound on the probability that this algorithm reaches S when it starts
with exactly j variables that do not agree with S.
What is the probability of moving down? (2/3)
How many different moves are there C(j + 2 · k , k)
What is the probability of k moves down and j + k moves up in a sequence of j + 2 · k
moves?
Hence, C(j + 2 · k , k) · (2/3)k · (1/3)j+k

Therefore qj ≥ maxk=0,··· ,j C(j + 2 · k , k) · (2/3)k · (1/3)j+k for j + 2 · k ≤ 3 · n. So for
j = k we get qj ≥ C(3 · j, j) · (2/3)j · (1/3)2·j
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Bounds cont.

Analysis Cont.

Using the following form of Stirling’s Formula

√
2πm ·

(
m
e

m
)
≤ m! ≤ 2 ·

√
2 · π ·m ·

(
m
e

m
)

When j > 0 we get

C(3 · j, j) =
3 · j!

j!2 · j!

≥
√

2 · π · 3 · j
4 ·
√

2 · π · j ·
√

2 · π · 2 · j
·
(

3 · j
e

)3·j
·
(

e
2 · j

)2·j
·
(

e
j

)j

=

√
3

8 ·
√
π · j
·
(

27
4

)j

=
c√

j
·
(

27
4

)j

Where c =
√

3/8 ·
√
π
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Hence, for j > 0,

qj ≥ C(3 · j, j) ·
(

2
3

)j
·
(

1
3

)2·j

≥
c√

j
·
(

27
4

)j
·
(

2
3

)j
·
(

1
3

)2·j

≥
c√

j
·

1
2j

Having found a lower bound for qj we can derive a lower bound for q, the probability
that the algorithm reaches S in 3 · n steps. Let MM be the event that a random

assignment has j mismatches with S. So q is the sum of P(MM)qj . So q ≥ c√
n
·
(

3
4

)n

is a geometric random variable. The expected number of assignments is 1/q and
hence the algorithm is bounded by O(n3/2 · (4/3)n)
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Classes

Definiton

State i is accessible from state j if, for some integer n ≥ 0,Pn
i,j > 0 If two states i and j

are accessible from each other, we say they communicate and write i ↔ j .

Graph Representation

What does this mean in graphical terms? i ↔ j if and only if there are directed paths
connecting i to j and j to i .
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Classes cont.

Communicating Relation

The communicating relation defines an equivalence relation.
1 reflexive - for any state i , i ↔ i
2 symmetric - if i ↔ j then j ↔ i
3 transitive - if i ↔ j and j ↔ k then i ↔ k

Communicating Classes

The communicating relation partitions the states into disjoint equivalence classes,
which are referred to as communicating classes. Is it possible to move from one
class to another? Yes. Is it possible to move back? There is no way back.
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Irreducible

Definition

A Markov chain is irreducible if all states belong to one communicating class. This
means that every pair of states has a non-zero probability that the first state can reach
the second state.

Lemma

A finite Markov chain is irreducible if and only if its graph representation is a strongly
connected graph.
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Transient and Recurrent States

Definition

Let: r t
i,j = P(Xt = j and, for 1 ≤ s ≤ t − 1,Xs 6= j | X0 = i) which is the probability that

starting in state i the first transition to j is at time t .
A state is recurrent if

∑
t≥1 r t

i,i = 1 and it is transient if
∑

t≥1 r t
i,i < 1. A Markov chain

is recurrent if every state in the chain is recurrent.

Question

What does this mean intuitively for a recurrent state? If state i is recurrent, once
the chain visits state i , then it will eventually return to the state.

If state i is transient, then starting at state i , the chain will return to i with some
fixed probability p =

∑
t≥1 r t

i,i

If one state is recurrent then all states in the communicating class of the state are
recurrent.
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Transient and Recurrent States cont.

Expected time

The expected time to return to state i after starting at i is hi,i =
∑

t≥1 t · r t
i,i and the

expected time to reach j from i is hi,j =
∑

t≥1 t · r t
i,j .

Definition

A recurrent state i is positive recurrent if hi,i <∞. Otherwise it is null recurrent.

Lemma

In a finite Markov chain:
1 at least one state is recurrent; and
2 all recurrent states are positive recurrent.
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Periodic, Aperiodic and Ergodic

Definition

A state j in a discrete time Markov chain is periodic if there exists an integer δ > 1
such that P(Xt+s = j | Xt = j) = 0 unless s is divisible by δ. A discrete time Markov
chain is periodic if any state in the chain is periodic. A state or chain that is not periodic
is aperiodic. Example (Think even integers!)

Definition

An aperiodic, positive recurrent state is an ergodic state. A Markov chain is ergodic if
all its states are ergodic.

Corollary

Any finite, irreducible and aperiodic Markov chain is an ergodic chain.

Corollary Proof

A finite chain has at least one recurrent state and if it is irreducible then all its states are
recurrent. In a finite chain all recurrent states are positive recurrent.
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The Gambler’s Ruin

The Gambler’s Ruin

Consider a sequence of independent, fair gambling games between two players. In
each round a player can win 1 dollar or lose 1 dollar. Winning a dollar has a probability
of 1

2 as does losing a dollar. Also let `1 be the max amount that player 1 can lose and
`2 be the max amount that player can win. If the state −`1 is reached then player 1 is
ruined and likewise if `2 is reached then player 2 is ruined. Let the state of the system
be the amount of money player 1 has won at time t . At the start player 1 has not won
any money so the first state is 0.

Is the Gambler’s Ruin a Markov Chain? If we are in state `2 at time t what states can
we move to? Make states −`1 and `2 recurrent and absorbing.
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The Gambler’s Ruin cont.

Question

What is the probability that player 1 wins `2 dollars before losing `1 dollars? If `1 = `2
1/2. `1 6= `2?

Solution

What do we know about the states −`1 and `2? They are recurrent states.
Let P t

i be the probability that after t steps the chain is in state i . For states other than
−`1 and `2 what is limt→∞ P t

i =? 0.
Let q be the probability that the game ends with player 1 winning `2.

lim
t→∞

P t
`2

= q

What is the expected gain of player 1 in each step? 0! Let W t be the gain of player 1
after t steps so E[W t ] = 0, and E[W t ] =

∑`2
i=−`1

i · P t
i = 0

So limt→∞ E[W t ] = `2 · q − `1 · (1− q) = 0 Hence

q =
`1

`1 + `2

What does this mean? The probability of winning (or losing) is proportional to the
amount of money a player is willing to lose (or win).
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