Outline

Edmonds-Giles theorem

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

April 1, 2013

Outline

Subramani Edmonds-Giles theorem

The Theorem Consequences to TDI systems

Fundamentals

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{ \mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b} \}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$.

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{\mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b}\}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$. If \mathbf{A} and \mathbf{b} are rational, the polyhedron is said to be rational.

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{ \mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b} \}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$. If \mathbf{A} and \mathbf{b} are rational, the polyhedron is said to be rational. A bounded polyhedron is called a polytope.

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{ \mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b} \}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$. If \mathbf{A} and \mathbf{b} are rational, the polyhedron is said to be rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set $X \subseteq \Re^n$ i.e., dim X, is defined as:

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{ \mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b} \}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$. If \mathbf{A} and \mathbf{b} are rational, the polyhedron is said to be rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set $X \subseteq \Re^n$ i.e., dim X, is defined as:

 $n - \max\{rank(\mathbf{A}) : \mathbf{A} \text{ is an } n \times n \text{ matrix such that } \mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \mathbf{y}, \forall \mathbf{x}, \mathbf{y} \in \mathbf{X}\}.$

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{ \mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b} \}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$. If \mathbf{A} and \mathbf{b} are rational, the polyhedron is said to be rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set $X \subseteq \Re^n$ i.e., dim X, is defined as:

 $n - \max\{rank(\mathbf{A}) : \mathbf{A} \text{ is an } n \times n \text{ matrix such that } \mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \mathbf{y}, \ \forall \mathbf{x}, \mathbf{y} \in \mathbf{X}\}.$

Definition

Let $P = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}$ denote a non-empty polyhedron.

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{ \mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b} \}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$. If \mathbf{A} and \mathbf{b} are rational, the polyhedron is said to be rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set $X \subseteq \Re^n$ i.e., dim X, is defined as:

 $n - \max\{rank(\mathbf{A}) : \mathbf{A} \text{ is an } n \times n \text{ matrix such that } \mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \mathbf{y}, \forall \mathbf{x}, \mathbf{y} \in \mathbf{X}\}.$

Definition

Let $P = \{\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b}\}$ denote a non-empty polyhedron. Let **c** denote a non-zero vector, such that $\delta = \max\{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in \mathbf{P}\}$ is finite.

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{ \mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b} \}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$. If \mathbf{A} and \mathbf{b} are rational, the polyhedron is said to be rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set $X \subseteq \Re^n$ i.e., dim X, is defined as:

 $n - \max\{rank(\mathbf{A}) : \mathbf{A} \text{ is an } n \times n \text{ matrix such that } \mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \mathbf{y}, \ \forall \mathbf{x}, \mathbf{y} \in \mathbf{X}\}.$

Definition

Let $P = \{\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b}\}$ denote a non-empty polyhedron. Let \mathbf{c} denote a non-zero vector, such that $\delta = \max\{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in \mathbf{P}\}$ is finite. , Then $\{\mathbf{x} : \mathbf{c} \cdot \mathbf{x} = \delta\}$ is called a supporting hyperplane of P.

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{ \mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b} \}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$. If \mathbf{A} and \mathbf{b} are rational, the polyhedron is said to be rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set $X \subseteq \Re^n$ i.e., dim X, is defined as:

 $n - \max\{rank(\mathbf{A}) : \mathbf{A} \text{ is an } n \times n \text{ matrix such that } \mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \mathbf{y}, \ \forall \mathbf{x}, \mathbf{y} \in \mathbf{X}\}.$

Definition

Let $P = \{\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}\}$ denote a non-empty polyhedron. Let \mathbf{c} denote a non-zero vector, such that $\delta = \max\{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in \mathbf{P}\}$ is finite. , Then $\{\mathbf{x} : \mathbf{c} \cdot \mathbf{x} = \delta\}$ is called a supporting hyperplane of P. A **face** of P is P itself or the intersection of P with a supporting hyperplane of P.

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{ \mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b} \}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$. If \mathbf{A} and \mathbf{b} are rational, the polyhedron is said to be rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set $X \subseteq \Re^n$ i.e., dim X, is defined as:

 $n - \max\{rank(\mathbf{A}) : \mathbf{A} \text{ is an } n \times n \text{ matrix such that } \mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \mathbf{y}, \ \forall \mathbf{x}, \mathbf{y} \in \mathbf{X}\}.$

Definition

Let $P = \{\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b}\}$ denote a non-empty polyhedron. Let **c** denote a non-zero vector, such that $\delta = \max\{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in \mathbf{P}\}$ is finite. , Then $\{\mathbf{x} : \mathbf{c} \cdot \mathbf{x} = \delta\}$ is called a supporting hyperplane of *P*. A **face** of *P* is *P* itself or the intersection of *P* with a supporting hyperplane of *P*. A point **x** for which $\{\mathbf{x}\}$ is a face, is called a **vertex** of *P*.

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{ \mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b} \}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$. If \mathbf{A} and \mathbf{b} are rational, the polyhedron is said to be rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set $X \subseteq \Re^n$ i.e., dim X, is defined as:

 $n - \max\{rank(\mathbf{A}) : \mathbf{A} \text{ is an } n \times n \text{ matrix such that } \mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \mathbf{y}, \ \forall \mathbf{x}, \mathbf{y} \in \mathbf{X}\}.$

Definition

Let $P = \{\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b}\}$ denote a non-empty polyhedron. Let **c** denote a non-zero vector, such that $\delta = \max\{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in \mathbf{P}\}$ is finite. , Then $\{\mathbf{x} : \mathbf{c} \cdot \mathbf{x} = \delta\}$ is called a supporting hyperplane of *P*. A **face** of *P* is *P* itself or the intersection of *P* with a supporting hyperplane of *P*. A point **x** for which $\{\mathbf{x}\}$ is a face, is called a **vertex** of *P*. Every vertex of *P* is in fact a basic feasible solution of the system $\mathbf{A} \cdot \mathbf{x} \le \mathbf{b}$.

Definition

A polyhedron in \mathbb{R}^n is a set of the form: $P = \{ \mathbf{x} \in \Re^n : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b} \}$, for some matrix $\mathbf{A} \in \Re^{m \times n}$ and vector $\mathbf{b} \in \Re^m$. If \mathbf{A} and \mathbf{b} are rational, the polyhedron is said to be rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set $X \subseteq \Re^n$ i.e., dim X, is defined as:

 $n - \max\{rank(\mathbf{A}) : \mathbf{A} \text{ is an } n \times n \text{ matrix such that } \mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \mathbf{y}, \ \forall \mathbf{x}, \mathbf{y} \in \mathbf{X}\}.$

Definition

Let $P = \{\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}\}$ denote a non-empty polyhedron. Let \mathbf{c} denote a non-zero vector, such that $\delta = \max\{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in \mathbf{P}\}$ is finite. , Then $\{\mathbf{x} : \mathbf{c} \cdot \mathbf{x} = \delta\}$ is called a supporting hyperplane of P. A **face** of P is P itself or the intersection of P with a supporting hyperplane of P. A point \mathbf{x} for which $\{\mathbf{x}\}$ is a face, is called a **vertex** of P. Every vertex of P is in fact a basic feasible solution of the system $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$. A minimal face of P is a face that does not contain any other face.

The Theorem Consequences to TDI systems

Unimodular Transformations

Unimodular Transformations

Definition

Unimodular Transformations

Definition

Let *P* denote a polyhedron $\{\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}\}$.

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*.

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*. P_l is also called the integer hull of *P*.

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*. P_l is also called the integer hull of *P*. Clearly, $P_l \subseteq P$.

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*. P_l is also called the integer hull of *P*. Clearly, $P_l \subseteq P$. A polyhedron is said to be integral, if $P = P_l$.

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*. P_l is also called the integer hull of *P*. Clearly, $P_l \subseteq P$. A polyhedron is said to be integral, if $P = P_l$.

Definition

Let A be an arbitrary matrix.

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*. P_l is also called the integer hull of *P*. Clearly, $P_l \subseteq P$. A polyhedron is said to be integral, if $P = P_l$.

Definition

Let A be an arbitrary matrix. A series of the following operations:

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*. P_l is also called the integer hull of *P*. Clearly, $P_l \subseteq P$. A polyhedron is said to be integral, if $P = P_l$.

Definition

Let A be an arbitrary matrix. A series of the following operations:

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*. P_l is also called the integer hull of *P*. Clearly, $P_l \subseteq P$. A polyhedron is said to be integral, if $P = P_l$.

Definition

Let A be an arbitrary matrix. A series of the following operations:

(a) Multiplying a column by -1,

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*. P_l is also called the integer hull of *P*. Clearly, $P_l \subseteq P$. A polyhedron is said to be integral, if $P = P_l$.

Definition

Let A be an arbitrary matrix. A series of the following operations:

- (a) Multiplying a column by -1,
- (b) Subtracting one column from another column, and

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*. P_l is also called the integer hull of *P*. Clearly, $P_l \subseteq P$. A polyhedron is said to be integral, if $P = P_l$.

Definition

Let A be an arbitrary matrix. A series of the following operations:

- (a) Multiplying a column by -1,
- (b) Subtracting one column from another column, and
- (c) Exchanging two columns

is called a unimodular transformation.

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*. P_l is also called the integer hull of *P*. Clearly, $P_l \subseteq P$. A polyhedron is said to be integral, if $P = P_l$.

Definition

Let A be an arbitrary matrix. A series of the following operations:

- (a) Multiplying a column by -1,
- (b) Subtracting one column from another column, and
- (c) Exchanging two columns

is called a unimodular transformation.

Lemma

Let A be a rational matrix and let b be a rational column vector.

Definition

Let *P* denote a polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ }. We define the set $P_l = {\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}_l$ to be the convex hull of the integral vectors in *P*. P_l is also called the integer hull of *P*. Clearly, $P_l \subseteq P$. A polyhedron is said to be integral, if $P = P_l$.

Definition

Let A be an arbitrary matrix. A series of the following operations:

- (a) Multiplying a column by -1,
- (b) Subtracting one column from another column, and
- (c) Exchanging two columns

is called a unimodular transformation.

Lemma

Let **A** be a rational matrix and let **b** be a rational column vector. Then, $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ has an integral solution if and only if $\mathbf{y} \cdot \mathbf{b}$ is an integer, for each each rational vector \mathbf{y} , for which $\mathbf{y} \cdot \mathbf{A}$ is integral.

The Edmonds-Giles Theorem

The Edmonds-Giles Theorem

Theorem

Let P be a rational polyhedron.

The Edmonds-Giles Theorem

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

The Edmonds-Giles Theorem

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

Fundamentals The Theorem Consequences to TDI systems

The Edmonds-Giles Theorem

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

(a) P is integral.

Theorem

- (a) P is integral.
- (b) Each face of P contains integral vectors.

Theorem

- (a) P is integral.
- (b) Each face of P contains integral vectors.
- (c) Each minimal face of P contains integral vectors.

Theorem

- (a) P is integral.
- (b) Each face of P contains integral vectors.
- (c) Each minimal face of P contains integral vectors.
- (d) Each supporting hyperplane of P contains integral vectors.

Theorem

- (a) P is integral.
- (b) Each face of P contains integral vectors.
- (c) Each minimal face of P contains integral vectors.
- (d) Each supporting hyperplane of P contains integral vectors.
- (e) Each rational supporting hyperplane of P contains integral vectors.

Theorem

- (a) P is integral.
- (b) Each face of P contains integral vectors.
- (c) Each minimal face of P contains integral vectors.
- (d) Each supporting hyperplane of P contains integral vectors.
- (e) Each rational supporting hyperplane of P contains integral vectors.
- (f) $\max{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in P}$ is attained by an integral vector \mathbf{y} , for each \mathbf{c} for which the maximum is finite.

Theorem

- (a) P is integral.
- (b) Each face of P contains integral vectors.
- (c) Each minimal face of P contains integral vectors.
- (d) Each supporting hyperplane of P contains integral vectors.
- (e) Each rational supporting hyperplane of P contains integral vectors.
- (f) $\max\{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in P\}$ is attained by an integral vector \mathbf{y} , for each \mathbf{c} for which the maximum is finite.
- (g) $\max{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in P}$ is an integer, for each integral \mathbf{c} , for which the maximum is finite.

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

- (a) P is integral.
- (b) Each face of P contains integral vectors.
- (c) Each minimal face of P contains integral vectors.
- (d) Each supporting hyperplane of P contains integral vectors.
- (e) Each rational supporting hyperplane of P contains integral vectors.
- (f) $\max{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in P}$ is attained by an integral vector \mathbf{y} , for each \mathbf{c} for which the maximum is finite.
- (g) $\max{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in P}$ is an integer, for each integral \mathbf{c} , for which the maximum is finite.

Proof.

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

- (a) P is integral.
- (b) Each face of P contains integral vectors.
- (c) Each minimal face of P contains integral vectors.
- (d) Each supporting hyperplane of P contains integral vectors.
- (e) Each rational supporting hyperplane of P contains integral vectors.
- (f) $\max{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in P}$ is attained by an integral vector \mathbf{y} , for each \mathbf{c} for which the maximum is finite.
- (g) $\max{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in P}$ is an integer, for each integral \mathbf{c} , for which the maximum is finite.

Proof.

First prove $(a) \Rightarrow (b) \Rightarrow (f) \Rightarrow (a)$.

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

- (a) P is integral.
- (b) Each face of P contains integral vectors.
- (c) Each minimal face of P contains integral vectors.
- (d) Each supporting hyperplane of P contains integral vectors.
- (e) Each rational supporting hyperplane of P contains integral vectors.
- (f) $\max{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in P}$ is attained by an integral vector \mathbf{y} , for each \mathbf{c} for which the maximum is finite.
- (g) $\max{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in P}$ is an integer, for each integral \mathbf{c} , for which the maximum is finite.

Proof.

First prove $(a) \Rightarrow (b) \Rightarrow (f) \Rightarrow (a)$. Then prove $(b) \Rightarrow (d) \Rightarrow (e) \Rightarrow (c) \Rightarrow (b)$.

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

- (a) P is integral.
- (b) Each face of P contains integral vectors.
- (c) Each minimal face of P contains integral vectors.
- (d) Each supporting hyperplane of P contains integral vectors.
- (e) Each rational supporting hyperplane of P contains integral vectors.
- (f) $\max{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in P}$ is attained by an integral vector \mathbf{y} , for each \mathbf{c} for which the maximum is finite.
- (g) $\max{\mathbf{c} \cdot \mathbf{x} : \mathbf{x} \in P}$ is an integer, for each integral \mathbf{c} , for which the maximum is finite.

Proof.

First prove $(a) \Rightarrow (b) \Rightarrow (f) \Rightarrow (a)$. Then prove $(b) \Rightarrow (d) \Rightarrow (e) \Rightarrow (c) \Rightarrow (b)$. Finally, prove $(f) \Rightarrow (g) \Rightarrow (e)$.

Fundamentals

The Theorem

Consequences to TDI system:

Totally Dual Integral Systems

Fundamentals The Theorem nsequences to TDI systems

Totally Dual Integral Systems

Definition

A polyhedral system $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ is said to be **Totally Dual Integral** (TDI), if the minimum in the Linear Programming duality equation

 $\max\{\mathbf{c} \cdot \mathbf{x} \, : \, \mathbf{A} \cdot \mathbf{x} \le \mathbf{b}\} = \min\{\mathbf{y} \cdot \mathbf{b} \, : \, \mathbf{y} \cdot \mathbf{A} = \mathbf{c}, \, \mathbf{y} \ge \mathbf{0}\}$

has an integral solution y for each integral c, for which the minimum is finite.

Totally Dual Integral Systems

Definition

A polyhedral system $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ is said to be **Totally Dual Integral** (TDI), if the minimum in the Linear Programming duality equation

 $\max\{\mathbf{c} \cdot \mathbf{x} : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b}\} = \min\{\mathbf{y} \cdot \mathbf{b} : \mathbf{y} \cdot \mathbf{A} = \mathbf{c}, \ \mathbf{y} \ge \mathbf{0}\}$

has an integral solution y for each integral c, for which the minimum is finite.

Theorem

TDI-theorem Let $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ denote a TDI system, where \mathbf{A} is rational and \mathbf{b} is integral.

Totally Dual Integral Systems

Definition

A polyhedral system $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ is said to be **Totally Dual Integral** (TDI), if the minimum in the Linear Programming duality equation

 $\max\{\mathbf{c} \cdot \mathbf{x} : \mathbf{A} \cdot \mathbf{x} \le \mathbf{b}\} = \min\{\mathbf{y} \cdot \mathbf{b} : \mathbf{y} \cdot \mathbf{A} = \mathbf{c}, \ \mathbf{y} \ge \mathbf{0}\}$

has an integral solution y for each integral c, for which the minimum is finite.

Theorem

TDI-theorem Let $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ denote a TDI system, where \mathbf{A} is rational and \mathbf{b} is integral. Then the polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ } is integral.

Totally Dual Integral Systems

Definition

A polyhedral system $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ is said to be **Totally Dual Integral** (TDI), if the minimum in the Linear Programming duality equation

 $\max\{\mathbf{c} \cdot \mathbf{x} \, : \, \mathbf{A} \cdot \mathbf{x} \le \mathbf{b}\} = \min\{\mathbf{y} \cdot \mathbf{b} \, : \, \mathbf{y} \cdot \mathbf{A} = \mathbf{c}, \, \mathbf{y} \ge \mathbf{0}\}$

has an integral solution y for each integral c, for which the minimum is finite.

Theorem

TDI-theorem Let $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ denote a TDI system, where \mathbf{A} is rational and \mathbf{b} is integral. Then the polyhedron { $\mathbf{x} : \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ } is integral.

Proof.

Direct consequence of $(g) \Rightarrow (a)!$

Fundamentals

The Theorem Consequences to TDI systems

Hoffman-Kruskal Theorem

Consequences to TDI systems

Hoffman-Kruskal Theorem

Theorem

An integral matrix **A** is totally unimodular (TU), if and only if the polyhedron $\{x : A \cdot x \le b\}$ is integral for each integral vector **b**.

Fundamentals

Consequences to TDI systems

Homework II, Problem 5

Homework II, Problem 5

Theorem

An integral matrix **A** is totally unimodular if and only if the system $\{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is TDI for each vector **b**.

Homework II, Problem 5

Theorem

An integral matrix **A** is totally unimodular if and only if the system $\{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is TDI for each vector **b**.

Proof.

Only If: Assume that A is TU.

Homework II, Problem 5

Theorem

An integral matrix **A** is totally unimodular if and only if the system $\{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is TDI for each vector **b**.

Proof.

Only If: Assume that A is TU. It follows that A^T is TU.

Homework II, Problem 5

Theorem

An integral matrix **A** is totally unimodular if and only if the system $\{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is TDI for each vector **b**.

Proof.

Only If: Assume that **A** is TU. It follows that A^T is TU. Hence, min{ $y \cdot b : y \cdot A \ge c, y \ge 0$ } is attained by an integral vector, for each vector **b** and each integral vector **c**, for which the minimum is finite

Homework II, Problem 5

Theorem

An integral matrix **A** is totally unimodular if and only if the system $\{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is TDI for each vector **b**.

Proof.

Only If: Assume that **A** is TU. It follows that \mathbf{A}^T is TU. Hence, min{ $\mathbf{y} \cdot \mathbf{b} : \mathbf{y} \cdot \mathbf{A} \ge \mathbf{c}, \mathbf{y} \ge \mathbf{0}$ } is attained by an integral vector, for each vector **b** and each integral vector **c**, for which the minimum is finite (Hoffman-Kruskal)!

Homework II, Problem 5

Theorem

An integral matrix **A** is totally unimodular if and only if the system $\{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is TDI for each vector **b**.

Proof.

Only If: Assume that **A** is TU. It follows that \mathbf{A}^T is TU. Hence, min{ $\mathbf{y} \cdot \mathbf{b} : \mathbf{y} \cdot \mathbf{A} \ge \mathbf{c}, \mathbf{y} \ge \mathbf{0}$ } is attained by an integral vector, for each vector **b** and each integral vector **c**, for which the minimum is finite (Hoffman-Kruskal)! In other words, the system { $\mathbf{A} \cdot \mathbf{x} \le \mathbf{b}, \mathbf{x} \ge \mathbf{0}$ } is TDI, for each vector **b**.

Theorem

An integral matrix **A** is totally unimodular if and only if the system $\{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is TDI for each vector **b**.

Proof.

Only If: Assume that **A** is TU. It follows that \mathbf{A}^T is TU. Hence, min $\{\mathbf{y} \cdot \mathbf{b} : \mathbf{y} \cdot \mathbf{A} \ge \mathbf{c}, \mathbf{y} \ge \mathbf{0}\}$ is attained by an integral vector, for each vector **b** and each integral vector **c**, for which the minimum is finite (Hoffman-Kruskal)! In other words, the system $\{\mathbf{A} \cdot \mathbf{x} \le \mathbf{b}, \mathbf{x} \ge \mathbf{0}\}$ is TDI, for each vector **b**.

If: Assume that the system $\{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is TDI for each vector \mathbf{b} .

Theorem

An integral matrix **A** is totally unimodular if and only if the system $\{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is TDI for each vector **b**.

Proof.

Only If: Assume that **A** is TU. It follows that \mathbf{A}^T is TU. Hence, min $\{\mathbf{y} \cdot \mathbf{b} : \mathbf{y} \cdot \mathbf{A} \ge \mathbf{c}, \mathbf{y} \ge \mathbf{0}\}$ is attained by an integral vector, for each vector **b** and each integral vector **c**, for which the minimum is finite (Hoffman-Kruskal)! In other words, the system $\{\mathbf{A} \cdot \mathbf{x} \le \mathbf{b}, \mathbf{x} \ge \mathbf{0}\}$ is TDI, for each vector **b**.

If: Assume that the system $\{A \cdot x \le b, x \ge 0\}$ is TDI for each vector **b**. It follows that the system is TDI for each integral vector **b**.

Theorem

An integral matrix **A** is totally unimodular if and only if the system $\{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is TDI for each vector **b**.

Proof.

Only If: Assume that **A** is TU. It follows that \mathbf{A}^T is TU. Hence, min $\{\mathbf{y} \cdot \mathbf{b} : \mathbf{y} \cdot \mathbf{A} \ge \mathbf{c}, \mathbf{y} \ge \mathbf{0}\}$ is attained by an integral vector, for each vector **b** and each integral vector **c**, for which the minimum is finite (Hoffman-Kruskal)! In other words, the system $\{\mathbf{A} \cdot \mathbf{x} \le \mathbf{b}, \mathbf{x} \ge \mathbf{0}\}$ is TDI, for each vector **b**.

If: Assume that the system $\{A \cdot x \le b, x \ge 0\}$ is TDI for each vector **b**. It follows that the system is TDI for each integral vector **b**. By the TDI-theorem, the polyhedron $\{x : A \cdot x \le b, x \ge 0\}$ is integral for each integral vector **b**.

Theorem

An integral matrix **A** is totally unimodular if and only if the system $\{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is TDI for each vector **b**.

Proof.

Only If: Assume that **A** is TU. It follows that \mathbf{A}^T is TU. Hence, min{ $\mathbf{y} \cdot \mathbf{b} : \mathbf{y} \cdot \mathbf{A} \ge \mathbf{c}, \mathbf{y} \ge \mathbf{0}$ } is attained by an integral vector, for each vector **b** and each integral vector **c**, for which the minimum is finite (Hoffman-Kruskal)! In other words, the system { $\mathbf{A} \cdot \mathbf{x} \le \mathbf{b}, \mathbf{x} \ge \mathbf{0}$ } is TDI, for each vector **b**.

If: Assume that the system $\{A \cdot x \le b, x \ge 0\}$ is TDI for each vector **b**. It follows that the system is TDI for each integral vector **b**. By the TDI-theorem, the polyhedron $\{x : A \cdot x \le b, x \ge 0\}$ is integral for each integral vector **b**. By the Hoffman-Kruskal theorem, it follows that A is TU.