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Note

The variance of a random variable measures the spread of its distribution. In many
respects, it is the dual of its expectation, which is actually a clustering measure.

Definition

Let X denote a random variable. The variance of X , denoted by Var[X ] is defined as:
E[(X − E[X ])2].
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Variance

Note

The variance of a random variable measures the spread of its distribution. In many
respects, it is the dual of its expectation, which is actually a clustering measure.

Definition

Let X denote a random variable. The variance of X , denoted by Var[X ] is defined as:
E[(X − E[X ])2].

Note

Var[X ] = E[X2] − (E[X ])2.
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Covariance

Definition

Let X and Y denote two random variables. The covariance between X and Y is
defined as:

Cov(X , Y ) = E[(X − E[X ]) · (Y − E[Y ])]

Simplification

Cov(X , Y ) = E[X · Y ] − E[X ] · E[Y ]
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Properties of Variance and Covariance

1 Cov(X , X) = Var(X).
2 Cov(X , Y ) = Cov(Y , X).
3 Cov(c · X , Y ) = c · Cov(X , Y ).
4 Cov(X , Y + Z ) = Cov(X , Y ) + Cov(X , Z ).
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1 Cov(X , X) = Var(X).
2 Cov(X , Y ) = Cov(Y , X).
3 Cov(c · X , Y ) = c · Cov(X , Y ).
4 Cov(X , Y + Z ) = Cov(X , Y ) + Cov(X , Z ).
5 Var(

Pn
i=1(Xi )) =

Pn
i=1 Var(Xi ),
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Properties of Variance and Covariance

1 Cov(X , X) = Var(X).
2 Cov(X , Y ) = Cov(Y , X).
3 Cov(c · X , Y ) = c · Cov(X , Y ).
4 Cov(X , Y + Z ) = Cov(X , Y ) + Cov(X , Z ).
5 Var(

Pn
i=1(Xi )) =

Pn
i=1 Var(Xi ), if X1, X2, . . . Xn are independent random

variables.
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For some p, 0 ≤ p ≤ 1,

p(0) = (1 − p)

p(1) = p

E[X ] = 0 · (1 − p) + 1 · p = p

E[X2] = 12
· p + 02

· (1 − p)

= p
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For some p, 0 ≤ p ≤ 1,

p(0) = (1 − p)

p(1) = p

E[X ] = 0 · (1 − p) + 1 · p = p

E[X2] = 12
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= p
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Computation

Observe that if X is a binomially distributed random variable with parameters n and p,
then it can be expressed as a sum of n independent Bernoulli variables, i.e.,
X =

Pn
i=1 Xi , where each Xi is a Bernoulli random variable with parameter p.
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Observe that if X is a binomially distributed random variable with parameters n and p,
then it can be expressed as a sum of n independent Bernoulli variables, i.e.,
X =

Pn
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Using the identity on the variance of a sum, we conclude that

Var(X) =
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Computation

Observe that if X is a binomially distributed random variable with parameters n and p,
then it can be expressed as a sum of n independent Bernoulli variables, i.e.,
X =

Pn
i=1 Xi , where each Xi is a Bernoulli random variable with parameter p.

Using the identity on the variance of a sum, we conclude that

Var(X) = n · p · (1 − p).
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Statement

If X is a geometric random variable with parameter p,

Var(X) =
1 − p

p2

Subramani Probability Theory


	Outline
	Main Talk
	Recap
	Variance
	Covariance
	Identities
	Variance of some common random variables


