
Outline

Markov Chains and Stationary Distributions

Matt Williamson1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

March 19, 2012

Williamson Markov Chains and Stationary Distributions



Outline

Outline

1 Stationary Distributions
Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

2 Random Walks on Undirected Graphs
Application: An s-t Connectivity Algorithm

3 Parrondo’s Paradox

Williamson Markov Chains and Stationary Distributions



Outline

Outline

1 Stationary Distributions
Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

2 Random Walks on Undirected Graphs
Application: An s-t Connectivity Algorithm

3 Parrondo’s Paradox

Williamson Markov Chains and Stationary Distributions



Outline

Outline

1 Stationary Distributions
Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

2 Random Walks on Undirected Graphs
Application: An s-t Connectivity Algorithm

3 Parrondo’s Paradox

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Outline

1 Stationary Distributions
Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

2 Random Walks on Undirected Graphs
Application: An s-t Connectivity Algorithm

3 Parrondo’s Paradox

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Probability Matrix

Recall

Let P be a one-step probability matrix of a Markov chain such that

P =



P0,0 P0,1 · · · P0,j · · ·
P1,0 P1,1 · · · P1,j · · ·

...
...

. . .
...

. . .
Pi,0 Pi,1 · · · Pi,j · · ·

...
...

. . .
...

. . .


.

Let p̄(t) = (p0(t), p1(t), p2(t), . . . ) be the vector giving the probability distribution of
the state of the chain at time t . Then,

p̄(t) = p̄(t − 1) · P

We are now interested in state probability distributions that do not change after a
transition.
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Stationary Distributions

Definition

A stationary distribution (also called an equilibrium distribution) of a Markov chain is
a probability distribution π̄ such that

π̄ = π̄ · P.

Notes

If a chain reaches a stationary distribution, then it maintains that distribution for all
future time.

A stationary distribution represents a steady state (or an equilibrium) in the chain’s
behavior.

Stationary distributions play a key role in analyzing Markov chains.
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Stationary Distributions

Example

Suppose we have a Markov chain having state space S = {0, 1, 2} and transition
matrix

P =

 1
3

1
3

1
3

1
4

1
2

1
4

1
6

1
3

1
2

 .

The stationary distribution π of this Markov chain is

π0 =
6
25
, π1 =

10
25
, π2 =

9
25
.

What does this mean?

Consider the total time spent once the chain reaches the stationary distribution.
6
25 = 24% of the time is spent in state 0.
10
25 = 40% of the time is spent in state 1.
9
25 = 36% of the time is spent in state 2.
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Stationary Distributions

Fundamental Theorem of Markov Chains

We discuss first the case of finite chains and then extend the results to any
discrete space chain.

Without loss of generality, assume that the finite set of states of the Markov chain
is {0, 1, . . . , n}.

Theorem

Any finite, irreducible, and ergodic Markov chain has the following properties:
1 The chain has a unique stationary distribution π̄ = (π0, π1, . . . , πn).
2 For all j and i , the limit lim

t→∞
P t

j,i exists, and it is independent of j .

3 πi = lim
t→∞

P t
j,i =

1
hi,i

, where hi,i is the expected time to return to state i when

starting at state i .
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Fundamental Theorem of Markov Chains

Intuition

The stationary distribution π̄ has two interpretations

1 πi is the limiting probability that the Markov chain will be in state i infinitely far out
in the future.

This probability is independent of the initial state.
If we run the chain long enough, the initial state of the chain is almost forgotten, and the
probability of being in state i converges to πi .

2 πi is the inverse of hi,i =
∞∑
t=1

t · r t
i,i .

If the average time to return to state i from i is hi,i , then we expect to be in state i for 1
hi,i

of the time and thus, in the limit, we must have πi = 1
hi,i

.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Fundamental Theorem of Markov Chains

Intuition

The stationary distribution π̄ has two interpretations
1 πi is the limiting probability that the Markov chain will be in state i infinitely far out

in the future.

This probability is independent of the initial state.
If we run the chain long enough, the initial state of the chain is almost forgotten, and the
probability of being in state i converges to πi .

2 πi is the inverse of hi,i =
∞∑
t=1

t · r t
i,i .

If the average time to return to state i from i is hi,i , then we expect to be in state i for 1
hi,i

of the time and thus, in the limit, we must have πi = 1
hi,i

.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Fundamental Theorem of Markov Chains

Intuition

The stationary distribution π̄ has two interpretations
1 πi is the limiting probability that the Markov chain will be in state i infinitely far out

in the future.
This probability is independent of the initial state.

If we run the chain long enough, the initial state of the chain is almost forgotten, and the
probability of being in state i converges to πi .

2 πi is the inverse of hi,i =
∞∑
t=1

t · r t
i,i .

If the average time to return to state i from i is hi,i , then we expect to be in state i for 1
hi,i

of the time and thus, in the limit, we must have πi = 1
hi,i

.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Fundamental Theorem of Markov Chains

Intuition

The stationary distribution π̄ has two interpretations
1 πi is the limiting probability that the Markov chain will be in state i infinitely far out

in the future.
This probability is independent of the initial state.
If we run the chain long enough, the initial state of the chain is almost forgotten, and the
probability of being in state i converges to πi .

2 πi is the inverse of hi,i =
∞∑
t=1

t · r t
i,i .

If the average time to return to state i from i is hi,i , then we expect to be in state i for 1
hi,i

of the time and thus, in the limit, we must have πi = 1
hi,i

.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Fundamental Theorem of Markov Chains

Intuition

The stationary distribution π̄ has two interpretations
1 πi is the limiting probability that the Markov chain will be in state i infinitely far out

in the future.
This probability is independent of the initial state.
If we run the chain long enough, the initial state of the chain is almost forgotten, and the
probability of being in state i converges to πi .

2 πi is the inverse of hi,i =
∞∑
t=1

t · r t
i,i .

If the average time to return to state i from i is hi,i , then we expect to be in state i for 1
hi,i

of the time and thus, in the limit, we must have πi = 1
hi,i

.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Fundamental Theorem of Markov Chains

Intuition

The stationary distribution π̄ has two interpretations
1 πi is the limiting probability that the Markov chain will be in state i infinitely far out

in the future.
This probability is independent of the initial state.
If we run the chain long enough, the initial state of the chain is almost forgotten, and the
probability of being in state i converges to πi .

2 πi is the inverse of hi,i =
∞∑
t=1

t · r t
i,i .

If the average time to return to state i from i is hi,i , then we expect to be in state i for 1
hi,i

of the time and thus, in the limit, we must have πi = 1
hi,i

.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Proof of Fundamental Theorem

Lemma

For any irreducible, ergodic Markov chain and for any state i , the limit lim
t→∞

P t
i,i exists

and
lim

t→∞
P t

i,i =
1

hi,i
.

Intuition

Since the expected time between visits to i is hi,i , state i is visited 1/hi,i of the
time.

Thus, limt→∞ P t
i,i , which represents the probability a state chosen far in the future

is at state i when the chain starts at state i , must be 1/hi,i .
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Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Proof of Fundamental Theorem

Showing Limits Exist and are Independent of Starting State j

Using the fact that limt→∞ P t
i,i exists, for any j and i ,
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t→∞

P t
j,i = lim
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P t

i,i =
1

hi,i
.

Proof

Read pages 168-169 in the book!
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Let πi = lim
t→∞

P t
j,i =

1
hi,i

.

For every t ≥ 0, we have P t
i,i ≥ 0 and thus πi ≥ 0.

For any t ≥ 0,
n∑

i=0

P t
j,i = 1 and thus
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n∑
i=0

P t
j,i =

n∑
i=0

lim
t→∞

P t
j,i =

n∑
i=0

πi = 1

π̄ is a proper distribution.
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Proof of Fundamental Theorem

Proving π̄ Forms a Stationary Distribution

Now,

P t+1
j,i =

n∑
k=0

P t
j,k · Pk,i .

Letting t →∞, we have

P t+1
j,i = πi

P t
j,k = πk

πi =
n∑

k=0

πk · Pk,i

Therefore, π̄ is a stationary distribution.
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Proof of Fundamental Theorem

Proving the Stationary Distribution is Unique

Suppose there were another stationary distribution φ̄.

By the same argument, we would have

φi =
n∑

k=0

φk · P t
k,i .

Taking the limit at t →∞ yields

φi =
n∑

k=0

φkπi = ·πi

n∑
k=0

φk .

Since
∑n

k=0 φk = 1, it follows that φi = πi for all i , or φ̄ = π̄.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Proof of Fundamental Theorem

Proving the Stationary Distribution is Unique

Suppose there were another stationary distribution φ̄.

By the same argument, we would have

φi =
n∑

k=0

φk · P t
k,i .

Taking the limit at t →∞ yields

φi =
n∑

k=0

φkπi = ·πi

n∑
k=0

φk .

Since
∑n

k=0 φk = 1, it follows that φi = πi for all i , or φ̄ = π̄.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Proof of Fundamental Theorem

Proving the Stationary Distribution is Unique

Suppose there were another stationary distribution φ̄.

By the same argument, we would have

φi =
n∑

k=0

φk · P t
k,i .

Taking the limit at t →∞ yields

φi =
n∑

k=0

φk

πi = ·πi

n∑
k=0

φk .

Since
∑n

k=0 φk = 1, it follows that φi = πi for all i , or φ̄ = π̄.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Proof of Fundamental Theorem

Proving the Stationary Distribution is Unique

Suppose there were another stationary distribution φ̄.

By the same argument, we would have

φi =
n∑

k=0

φk · P t
k,i .

Taking the limit at t →∞ yields

φi =
n∑

k=0

φkπi

= ·πi

n∑
k=0

φk .

Since
∑n

k=0 φk = 1, it follows that φi = πi for all i , or φ̄ = π̄.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Proof of Fundamental Theorem

Proving the Stationary Distribution is Unique

Suppose there were another stationary distribution φ̄.

By the same argument, we would have

φi =
n∑

k=0

φk · P t
k,i .

Taking the limit at t →∞ yields

φi =
n∑

k=0

φkπi = ·πi

n∑
k=0

φk .

Since
∑n

k=0 φk = 1, it follows that φi = πi for all i , or φ̄ = π̄.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Proof of Fundamental Theorem

Proving the Stationary Distribution is Unique

Suppose there were another stationary distribution φ̄.

By the same argument, we would have

φi =
n∑

k=0

φk · P t
k,i .

Taking the limit at t →∞ yields

φi =
n∑

k=0

φkπi = ·πi

n∑
k=0

φk .

Since
∑n

k=0 φk =

1, it follows that φi = πi for all i , or φ̄ = π̄.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Proof of Fundamental Theorem

Proving the Stationary Distribution is Unique

Suppose there were another stationary distribution φ̄.

By the same argument, we would have

φi =
n∑

k=0

φk · P t
k,i .

Taking the limit at t →∞ yields

φi =
n∑

k=0

φkπi = ·πi

n∑
k=0

φk .

Since
∑n

k=0 φk = 1,

it follows that φi = πi for all i , or φ̄ = π̄.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Proof of Fundamental Theorem

Proving the Stationary Distribution is Unique

Suppose there were another stationary distribution φ̄.

By the same argument, we would have

φi =
n∑

k=0

φk · P t
k,i .

Taking the limit at t →∞ yields

φi =
n∑

k=0

φkπi = ·πi

n∑
k=0

φk .

Since
∑n

k=0 φk = 1, it follows that φi = πi for all i , or φ̄ = π̄.

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Outline

1 Stationary Distributions
Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

2 Random Walks on Undirected Graphs
Application: An s-t Connectivity Algorithm

3 Parrondo’s Paradox

Williamson Markov Chains and Stationary Distributions



Stationary Distributions
Random Walks on Undirected Graphs

Parrondo’s Paradox

Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue

Computing Stationary Distributions

System of Linear Equations

One way to compute the stationary distribution of a finite Markov chain is to solve
the system of linear equations

π̄ · P = π̄.

If we are given a transition matrix

P =



P0,0 P0,1 · · · P0,j · · ·
P1,0 P1,1 · · · P1,j · · ·

...
...

. . .
...

. . .
Pi,0 Pi,1 · · · Pi,j · · ·

...
...

. . .
...

. . .


,

we have the following system

π0 = π0 · P0,0 + π1 · P1,0 + · · ·+ πi · Pi,0 + · · ·
π1 = π0 · P0,1 + π1 · P1,1 + · · ·+ πi · Pi,1 + · · ·
πj = π0 · P0,j + π1 · P1,j + · · ·+ πi · Pi,j + · · · Done?
1 = π0 + π1 + · · ·+ πi + · · ·
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Computing Stationary Distributions

Exercise

Three out of every four trucks on the road are followed by a car, while only one out of
every five cars is followed by a truck.

What fraction of vehicles on the road are trucks?

Solution

Imagine sitting on the side of the road watching vehicles go by.

If a truck goes by, the next vehicle will be a car with probability 3/4 and will be a
truck with probability 1/4.

If a car goes by, the next vehicle will be a car with probability 4/5 and will be a
truck with probability 1/5.

Let 0 be the state that the vehicle is a truck, and let 1 be the state that the vehicle
is a car.
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Solution (Contd.)

Our transition probability matrix is

P =

[
1
4

3
4

1
5

4
5

]
.

Our system of equations is

π0 = 1
4 · π0 + 1

5 · π1
π1 = 3

4 · π0 + 4
5 · π1

1 = π0 + π1.

Solving the first equation gives us

3
4 · π0 = 1

5 · π1
π0 = 4

15 · π1.
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Solution (Contd.)

Plugging this into the constraint π0 + π1 = 1, we get

4
15 · π1 + π1 = 1

19
15 · π1 = 1

π1 = 15
19 .

Therefore, π0 = 4
19 . Thus, as we sit by the road, 4

19 of all vehicles passing by will be
trucks.
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Cut Sets

Another technique is to study the cut-sets of the Markov chain.

For any state i of the chain,

n∑
j=0

πj · Pj,i = πi = πi

n∑
j=0

Pi,j

or ∑
j 6=i

πj · Pj,i =
∑
j 6=i

πi Pi,j .

In the stationary distribution, the probability that a chain leaves a state equals the
probability that it enters the state.

This observation can be generalized to sets of states.

Theorem

Let S be a set of states of a finite, irreducible, aperiodic Markov chain. In the stationary
distribution, the probability that the chain leaves the set S equals the probability that it
enters S.
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Note

If C is a cut-set in the graph representation of the chain, then in the stationary
distribution, the probability of crossing the cut-set in one direction is equal to the
probability of crossing the cut-set in the other direction.

Example

0 1

p

q

1− p

1− q

From state 0, we move to state 1 with probability p and stay at state 0 with
probability 1− p.

From state 1, we move to state 0 with probability q and stay at state 1 with
probability 1− q.

If p and q are small, state changes are rare.
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Computing Stationary Distributions

Using System of Equations

Our transition matrix is

P =

[
1− p p

q 1− q

]
Solving π̄ · P = π̄ corresponds to solving the the system

π0 · (1− p) + π1 · q = π0
π0 · q + π1 · (1− q) = π1

π0 + π1 = 1

Our solution is
π0 =

q
p + q

and π1 =
p

p + q
.

Using Cut-Set Formulation

The probability of leaving state 0 must equal the probability of entering state 0, or

π0 · p = π1 · q.

Using π0 + π1 = 1 yields π0 = q
p+q and π1 = p

p+q .
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Solving π̄ · P = π̄ corresponds to solving the the system

π0 · (1− p) + π1 · q = π0
π0 · q + π1 · (1− q) = π1

π0 + π1 = 1

Our solution is
π0 =

q
p + q

and π1 =
p

p + q
.

Using Cut-Set Formulation

The probability of leaving state 0 must equal the probability of entering state 0, or

π0 · p = π1 · q.

Using π0 + π1 = 1 yields π0 = q
p+q and π1 = p

p+q .
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Computing Stationary Distributions

Theorem

Consider a finite, irreducible, and ergodic Markov chain with transition matrix P.

If there
are nonnegative numbers π̄ = (π0, . . . , πn) such that

∑n
i=0 πi = 1 and if, for any pair of

states i , j ,
πi · Pi,j = πj · Pj,i ,

then π̄ is the stationary distribution corresponding to P.

Proof

Consider the j th entry of π̄ · P. Using the assumption of the theorem, we find that it
equals

n∑
i=0

πi · Pi,j =
n∑

i=0

πj · Pj,i = πj .

Thus π̄ satisfies π̄ = π̄ · P. Since
∑n

i=0 πi = 1, it follows from the Fundamental
Theorem that π̄ must be the unique stationary distribution of the Markov chain.

Definition

Chains that satisfy the condition πi · Pi,j = πj · Pj,i are called time reversible.
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Convergence of Markov Chains with Countably Infinite State Spaces

Theorem

Any irreducible aperiodic Markov chain belongs to one of the following two categories:

1 The chain is ergodic - For any pair of states i and j , the limit limt→∞ P t
j,i exists and

is independent of j , and the chain has a unique stationary distribution
πi = limt→∞ P t

j,i > 0.

2 No state is positive recurrent - For all i and j , limt→∞ P t
j,i = 0, and the chain has

no stationary distribution.

Proof

Same as the proof of the Fundamental Theorem.
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Queue Example

Queues

A queue is a line where customers wait for service.

We examine a model for a
bounded queue where time is divided into steps of equal length. At each time step,
exactly one of the following occurs.

If the queue has fewer than n customers, then with probability λ, a new customer
joins the queue.

If the queue is not empty, then with probability µ, the head of the line is served and
leaves the queue.

With the remaining probability, which is 1− λ− µ, the queue is unchanged.

Transition Matrix

If Xt is the number of customers in the queue at time t , then all the Xt yield a
finite-state Markov chain. Its transition matrix has the following nonzero entries:

Pi,i+1 = λ if i < n
Pi,i−1 = µ if i > 0

Pi,i =

 1− λ if i = 0
1− λ− µ if 1 ≤ i ≤ n − 1
1− µ if i = n
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Markov Chain

The Markov chain is irreducible, finite, and aperiodic, so hit has a unique stationary
distribution π̄.

We use π̄ = π̄ · P to write

π0 = (1− λ) · π0 + µ · π1
πi = λ · πi−1 + (1− λ− µ) · πi + µ · πi+1, 1 ≤ i ≤ n − 1
πn = λ · πn−1 + (1− µ) · πn

Solution

A solution to the system of equations is

πi = π0 ·
(
λ

µ

)i
.
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Solution

Adding the requirement
∑n

i=0 πi = 1, we have

n∑
i=0

πi

=
n∑

i=0

π0 ·
(
λ

µ

)i
= 1

or
π0 =

1∑n
i=0(λ/µ)i

.

For all 0 ≤ i ≤ n,

πi =
(λ/µ)i∑n
i=0(λ/µ)i

.
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Cut-Sets

For any i , the transitions i → i + 1 and i + 1→ i constitute a cut-set of the graph
representing the Markov chain.

Thus, in the stationary distribution, the probability of
moving from state i to state i + 1 must be equal to the probability of moving from state
i + 1 to i , or

λπi = µ · πi+1.

A simple induction now yields

πi = π0 ·
(
λ

µ

)i
.

No Limit

When there is no upper limit n on the number of customers in a queue, the Markov
chain is no longer finite. The Markov chain has a countably infinite state space.
Applying our theorem, the Markov chain has a stationary distribution if and only if the
following set of linear equations has a solution with all πi > 0

π0 = (1− λ) · π0 + µ · π1
π1 = λ · πi−1 + (1− λ− µ) · πi + µ · πi+1, i ≥ 1
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Solution

A solution of the system is

πi =
(λ/µ)i∑∞
i=0(λ/µ)i

=

(
λ

µ

)i
·
(

1−
λ

µ

)
.

This generalizes the solution to the case where there is an upper bound n on the
number of the customers in the system

πi =
(λ/µ)i∑n
i=0(λ/µ)i

.

All of the πi are greater than 0 if and only if λ < µ⇒ the rate at which customers
arrive is lower than the rate customers are served.

If λ > µ, the rate at which customers arrive is higher than the rate they depart.

This means there is no stationary distribution, and the queue length will become
arbitrarily long.

In this case, each state in the Markov chain is transient.

If λ = µ, there is still no stationary distribution, but the states are null recurrent.
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Random Walks

Introduction

A random walk on an undirected graph is a special type of Markov chain that is
often used in analyzing algorithms.

Let G = (V ,E) be a finite, undirected, and connected graph.

Definition

A random walk on G is a Markov chain defined by the sequence of moves of a particle
between vertices of G. In this process, the place of the particle at a given time step is
the state of the system. If the particle is at vertex i and if i has d(i) outgoing edges,
then the probability that the particle follows the edge (i, j) and moves to a neighbor j is
1/d(i).
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Criterion for Aperiodicity

Lemma

A random walk on an undirected graph G is aperiodic if and only if G is not bipartite.

Proof

A graph is bipartite if and only if it does not have cycles with an odd number of
edges.

In an undirected graph, there is always a path of length 2 from a vertex to itself.

If the graph is bipartite, then the random walk is periodic with period d = 2.

If the graph is not bipartite, what can you say about the cycles? The graph has an
odd cycle.

By traversing that cycle we have an odd-length path from any vertex to itself.

It follows that the Markov chain is aperiodic.

Note

A random walk on a finite, undirected, connected, and non-bipartite graph G satisfies
the conditions of our Fundamental Theorem which means the random walk converges
to a stationary distribution.
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Stationary Distribution

Theorem

A random walk on G converges to a stationary distribution π̄, where

πv =
d(v)

2 · |E |
.

Proof

Since
∑

v∈V d(v) = 2 · |E |, it follows that

∑
v∈V

πv =
∑
v∈V

d(v)

2 · |E |
= 1,

and π̄ is a proper distribution over v ∈ V .

Let P be the transition probability matrix of the Markov chain.

Let N(v) represent the neighbors of v .
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Stationary Distribution

Proof

The relation π̄ = π̄ · P is equivalent to

πv =
∑

u∈N(v)

d(u)

2 · |E |
·

1
d(u)

=
d(v)

2 · |E |
.

Note

Recall that hv,u denotes the expected number of steps to reach u from v .

Corollary

For any vertex u in G,

hu,u =
2 · |E |
d(u)

.
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Stationary Distribution

Lemma

If (u, v) ∈ E , then hv,u < 2 · |E |.

Proof

Let N(u) be the set of neighbors of vertex u in G. We compute hu,u in two different
ways:

2 · |E |
d(u)

= hu,u =
1

d(u)
·
∑

w∈N(u)

(1 + hw,u).

Therefore,
2 · |E | =

∑
w∈N(u)

(1 + hw,u),

and we conclude that hv,u < 2 · |E |.

Definition

The cover time of a graph G = (V ,E) is the maximum expected time to visit all of the
vertices in the graph by a random walk starting from v , for all vertices v ∈ V .
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Cover Time

Lemma

The cover time of G = (V ,E) is bounded above by 4 · |V | · |E |.

Proof

Choose a spanning tree of G; any subset of of the edges that gives an acyclic
graph connecting all of the vertices in G.

There exists a cyclic tour on this spanning tree in which every edge is traversed
once in each direction. (Example: sequence of vertices passed during depth-first
search)

Let v0, v1, . . . , v2|V |−2 = v0 be the sequence of vertices in the tour, starting from
v0.

Clearly, the expected time to go through the vertices in the tour is an upper bound
on the cover time.

Hence the cover time is bounded above by

2·|V |−3∑
i=0

hvi ,vi+1 < (2| · V | − 2) · (2 · |E |) < 4 · |V | · |E |.
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Connectivity Algorithm

Problem Description

Suppose we are given an undirected graph G = (V ,E) and two vertices s and t in
G.

Let n = |V | and m = |E |.
We want to determine if there is a path connecting s and t .

This can be done in linear time using breadth-first search or depth-first search.

These approaches require Ω(n) space.

Randomized Algorithm

Our randomized algorithm works with only O(log n) bits of memory.

Perform a random walk on G for enough steps so that a path from s to t is likely to
be found.

We use the cover time result to bound the number of steps that the random walk
has to run.

Assume G is non-bipartite.
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Connectivity Algorithm

Function s-t CONNECTIVITY(s, t)
1: Start a random walk from s.
2: if (walk reaches t within 4 · n3 steps) then
3: return (“There is a path”)
4: else
5: return (“There is no path”)
6: end if

Algorithm 3.1: s-t Connectivity Algorithm
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Connectivity Algorithm

Theorem

The s-t connectivity algorithm returns the correct answer with probability 1/2, and it
only errs by returning that there is no path from s to t when there is such a path.

Proof

If there is no path, does the algorithm return an incorrect answer? No!

If there is a path, the algorithm errs if it does not find a path within 4 · n3 steps of
the walk.

The expected time to reach t from s is bounded from above by the cover time of
their shared component, which is at most

4 · n ·m < 4 · n ·
(

n · (n − 1)

2

)
< 2 · n3.

The probability that a walk takes more than 4 · n3 steps to reach s from t is at most

P(X > 4 · n3) ≤
2 · n3

4 · n3
=

1
2
.
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Connectivity Algorithm

Notes

The algorithm must keep track of its current position, which takes O(log n) bits, as
well as the number of steps taken in the random walk, which also takes only
O(log n) bits.

As long as there is some mechanism for choosing a random neighbor from each
vertex, that is all the memory required.
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Parrondo’s Paradox

Main Idea

Given two games, each with a higher probability of losing than winning, it is possible to
construct a winning strategy by playing the games alternately.

How does this apply to Markov Chains?

Let A and B be the two games.

Use Markov Chains to show that both A and B are losing games by analyzing
absorbing states or using stationary distributions.

Combine games A and B into a new game C, where you alternate between games
A and B with a provided probability. Game C ends up being a winning game.
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