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Definition

What is Probabilistic Method?

A way of proving the existence of objects.

How to prove?

To prove the existence of an object with certain properties, demonstrate a sample
space of objects in which the probability is positive that a randomly selected object has
the required properties.
If the probability of selecting an object with the required properties is positive, then the
sample space must contain such an object and hence the object exists.
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Example

Example

If there is a positive probability of getting an even number when a fair die is rolled, then
there must be at least one face on the die having an even number.

Example

If there is a positive probability of winning a million-dollar prize in a raffle, then there
must be at least one raffle ticket that wins that prize.

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Probabilistic Method Definition
Examples
Techniques

Example

Example

If there is a positive probability of getting an even number when a fair die is rolled, then
there must be at least one face on the die having an even number.

Example

If there is a positive probability of winning a million-dollar prize in a raffle, then there
must be at least one raffle ticket that wins that prize.

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Probabilistic Method Definition
Examples
Techniques

Example

Example

If there is a positive probability of getting an even number when a fair die is rolled, then
there must be at least one face on the die having an even number.

Example

If there is a positive probability of winning a million-dollar prize in a raffle, then there
must be at least one raffle ticket that wins that prize.

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Probabilistic Method Definition
Examples
Techniques

Example

Example

If there is a positive probability of getting an even number when a fair die is rolled, then
there must be at least one face on the die having an even number.

Example

If there is a positive probability of winning a million-dollar prize in a raffle, then there
must be at least one raffle ticket that wins that prize.

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Probabilistic Method Definition
Examples
Techniques

Outline

1 Introduction
Probabilistic Method Definition
Examples
Techniques

2 Techniques
Basic Counting Argument
The Expectation Argument

3 Derandomization Using Conditional Expectations

4 Conditional Expectation Inequality

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Probabilistic Method Definition
Examples
Techniques

Techniques

Techniques for Constructing proofs based on the probabilistic method

(i) Simple Counting

(ii) Averaging Arguments

(iii) Lovasz local Lemma

(iv) Second Moment Method
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Basic Counting Argument

Definition

To prove the existence of an object with specific properties, construct an appropriate
probability space S of objects and then show that the probability that an object in S
with the required properties is selected is strictly greater than 0.
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Example

Coloring edges of a graph with two colors so that there are no large cliques with all
edges having same color.

Definition

Let Kn be a complete graph having C(n, 2) edges on n vertices. A clique of k vertices
in Kn is a complete subgraph Kk .

Theorem

If C(n, k)2−C(k,2)+1 < 1, then it is possible to color the edges of Kn with two colors so
that it has no monochromatic Kk subgraph.
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Basic Counting Argument

Proof

Define a sample space having all possible colorings of the edges of Kn using two
colors. Hence there are 2C(n,2) possible colorings.
Probability of choosing a coloring from sample space is,

1
2C(n,2)

If we color each edge of the graph independently, with each edge taking each of the
two possible colors with the probability 1

2
Let Ai be the event that clique i is monochromatic where i = 1 . . .C(n, k)

Assume that the first edge in the clique i is colored. Then the remaining C(k , 2)− 1
edges must all be given the same color.
Hence,

P(Ai ) = 2−C(k,2)+1
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Basic Counting Argument

Proof(Cont.)

Applying Union Bound,

P
(
∪C(n,k)

i=1 Ai

)
≤

C(n,k)∑
i=1

P(Ai )

C(n, k)2−C(k,2)+1 < 1

Therefore,

P
(
∩C(n,k)

i=1 Ai

)
= 1− P

(
∪C(n,k)

i=1 Ai

)
> 0

The probability of choosing a coloring with no monochromatic k -vertex clique from
sample space is greater than 0.

Hence there is a coloring with no monochromatic k -vertex clique.
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The Expectation Argument

Definition

In a discrete probability space, a random variable with a positive probability assumes at
least one value that is no greater than its expectation and at least one value that is not
smaller than its expectation.

Example

If the expected values of a raffle ticket is at least $3, then there must be at least one
ticket that ends up being worth no more than $3 and at least one that ends up being
worth no less than $3.
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The Expectation Argument

Lemma

Suppose we have a probability space S and a random variable X defined on S such
that E [X ] = µ. Then P(X ≥ µ) > 0 and P(X ≤ µ) > 0.

Proof

µ = E [X ]

µ =
∑

x
x · P(X = x)
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The Expectation Argument

Proof (Cont.)

If P(X ≥ µ) = 0, since µ is the upper bound

µ =
∑

x
x · P(X = x) =

∑
x<µ

x · P(X = x) <
∑
x<µ

µ · P(X = x) = µ

This is a contradiction. Similarly, if P(X ≤ µ) = 0, then

µ =
∑

x
x · P(X = x) =

∑
x>µ

x · P(X = x) >
∑
x>µ

µ · P(X = x) = µ

This is also a contradiction.

There must be at least one instance in the sample space S for which the value of X is
at least µ and at least one instance for which the value of X is no greater than µ
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Finding a Large Cut

Theorem

Given an undirected graph G with m edges, there is a partition of V into two disjoint
sets A and B such that at least m

2 edges connect a vertex in A to a vertex in B. That is,
there is a cut with value at least m

2 .

Proof

Construct sets A and B by randomly and independently assigning each vertex to one of
the two sets.
Let e1. . . em be the edges of graph G.

For i = 1 . . .m,

Xi =

{
1 if edge i connects A to B,
0 otherwise.

The probability that the edge ei connects a vertex in A to vertex in B is 1
2

E [Xi ] =
1
2

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Basic Counting Argument
The Expectation Argument

Finding a Large Cut

Theorem

Given an undirected graph G with m edges, there is a partition of V into two disjoint
sets A and B such that at least m

2 edges connect a vertex in A to a vertex in B. That is,
there is a cut with value at least m

2 .

Proof

Construct sets A and B by randomly and independently assigning each vertex to one of
the two sets.
Let e1. . . em be the edges of graph G.

For i = 1 . . .m,

Xi =

{
1 if edge i connects A to B,
0 otherwise.

The probability that the edge ei connects a vertex in A to vertex in B is 1
2

E [Xi ] =
1
2

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Basic Counting Argument
The Expectation Argument

Finding a Large Cut

Theorem

Given an undirected graph G with m edges, there is a partition of V into two disjoint
sets A and B such that at least m

2 edges connect a vertex in A to a vertex in B. That is,
there is a cut with value at least m

2 .

Proof

Construct sets A and B by randomly and independently assigning each vertex to one of
the two sets.
Let e1. . . em be the edges of graph G.

For i = 1 . . .m,

Xi =

{
1 if edge i connects A to B,
0 otherwise.

The probability that the edge ei connects a vertex in A to vertex in B is 1
2

E [Xi ] =
1
2

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Basic Counting Argument
The Expectation Argument

Finding a Large Cut

Theorem

Given an undirected graph G with m edges, there is a partition of V into two disjoint
sets A and B such that at least m

2 edges connect a vertex in A to a vertex in B. That is,
there is a cut with value at least m

2 .

Proof

Construct sets A and B by randomly and independently assigning each vertex to one of
the two sets.

Let e1. . . em be the edges of graph G.

For i = 1 . . .m,

Xi =

{
1 if edge i connects A to B,
0 otherwise.

The probability that the edge ei connects a vertex in A to vertex in B is 1
2

E [Xi ] =
1
2

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Basic Counting Argument
The Expectation Argument

Finding a Large Cut

Theorem

Given an undirected graph G with m edges, there is a partition of V into two disjoint
sets A and B such that at least m

2 edges connect a vertex in A to a vertex in B. That is,
there is a cut with value at least m

2 .

Proof

Construct sets A and B by randomly and independently assigning each vertex to one of
the two sets.
Let e1. . . em be the edges of graph G.

For i = 1 . . .m,

Xi =

{
1 if edge i connects A to B,
0 otherwise.

The probability that the edge ei connects a vertex in A to vertex in B is 1
2

E [Xi ] =
1
2

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Basic Counting Argument
The Expectation Argument

Finding a Large Cut

Theorem

Given an undirected graph G with m edges, there is a partition of V into two disjoint
sets A and B such that at least m

2 edges connect a vertex in A to a vertex in B. That is,
there is a cut with value at least m

2 .

Proof

Construct sets A and B by randomly and independently assigning each vertex to one of
the two sets.
Let e1. . . em be the edges of graph G.

For i = 1 . . .m,

Xi =

{
1 if edge i connects A to B,
0 otherwise.

The probability that the edge ei connects a vertex in A to vertex in B is 1
2

E [Xi ] =
1
2

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Basic Counting Argument
The Expectation Argument

Finding a Large Cut

Theorem

Given an undirected graph G with m edges, there is a partition of V into two disjoint
sets A and B such that at least m

2 edges connect a vertex in A to a vertex in B. That is,
there is a cut with value at least m

2 .

Proof

Construct sets A and B by randomly and independently assigning each vertex to one of
the two sets.
Let e1. . . em be the edges of graph G.

For i = 1 . . .m,

Xi =

{
1 if edge i connects A to B,
0 otherwise.

The probability that the edge ei connects a vertex in A to vertex in B is 1
2

E [Xi ] =
1
2

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Basic Counting Argument
The Expectation Argument

Finding a Large Cut

Theorem

Given an undirected graph G with m edges, there is a partition of V into two disjoint
sets A and B such that at least m

2 edges connect a vertex in A to a vertex in B. That is,
there is a cut with value at least m

2 .

Proof

Construct sets A and B by randomly and independently assigning each vertex to one of
the two sets.
Let e1. . . em be the edges of graph G.

For i = 1 . . .m,

Xi =

{
1 if edge i connects A to B,
0 otherwise.

The probability that the edge ei connects a vertex in A to vertex in B is 1
2

E [Xi ] =
1
2

Haritha Eruvuru Randomized Algorithms



Introduction
Techniques

Derandomization Using Conditional Expectations
Conditional Expectation Inequality

Basic Counting Argument
The Expectation Argument

Finding a Large Cut

Proof (Cont.)

Let C(A,B) be some random variable denoting the value of the cut corresponding to
the sets A and B. Then,

E [C(A,B)] = E

[ m∑
i=1

Xi

]
=

m∑
i=1

E [Xi ] = m ·
1
2

=
m
2

The expectation of the random variable C(A,B) is m
2 .

Hence there exist a partition A and B with at least m
2 edges connecting sets A and B.
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Proof (Cont.)

The expectation argument does not give a lower bound on the probability that a
random partition has a cut of value at least m

2 . For this bound, Let

p = P
(

C(A,B) ≥
m
2

)
As, C(A,B) ≤ m. We have,

m
2

= E [C(A,B)]

m
2

=
∑

i≤ m
2 −1

i · P(C(A,B) = i) +
∑
i≥ m

2

i · P(C(A,B) = i)

≤ (1− p) ·
(m

2
− 1
)
+ p ·m
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Conditional Expectation Inequality

Basic Counting Argument
The Expectation Argument

Maximum Satisfiability: MAXSAT

Definition

SAT formula is a logical expression that is the conjunction (AND) of a set of clauses
where each clause is the disjunction (OR) of literals.

Example

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution

Assignment of the variables to the values TRUE and FALSE so that all clauses are
satisfied.
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Maximum Satisfiability: MAXSAT

Theorem

Given a set of m clauses, let ki be the number of literals in the i th clause for i = 1 . . .m.
Let k = minm

i=1ki . Then there is a truth assignment that satisfies at least

m∑
i=1

(1− 2−ki ) ≥ m · (1− 2−k )

clauses.

Proof

The probability that the i th clause with ki literals is satisfied is at least (1− 2−ki ).
Hence the expected number of satisfied clauses is at least,

m∑
i=1

(1− 2−ki ) ≥ m · (1− 2−k )

There must be an assignment that satisfies at least that many clauses.
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Derandomization Using Conditional Expectations

Recall that we find a partition of the n vertices V of a graph into sets A and B by
placing each vertex independently and uniformly at random in one of the two sets.
This gives a cut with expected value E [C(A,B)] ≥ m

2 .

Let the vertices be placed deterministically one at a time in order v1, v2, v3, . . . vn.
Let vi be placed in a set xi (xi is in A or B).
Assume that first k vertices are placed and consider the expected value of the cut if the
remaining vertices are then placed independently and uniformly into one of the two
sets.
Let it be E [C(A,B) |x1, x2, x3 . . . xk ] the conditional expectation of the value of the cut
given the locations x1, x2, x3 . . . xk of the first k vertices.

E [C(A,B) |x1, x2, x3 . . . xk ] ≤ E [C(A,B) |x1, x2, x3 . . . xk+1]

E [C(A,B)] ≤ E [C(A,B) |x1, x2, x3 . . . xn]

This value is the value of the cut.
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max(E [C(A,B) |x1, x2, x3 . . . xk ,Yk+1 = A],

E [C(A,B) |x1, x2, x3 . . . xk ,Yk+1 = B])

≥ E [C(A,B) |x1, x2, x3 . . . xk ]

By linearity of expectation, E [C(A,B) |x1, x2, x3 . . . xk ,Yk+1 = A] is the number of
edges crossing the cut whose end points are among the first k + 1 vertices, plus half
the remaining edges.
This can be computed in linear time.

Similarly, E [C(A,B) |x1, x2, x3 . . . xk ,Yk+1 = B]
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It is understood that the larger of two quantities is determined just by whether vk+1 has
more neighbors in A or B.
All edges that do not have vk+1 as an endpoint contribute the same amount to the two
expectations.
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Derandomized Algorithm

Take the vertices in some order.
Place the first vertex arbitrarily in A.
Place each successive vertex to maximize the number of edges crossing the cut.
Equivalently, place each vertex on the side with fewer neighbors, breaking ties
arbitrarily.

This guarantees a cut with at least m
2 edges.
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Conditional Expectation Inequality

Theorem

Let X =
∑n

i=1 Xi where each Xi is a 0− 1 random variable. Then,

P(X > 0) ≥
n∑

i=1

P(Xi = 1)
E [X |Xi = 1]

Proof

Let Y = 1
X if X ≥ 0 with Y = 0 otherwise.

Then, P(X ≥ 0) = E [X · Y ].
But,

E [X · Y ] = E [
n∑

i=1

Xi · Y ]

=
n∑

i=1

E [Xi · Y ]
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Theorem(Cont.)

=
n∑

i=1

(E [Xi · Y |Xi = 1] · P(Xi = 1) + E [Xi · Y |Xi = 0] · P(Xi = 0))

=
n∑

i=1

E [Y |Xi = 1] · P(Xi = 1)

=
n∑

i=1

E [1/X |Xi ] · P(Xi = 1)

≥
n∑

i=1

P(Xi = 1)
E [X |Xi = 1]
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Theorem(Cont.)

=
n∑

i=1

(E [Xi · Y |Xi = 1] · P(Xi = 1) + E [Xi · Y |Xi = 0] · P(Xi = 0))

=
n∑

i=1

E [Y |Xi = 1] · P(Xi = 1)

=
n∑

i=1

E [1/X |Xi ] · P(Xi = 1)

≥
n∑

i=1

P(Xi = 1)
E [X |Xi = 1]
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