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Definition

A polyhedron in R
n is a set of the form: P = {x ∈ ℜn : A · x ≤ b}, for some matrix

A ∈ ℜm×n and vector b ∈ ℜm.
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rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set X ⊆ ℜn i.e., dim X, is defined as:
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rational. A bounded polyhedron is called a polytope.
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The dimension of any non-empty set X ⊆ ℜn i.e., dim X, is defined as:

n − max{rank(A) : A is an n × n matrix such that A · x = A · y, ∀x, y ∈ X}.
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Let P = {x : A · x ≤ b} denote a non-empty polyhedron.
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The dimension of any non-empty set X ⊆ ℜn i.e., dim X, is defined as:

n − max{rank(A) : A is an n × n matrix such that A · x = A · y, ∀x, y ∈ X}.

Definition

Let P = {x : A · x ≤ b} denote a non-empty polyhedron. Let c denote a non-zero
vector, such that δ = max{c · x : x ∈ P} is finite.
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A polyhedron in R
n is a set of the form: P = {x ∈ ℜn : A · x ≤ b}, for some matrix

A ∈ ℜm×n and vector b ∈ ℜm. If A and b are rational, the polyhedron is said to be
rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set X ⊆ ℜn i.e., dim X, is defined as:

n − max{rank(A) : A is an n × n matrix such that A · x = A · y, ∀x, y ∈ X}.

Definition

Let P = {x : A · x ≤ b} denote a non-empty polyhedron. Let c denote a non-zero
vector, such that δ = max{c · x : x ∈ P} is finite. , Then {x : c · x = δ} is called a
supporting hyperplane of P. A face of P is P itself or the intersection of P with a
supporting hyperplane of P. A point x for which {x} is a face, is called a vertex of P.
Every vertex of P is in fact a basic feasible solution of the system A · x ≤ b.
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Definition

A polyhedron in R
n is a set of the form: P = {x ∈ ℜn : A · x ≤ b}, for some matrix

A ∈ ℜm×n and vector b ∈ ℜm. If A and b are rational, the polyhedron is said to be
rational. A bounded polyhedron is called a polytope.

Definition

The dimension of any non-empty set X ⊆ ℜn i.e., dim X, is defined as:

n − max{rank(A) : A is an n × n matrix such that A · x = A · y, ∀x, y ∈ X}.

Definition

Let P = {x : A · x ≤ b} denote a non-empty polyhedron. Let c denote a non-zero
vector, such that δ = max{c · x : x ∈ P} is finite. , Then {x : c · x = δ} is called a
supporting hyperplane of P. A face of P is P itself or the intersection of P with a
supporting hyperplane of P. A point x for which {x} is a face, is called a vertex of P.
Every vertex of P is in fact a basic feasible solution of the system A · x ≤ b. A minimal
face of P is a face that does not contain any other face.
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Let P denote a polyhedron {x : A · x ≤ b}. We define the set PI = {x : A · x ≤ b}I to
be the convex hull of the integral vectors in P. PI is also called the integer hull of P.
Clearly, PI ⊆ P. A polyhedron is said to be integral, if P = PI .

Definition

Let A be an arbitrary matrix. A series of the following operations:

(a) Multiplying a column by −1,
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is called a unimodular transformation.
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Let A be a rational matrix and let b be a rational column vector.
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Unimodular Transformations

Definition

Let P denote a polyhedron {x : A · x ≤ b}. We define the set PI = {x : A · x ≤ b}I to
be the convex hull of the integral vectors in P. PI is also called the integer hull of P.
Clearly, PI ⊆ P. A polyhedron is said to be integral, if P = PI .

Definition

Let A be an arbitrary matrix. A series of the following operations:

(a) Multiplying a column by −1,

(b) Subtracting one column from another column, and

(c) Exchanging two columns

is called a unimodular transformation.

Lemma

Let A be a rational matrix and let b be a rational column vector. Then, A · x = b has an
integral solution if and only if y · b is an integer, for each each rational vector y, for
which y · A is integral.
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Let P be a rational polyhedron. Then the following statements are equivalent:
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Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

(a) P is integral.

(b) Each face of P contains integral vectors.
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Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

(a) P is integral.

(b) Each face of P contains integral vectors.

(c) Each minimal face of P contains integral vectors.

Subramani Edmonds-Giles theorem



Fundamentals
The Theorem

Consequences to TDI systems

The Edmonds-Giles Theorem

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

(a) P is integral.

(b) Each face of P contains integral vectors.

(c) Each minimal face of P contains integral vectors.

(d) Each supporting hyperplane of P contains integral vectors.
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Let P be a rational polyhedron. Then the following statements are equivalent:

(a) P is integral.

(b) Each face of P contains integral vectors.

(c) Each minimal face of P contains integral vectors.

(d) Each supporting hyperplane of P contains integral vectors.

(e) Each rational supporting hyperplane of P contains integral vectors.
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Let P be a rational polyhedron. Then the following statements are equivalent:

(a) P is integral.

(b) Each face of P contains integral vectors.

(c) Each minimal face of P contains integral vectors.

(d) Each supporting hyperplane of P contains integral vectors.

(e) Each rational supporting hyperplane of P contains integral vectors.

(f) max{c · x : x ∈ P} is attained by an integral vector y, for each c for which the
maximum is finite.
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Let P be a rational polyhedron. Then the following statements are equivalent:
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(b) Each face of P contains integral vectors.

(c) Each minimal face of P contains integral vectors.

(d) Each supporting hyperplane of P contains integral vectors.

(e) Each rational supporting hyperplane of P contains integral vectors.

(f) max{c · x : x ∈ P} is attained by an integral vector y, for each c for which the
maximum is finite.

(g) max{c · x : x ∈ P} is an integer, for each integral c, for which the maximum is
finite.
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The Edmonds-Giles Theorem

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

(a) P is integral.

(b) Each face of P contains integral vectors.

(c) Each minimal face of P contains integral vectors.

(d) Each supporting hyperplane of P contains integral vectors.

(e) Each rational supporting hyperplane of P contains integral vectors.

(f) max{c · x : x ∈ P} is attained by an integral vector y, for each c for which the
maximum is finite.

(g) max{c · x : x ∈ P} is an integer, for each integral c, for which the maximum is
finite.

Proof.
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The Edmonds-Giles Theorem

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

(a) P is integral.

(b) Each face of P contains integral vectors.

(c) Each minimal face of P contains integral vectors.

(d) Each supporting hyperplane of P contains integral vectors.

(e) Each rational supporting hyperplane of P contains integral vectors.

(f) max{c · x : x ∈ P} is attained by an integral vector y, for each c for which the
maximum is finite.

(g) max{c · x : x ∈ P} is an integer, for each integral c, for which the maximum is
finite.

Proof.

First prove (a) ⇒ (b) ⇒ (f ) ⇒ (a).
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The Edmonds-Giles Theorem

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

(a) P is integral.

(b) Each face of P contains integral vectors.

(c) Each minimal face of P contains integral vectors.

(d) Each supporting hyperplane of P contains integral vectors.

(e) Each rational supporting hyperplane of P contains integral vectors.

(f) max{c · x : x ∈ P} is attained by an integral vector y, for each c for which the
maximum is finite.

(g) max{c · x : x ∈ P} is an integer, for each integral c, for which the maximum is
finite.

Proof.

First prove (a) ⇒ (b) ⇒ (f ) ⇒ (a). Then prove (b) ⇒ (d) ⇒ (e) ⇒ (c) ⇒ (b).

Subramani Edmonds-Giles theorem



Fundamentals
The Theorem

Consequences to TDI systems

The Edmonds-Giles Theorem

Theorem

Let P be a rational polyhedron. Then the following statements are equivalent:

(a) P is integral.

(b) Each face of P contains integral vectors.

(c) Each minimal face of P contains integral vectors.

(d) Each supporting hyperplane of P contains integral vectors.

(e) Each rational supporting hyperplane of P contains integral vectors.

(f) max{c · x : x ∈ P} is attained by an integral vector y, for each c for which the
maximum is finite.

(g) max{c · x : x ∈ P} is an integer, for each integral c, for which the maximum is
finite.

Proof.

First prove (a) ⇒ (b) ⇒ (f ) ⇒ (a). Then prove (b) ⇒ (d) ⇒ (e) ⇒ (c) ⇒ (b).
Finally, prove (f ) ⇒ (g) ⇒ (e).
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Definition

A polyhedral system A · x ≤ b is said to be Totally Dual Integral (TDI), if the minimum
in the Linear Programming duality equation

max{c · x : A · x ≤ b} = min{y · b : y · A = c, y ≥ 0}

has an integral solution y for each integral c, for which the minimum is finite.
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Definition

A polyhedral system A · x ≤ b is said to be Totally Dual Integral (TDI), if the minimum
in the Linear Programming duality equation

max{c · x : A · x ≤ b} = min{y · b : y · A = c, y ≥ 0}

has an integral solution y for each integral c, for which the minimum is finite.

Theorem

TDI-theorem Let A · x ≤ b denote a TDI system, where A is rational and b is integral.
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Definition

A polyhedral system A · x ≤ b is said to be Totally Dual Integral (TDI), if the minimum
in the Linear Programming duality equation

max{c · x : A · x ≤ b} = min{y · b : y · A = c, y ≥ 0}

has an integral solution y for each integral c, for which the minimum is finite.

Theorem

TDI-theorem Let A · x ≤ b denote a TDI system, where A is rational and b is integral.
Then the polyhedron {x : A · x ≤ b} is integral.
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Totally Dual Integral Systems

Definition

A polyhedral system A · x ≤ b is said to be Totally Dual Integral (TDI), if the minimum
in the Linear Programming duality equation

max{c · x : A · x ≤ b} = min{y · b : y · A = c, y ≥ 0}

has an integral solution y for each integral c, for which the minimum is finite.

Theorem

TDI-theorem Let A · x ≤ b denote a TDI system, where A is rational and b is integral.
Then the polyhedron {x : A · x ≤ b} is integral.

Proof.

Direct consequence of (g) ⇒ (a)!
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Hoffman-Kruskal Theorem

Theorem

An integral matrix A is totally unimodular (TU), if and only if the polyhedron
{x : A · x ≤ b} is integral for each integral vector b.
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Theorem

An integral matrix A is totally unimodular if and only if the system {A · x ≤ b, x ≥ 0} is
TDI for each vector b.
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Theorem

An integral matrix A is totally unimodular if and only if the system {A · x ≤ b, x ≥ 0} is
TDI for each vector b.

Proof.

Only If: Assume that A is TU.
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Theorem

An integral matrix A is totally unimodular if and only if the system {A · x ≤ b, x ≥ 0} is
TDI for each vector b.

Proof.

Only If: Assume that A is TU. It follows that AT is TU.
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Homework II, Problem 5

Theorem

An integral matrix A is totally unimodular if and only if the system {A · x ≤ b, x ≥ 0} is
TDI for each vector b.

Proof.

Only If: Assume that A is TU. It follows that AT is TU. Hence,
min{y · b : y · A ≥ c, y ≥ 0} is attained by an integral vector, for each vector b and
each integral vector c, for which the minimum is finite
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Homework II, Problem 5

Theorem

An integral matrix A is totally unimodular if and only if the system {A · x ≤ b, x ≥ 0} is
TDI for each vector b.

Proof.

Only If: Assume that A is TU. It follows that AT is TU. Hence,
min{y · b : y · A ≥ c, y ≥ 0} is attained by an integral vector, for each vector b and
each integral vector c, for which the minimum is finite (Hoffman-Kruskal)!
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If: Assume that the system {A · x ≤ b, x ≥ 0} is TDI for each vector b. It follows that
the system is TDI for each integral vector b. By the TDI-theorem, the polyhedron
{x : A · x ≤ b, x ≥ 0} is integral for each integral vector b.
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Theorem

An integral matrix A is totally unimodular if and only if the system {A · x ≤ b, x ≥ 0} is
TDI for each vector b.

Proof.

Only If: Assume that A is TU. It follows that AT is TU. Hence,
min{y · b : y · A ≥ c, y ≥ 0} is attained by an integral vector, for each vector b and
each integral vector c, for which the minimum is finite (Hoffman-Kruskal)! In other
words, the system {A · x ≤ b, x ≥ 0} is TDI, for each vector b.

If: Assume that the system {A · x ≤ b, x ≥ 0} is TDI for each vector b. It follows that
the system is TDI for each integral vector b. By the TDI-theorem, the polyhedron
{x : A · x ≤ b, x ≥ 0} is integral for each integral vector b. By the Hoffman-Kruskal
theorem, it follows that A is TU.
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