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Geometrically representing linear programs

In addition to having a standard form, it is also helpful to understand systems of
constraints geometrically. To gain such understanding we will learn how to solve two
variable linear programs geometrically.

Geometric View of Constraints

First we will see how constrains can be considered to be portions of the x1,x2 plane.
An equality, such as x1 + x2 = 3, can be viewed as a line in the x1,x2 plane.

0

x1

x2

x1 + x2 = 3
(0,3)

(3,0)
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Geometric View of Constraints

Similarly an inequality, such as x1 + x2 ≤ 3, can be viewed as as the half plane above
or below a line in the x1,x2 plane.
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Geometric View of Constraints

For a system of constraints the section of the plane corresponding to solutions to that
system is simply the intersection of the portions of the plane corresponding to each
constraint. For instance, the constraints

x1 ≤ 1

x2 ≥ 1

x1 + x2 ≤ 3

x1, x2 ≥ 0

would produce

0
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x1

x1 + x2 = 3

(0,3)

(3,0)
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Geometric representation of the objective function

Now that we know how to represent constraints geometrically, we need to consider the
objective function.

For a fixed z, the objective function is simply an equality, and can
thus be represented as a line in the x1,x2 plane. If we allow z to vary then the objective
function can be represented as a series of parallel lines each corresponding to a
different value for z.
If we are trying to maximize z then we find the maximum z for which the corresponding
line passes though the portion of the plane corresponding to the system of constraints.
When minimizing we consider the minimum such z.
It also helps to find the gradient of z as it identifies the direction in which z grows the
fastest. As the objective function is of the form z = c1x1 + c2x2, the gradient is simply
the vector (c1, c2).
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Handling the objective function

For example adding the objective function z = x1 + 2x2 to our previous example yields

0

x2

x1

x1 + x2 = 3

(0,3)

(3,0)

z = 2

z = 4

z = 6

Thus trying to maximize z would yield that maximum z to be 6 when x1 = 0 and
x2 = 3. Similarly trying to minimize z would yield that minimum z to be 2 when x1 = 0
and x2 = 1.
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Exercise 1

Solve the following linear program graphically

minimize z = 4x1 + 5x2

subject to

3x1 + 2x2 ≤ 24

x1 ≥ 5

3x1 − x2 ≤ 6

x1, x2 ≥ 0
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Solution

If the constraints are plotted onto a graph we see

0

x2

x1

3x1 + 2x2 = 24

x1 = 5

3x1 − x2 = 6

There are no points which satisfy all three constraints. Thus no solution exists.
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Exercise 2

Solve the following system of constraints graphically

minimize z = x1 − 4x2

subject to

x1 + x2 ≤ 12

−2x1 + x2 ≤ 4

x2 ≤ 8

x1 − 3x2 ≤ 4

x1, x2 ≥ 0
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Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

x1 + x2 = 12

−2x1 + x2 = 4

x2 = 8

x1 − 3x2 = 4

z = 0

z = −10

z = −20

z = −30

Thus the minimum value of z is z = −30 and occurs at (x1, x2) = (2, 8).
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Exercise 3

Solve the following linear program graphically

maximize z = x1 + 2x2

subject to

−2x1 + x2 ≤ 2

2x1 + 5x2 ≥ 10

x1 − 4x2 ≤ 2

x1, x2 ≥ 0

Subramani Linear Programming



Graphical solutions to two dimensional problems
Convexity

Extreme Points
Basic Solutions

Constraints
Optimization
Exercises

Solution

Plotting the constraints and then checking various values of z we get.

0

x2

x1

−2x1 + x2 = 2

2x1 + 5x2 = 10

x1 − 4x2 = 2

z = 6

z = 8

z = 10
z = 12

Thus there is no maximum value of z as z can be increased indefinitely and the system
will still be feasible.
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Definition (Hyperplane)

A hyperplane is a set of points, x = (x1, x2, . . . , xn)t , that satisfy ax = b, where
a = (a1, a2, . . . , an) and b is a scalar.

Definition (Halfspace)

A closed halfspace corresponding to a hyperplane a · x = b is either of the sets
H+ = {x : a · x ≥ b} or H− = {x : a · x ≤ b}. If the inequalities involved are strict then
the corresponding halfspace are referred to as open halfspaces.
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Definition (Convex Set)

A set, S, is convex if for any two points x1, x2 ∈ S then all points on the line segment
connecting x1 and x2 are in S. This means that ∀α ∈ [0, 1], α · x1 + (1− α) · x2 ∈ S.

Definition (Polyhedral Set)

A set S is polyhedral if it is the intersection of a finite number of halfspaces.

Systems of constraints as Polyhedral Sets

A constraint system of the form S = {x : A · x ≤ b, x ≥ 0} is a polyhedral set as each
constraint corresponds to a halfspace.
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Theorem

The set S = {x : A · x = b, x ≥ 0} is convex.

Proof.

Let x1, x2 ∈ S, and let α ∈ [0, 1]. So, by definition of S, A · x1 = b and A · x2 = b.
Thus for any α ∈ [0, 1], we have that
A · (α · x1 + (1− α) · x2) = α · A · x1 + (1− α) · A · x2 = α · b + (1− α) · b = b. And
as α, (1− α) ≥ 0 and x1, x2 ≥ 0 we have that α · x1 + (1− α) · x2 ≥ 0. Thus for any
α ∈ [0, 1] α · x1 + (1− α) · x2 ∈ S. Thus S is convex.
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Definition (Extreme Point)

A point x in a convex set S is said to be an extreme point if it does not lie on the interior
of a line segment connecting two distinct points in S.

Mathematically there do not exist
x1, x2 ∈ S, x1 6= x2, and α ∈ (0, 1) such that x = α · x1 + (1− α) · x2.

Definition (Direction)

A non-zero vector d = (d1, d2, . . . , dn) is a direction of a convex set S if ∀x ∈ S and
∀λ ≥ 0, x + λ · d ∈ S.

Definition (Extreme Direction)

A direction d of a convex set S is said to be an extreme direction if cannot be
expressed as a positive combination of two distinct directions of S.
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Goal

First we want to develop a method of identifying the extreme points of a system of
constraints in standard form.

Theorem

Let S = {x : A · x = b, x ≥ 0}, where A is m × n and rank(A) = m < n. x is an
extreme point of S if and only if x is the intersection of n linearly independent
hyperplanes.

only if.

Let x be an extreme point of S. To get a contradiction we will assume that x lies on less
than n linearly independent hyperplanes. By definition of S, x lies on the m linearly
independent hyperplanes forming the constraint set A · x = b. Thus x must also lie on
exactly p < n −m of the hyperplanes corresponding to the constraints x ≥ 0. Without
loss of generality we can assume that x i = 0 for i = 1, . . . , p and x i > 0 for
i = p + 1, . . . , n. Thus we can create a new system of constraints Qx = h formed by
adding the constraints xi = 0 for i = 1, . . . , p to Ax = b.
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only if.

As Q is an (m + p)× n matrix where m + p < n the columns of Q are linearly
dependent. Thus there exists y 6= 0 such that Qy = 0.

Now let’s consider the points
x̃ = x + λy and x̂ = x− λy where λ > 0. We have that Qx̃ = Q(x + λy) = h + λ0 = h
and Qx̂ = Q(x− λy) = h− λ0 = h. Thus Ax̃ = Ax̂ = b and x̃i = x̂i = 0 for
i = 1, . . . , p. Since x j > 0 for j = p + 1, . . . , n there exists λ such that
x̃j = x j + λyj > 0 and x̂j = x j − λyj > 0 for j = p + 1, . . . , n. Thus x̃, x̂ ∈ S. However
x = (1/2)x̃ + (1/2)x̂ contradicting the fact that x is an extreme point of S. Thus x has
to lie on n linearly independent hyperplanes.

if.

Let x ∈ S be the intersection of n linearly independent hyperplanes. Without loss of
generality we can let these hyperplanes be denoted by Ax = b and xi = 0 for
i = 1, . . . , n−m. Now select x̃, x̂ ∈ S and α ∈ (0, 1) such that x = αx̃ + (1− α)x̂. We
have that αx̃i + (1− α)x̂i = x i = 0 for i = 1, . . . , n −m. As α, (1− α) > 0 and
x̃1, x̂i ≥ 0 we have that x̃i = x̂i = x i = 0 for i = 1, . . . , n −m.
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As x, x̃, x̂ ∈ S we have that Ax = Ax̃ = Ax̂ = b.

From this, and the previous result, we
have that x, x̃, and x̂ are each located at the intersection of the same n linearly
independent hyperplanes. Therefore x = x̃ = x̂. Thus x is indeed an extreme
point.

Recognizing directions

Now that we have a different way of recognizing extreme points we will also determine
a way of recognizing directions.

Theorem

Let S = {x : Ax = b, x ≥ 0}. Then d is a direction of S if and only if
d ∈ D = {d : Ad = 0,d ≥ 0,d 6= 0}.
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Let d be a direction of S. Thus d 6= 0 and x + λd ∈ S for all x ∈ S and λ ≥ 0.

Thus, for
λ = 1, we have that b = A(x + d) = Ax + Ad = b + Ad. Thus Ad = 0. We also have
that x + λd ≥ 0. This implies that d ≥ 0 because otherwise λ could be made large
enough to make x + λd < 0. Thus d ∈ D.

if.

Let d ∈ D and let x ∈ S. We have that, by definition of D, d 6= 0. Also by the definition
of D we have that Ad = 0, thus for λ ≥ 0 we have that A(x + λd) = Ax + Ad = b also
as x,d ≥ 0 we have that x + λd ≥ 0. Thus for all λ ≥ 0 x + λd ∈ S. Thus d is a
direction of S
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Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of Rn to
be either bounded or unbounded.

Definition (Bounded Set)

A subset S of Rn is bounded if it can be contained within an n-dimensional ball.
Mathematically S is bounded if there exist a point x ∈ S and a radius r > 0 such that
for any point x ∈ S the distance from x to x is less than r .

Definition (Unbounded Set)

An unbounded set is simply a set which is not bounded.

Subramani Linear Programming



Graphical solutions to two dimensional problems
Convexity

Extreme Points
Basic Solutions

Extreme Points
Properties
Importance

Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of Rn to
be either bounded or unbounded.

Definition (Bounded Set)

A subset S of Rn is bounded if it can be contained within an n-dimensional ball.
Mathematically S is bounded if there exist a point x ∈ S and a radius r > 0 such that
for any point x ∈ S the distance from x to x is less than r .

Definition (Unbounded Set)

An unbounded set is simply a set which is not bounded.

Subramani Linear Programming



Graphical solutions to two dimensional problems
Convexity

Extreme Points
Basic Solutions

Extreme Points
Properties
Importance

Bounded and unbounded sets

Before continuing on, we define what it it means for a set, specifically a subset of Rn to
be either bounded or unbounded.

Definition (Bounded Set)

A subset S of Rn is bounded if it can be contained within an n-dimensional ball.
Mathematically S is bounded if there exist a point x ∈ S and a radius r > 0 such that
for any point x ∈ S the distance from x to x is less than r .

Definition (Unbounded Set)

An unbounded set is simply a set which is not bounded.

Subramani Linear Programming



Graphical solutions to two dimensional problems
Convexity

Extreme Points
Basic Solutions

Extreme Points
Properties
Importance

Outline

1 Graphical solutions to two dimensional problems
Representing constraints as sections of the plane
Handling the objective function
Exercises

2 Convexity and Polyhedral Sets
Hyperplanes and Halfspaces
Convexity and Polyhedral Sets

3 Extreme Points and Extreme Directions
Extreme Points
Properties of Extreme points and Extreme directions
Importance

4 Basic Feasible Solutions
Finding Basic Feasible Solutions
Relation to Extreme Points

Subramani Linear Programming



Graphical solutions to two dimensional problems
Convexity

Extreme Points
Basic Solutions

Extreme Points
Properties
Importance

Importance

Now we will see the importance of considering extreme points and extreme directions
when considering a linear program. However first we will see how a set S relates to its
extreme points and extreme directions.

Theorem

Let S = {x : Ax = b, x ≥ 0} be non-empty, and let E be the set of extreme points of S
and let D be the set of all extreme directions of S. Then:

1 S has at least one extreme point and at most a finite number of extreme points,
thus E = {x1, . . . , xp} 6= ∅.

2 S is unbounded of and only if S has at least one extreme direction.
3 if S is unbounded then S has a finite number of extreme directions,

D = {d1, . . . ,dq} 6= ∅.
4 if x ∈ S, then x can be written as a convex combination of extreme points plus a

positive combination of extreme vectors, that is x =
∑p

i=1(αi xi ) +
∑q

j=1(λj dj ) for∑p
i=1 αi = 1, αi ≥ 0, λj ≥ 0.
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Theorem

Let S = {x : Ax = b, x ≥ 0} and consider the following linear program.

maximize z = cx
subject to x ∈ S.

Suppose S is unbounded and has extreme points E = {x1, . . . , xp} 6= ∅ and extreme
directions D = {d1, . . . ,dq} 6= ∅. Let z∗ represent the optimal objective value of the
linear program. Then z∗ is finite if and only if cdj ≤ 0 for all dj ∈ D. And if a finite
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only if.

Suppose, to obtain a contradiction, that for some dj ∈ D cd > 0. However λj cd is a
term of z thus z can be made arbitrarily large by making λj arbitrarily large.

This
contradicts that z∗ is finite and so cd ≤ 0 for all dj ∈ D.

if.

If cd ≤ 0 for all dj ∈ D then, since we are maximizing z, the optimum solution occurs
when λj = 0 for all j = 1, . . . , q. Thus the linear program can be simplified to can be
simplified to

maximize z =
∑p

i=1(αi cxi )

subject to
∑p

i=1 αi = 1, αi ≥ 0.

As there are finitely many extreme points there must be an extreme point xk for which
(cx)k ≥ (cx)i for all i = 1, . . . , p. Thus we have that
z =

∑p
i=1(αi cxi ) ≤

∑p
i=1(αi cxk ) = cxk . Thus z∗ is finite and in fact z∗ = cxk where

xk is the optimal extreme point.
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goal

We have now shown that we can solve linear programs by restricting ourselves to the
extreme points of the feasible space. However we still need to develop a way of finding
these extreme point non-graphically.

Finding basic feasible solutions

Consider a linear system of equations Ax = b. Where A is an m × n matrix
b = (b1, . . . , bm)t , and x = (x1, . . . , xn)t . We will assume that rank(A) = m ≤ n. That
is we assume that the rows of A are linearly independent. We also assume that the
columns of A can be rearranged so that A can be written as A = (B : N). Where B is a
nonsingular m ×m matrix. We will refer to B as the basis matrix.
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Finding basic feasible solutions

Thus we can rewrite Ax = b as BxB + NxN = b where x =
(xB

xN

)
.

As B is non-singular

the inverse of B exists. Thus we have that B−1BxB + B−1NxN = B−1b. Which is
equivalent to sating that xB = B−1b− B−1NxN . If we set xN = 0 then xB = B−1b and

x =
(B−1b

0

)
. This value is called a basic solution. We refer to the xB as the vector of

basic variables and we refer to xN as the vector of nonbasic variables. If x ≥ 0 then x
is called a basic feasible solution. Similarly if x = 0 then the basic solution is said to be
degenerate otherwise it is non-degenerate.
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Theorem

Let S = {x : Ax = b, x ≥ 0}, where A is m × n and rank(A) = m < n. x is an extreme
point of S if and only if x is a basic feasible solution.

only if.

Let x ∈ S be an extreme point. Thus x is the intersection of n linearly independent
hyperplanes. From the definition of S the constraints Ax = b provide m of these
hyperplanes. Thus the remaining n −m hyperplanes must come from the
non-negativity constraints. Thus at least n −m of these constraints are satisfied as
equalities by the extreme point x. Thus xN = 0 can be used to represent m − n such
constraints. Thus x is the unique solution to Ax = b, xN = 0. Now xB is used to denote
the remaining components of x and the matrix A = (B : N) is partitioned appropriately.
Thus x is the unique solution to BxB + NxN = b, xN = 0.
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only if.

Thus xB is the unique solution to BxB = b. Thus B is invertible and a basis matrix.
Thus x ≥ 0 is a basic feasible solution.

if.

Let x be a basic feasible solution. Thus there exists a basis matrix B such that
x =

(xB
xN

)
=
(B−1b

0

)
. Thus x is the unique solution to the system Ax = BxB + NxN = b,

xN = 0. We have that Ax = b represents m hyperplanes and xN = 0 represents the
remaining n −m hyperplanes. Thus x is the intersection of n linearly independent
hyperplanes and is an extreme point.

All together

All together this gives us the basics of a method for finding the optimal solutions to a
linear program.
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