The Simplex Algorithm

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

4 February, 2013

Subramani Linear Programming

Overview Algebra of the simplex method

Topics

(i) Unique optimal solution, alternative optimal solutions, and unbounded objective.

(i) Unique optimal solution, alternative optimal solutions, and unbounded objective.

(ii) If a finite optimal solution exists, then an extreme-point optimal solution exists.

- (i) Unique optimal solution, alternative optimal solutions, and unbounded objective.
- (ii) If a finite optimal solution exists, then an extreme-point optimal solution exists.
- (iii) Each extreme-point solution is a basic feasible solution of the linear constraint set: $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \geq 0.$

- (i) Unique optimal solution, alternative optimal solutions, and unbounded objective.
- (ii) If a finite optimal solution exists, then an extreme-point optimal solution exists.
- (iii) Each extreme-point solution is a basic feasible solution of the linear constraint set: $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0.$

Basic idea of the simplex algorithm

Iteratively moving from one extreme point to an *adjacent* extreme point, until an extreme point with an optimal solution. How to choose the first, next, and last (optimal) extreme point?

- (i) Unique optimal solution, alternative optimal solutions, and unbounded objective.
- (ii) If a finite optimal solution exists, then an extreme-point optimal solution exists.
- (iii) Each extreme-point solution is a basic feasible solution of the linear constraint set: $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0.$

Basic idea of the simplex algorithm

Iteratively moving from one extreme point to an *adjacent* extreme point, until an extreme point with an optimal solution. How to choose the first, next, and last (optimal) extreme point? First point (Two phase method).

Representing z and x

The standard	linear progra	mmina pro	blem:
ino otanaana	mour progra		

(LP) maximize
$$z = \mathbf{cx}$$
 subject to $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge 0$.

A can be partitioned into Α

$$= (\mathbf{B} : \mathbf{N}) \qquad (4.7)$$

Based on $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, we have:

$$\begin{aligned} & \mathbf{B} \cdot \mathbf{x}_B + \mathbf{N} \cdot \mathbf{x}_N = \mathbf{b} & (4.2) \\ & \mathbf{x}_B + \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_N = \mathbf{B}^{-1} \cdot \mathbf{b} & (4.3) \\ & \mathbf{x}_B = \mathbf{B}^{-1} \cdot \mathbf{b} - \mathbf{B}^{-1} \cdot \mathbf{N} \cdot \mathbf{x}_N & (4.4) \end{aligned}$$

The basic solution is:

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_n \end{pmatrix} = \begin{pmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{pmatrix}$$
. IF $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} \ge \mathbf{0}$, then \mathbf{x} is a *basic feasible solution*.

The objective function $z = \mathbf{cx}$ can be written as:

(4.5) $z = \mathbf{c}_B \mathbf{x}_B + \mathbf{c}_N \mathbf{x}_N$

Overview gebra of the simplex method

Representing z and \mathbf{x} cont.

Based on (4.4), \mathbf{x}_B can be described using \mathbf{x}_N :

$$z = \mathbf{c}_B(\mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N) + \mathbf{c}_N\mathbf{x}_N \quad (4.6)$$

$$z = \mathbf{c}_B\mathbf{B}^{-1}\mathbf{b} - (\mathbf{c}_B\mathbf{B}^{-1}\mathbf{N} - \mathbf{c}_N)\mathbf{x}_N \quad (4.7)$$

A canonical form of z and $\mathbf{x}_{\mathbf{B}}$:

$$z = \mathbf{c}_B(\mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N) + \mathbf{c}_N\mathbf{x}_N \quad (4.8)$$
$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N \quad (4.9)$$

The current basic feasible solution and the objective function *z* are:

$$\begin{aligned} z &= \mathbf{c}_{\mathcal{B}} \mathbf{B}^{-1} \mathbf{b} \quad (4.10) \\ \mathbf{x} &= \begin{pmatrix} \mathbf{x}_{\mathcal{B}} \\ \mathbf{x}_{\mathcal{N}} \end{pmatrix} = \begin{pmatrix} \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{0} \end{pmatrix} \geq \mathbf{0} \quad (4.11) \end{aligned}$$

Representing z and \mathbf{x} cont.

Letting J denote the index set of the nonbasic variables. The canonical form (4.8-4.9) can be written as:

$$z = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{b} - \sum_{j \in J} (\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j) x_j \quad (4.12)$$
$$\mathbf{x}_B = \mathbf{B}^{-1} \mathbf{b} - \sum_{j \in J} (\mathbf{B}^{-1} \mathbf{a}_j) x_j \quad (4.13)$$

The *key idea* of the simplex method is to move from an extreme point to an improving adjacent extreme point by interchanging a column in \mathbf{B} and a column in \mathbf{N} .

Overview pebra of the simplex method

Checking for optimality

Based on (4.12) the rate of change of z with respect to the nonbasic variable x_i is:

$$\frac{\partial z}{\partial x_j} = -(\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j) \tag{4.14}$$

Thus, if $\frac{\partial z}{\partial x_j} > 0$, then increasing x_j will increase z. ($\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j$) is sometimes referred to as *reduced cost* and is denoted by $(z_j - c_j)$.

A basic feasible solution (4.11) is optimal to (LP) if

$$rac{\partial z}{\partial x_j} = -(z_j - c_j) = -(\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j) \leq 0$$
, for all $j \in J$

or, equivalently, if $z_j - c_j = (\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j) \ge 0$, for all $j = 1 \dots n$

 $z_j - c_j = 0$ for all basic variables. We can see that $\mathbf{B}^{-1}\mathbf{a}_j = (0, 0, \dots 1, 0 \dots 0)^T$; i.e., the only non-zero entry in $\mathbf{B}^{-1}\mathbf{a}_j$ is the *j*th entry, which is 1. Therefore, $\mathbf{c}_B \mathbf{B}^{-1}\mathbf{a}_j - c_j = c_j - c_j = 0$. Meanwhile, based on (4.12), we can directly see that $\frac{\partial z}{\partial x_j} = 0$ for all basic variables. If $z_j - c_j > 0$ for all $j \in J$, then the current basic solution is the *unique* optimal solution. Otherwise, if $z_j - c_j = 0$ for some nonbasic variable x_j , then there are *alternative optimal solutions*. ebra of the simplex method

Determining the entering and departing variables

A current non-basic variable x_j , if $\frac{\partial z}{\partial x_j}$ is positive, and $\frac{\partial z}{\partial x_j}$ is maximal, then x_j is chosen as the *entering variable*. This process of choosing the entering variable is called the *steepest-ascent rule*. However, if we choose another x_j such that $\frac{\partial z}{\partial x_j}$ is positive but not maximal, the simplex

method will also work.

 x_j will become a basic variable, and some current basic variable x_k will become non-basic. x_k is called the *departing variable*.

The departing variable x_k must satisfy two requirements:

- The columns of B, after a_k is removed and a_j is added, can form a basis, i.e. they are linearly independent.
- In order to make x_k non-negative when x_j is increased, x_j needs to satisfy the most restrict upper bound (*minimum ratio test*).

ebra of the simplex method

Determining the departing variable: to form a new basis

Theorem (4.1)

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$. Then \mathbf{a} can be written uniquely as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m$.

Proof.

Because $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ is a basis for E^m , then **a** can be written as a linear combination of $(\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$. We need to show that this linear combination is unique. Suppose **a** can be represented as two different linear combinations of **B**:

$$\mathbf{a} = \sum_{j=1}^{m} \lambda_j \mathbf{b}_j$$
, where $\lambda_j \in E^1$, for all $j = 1, \dots, m$

ebra of the simplex method

Determining the departing variable: to form a new basis

Theorem (4.1)

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$. Then \mathbf{a} can be written uniquely as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m$.

Proof.

Because $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ is a basis for E^m , then **a** can be written as a linear combination of $(\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$. We need to show that this linear combination is unique. Suppose **a** can be represented as two different linear combinations of **B**:

$$\mathbf{a} = \sum_{\substack{j=1 \\ j=1}}^{m} \lambda_j \mathbf{b}_j, \text{ where } \lambda_j \in E^1, \text{ for all } j = 1, \dots, m \quad (4.15)$$
$$\mathbf{a} = \sum_{\substack{j=1 \\ j=1}}^{m} \mu_j \mathbf{b}_j, \text{ where } \mu_j \in E^1, \text{ for all } j = 1, \dots, m$$

ebra of the simplex method

Determining the departing variable: to form a new basis

Theorem (4.1)

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$. Then \mathbf{a} can be written uniquely as a linear combination of $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m$.

Proof.

Because $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ is a basis for E^m , then **a** can be written as a linear combination of $(\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$. We need to show that this linear combination is unique. Suppose **a** can be represented as two different linear combinations of **B**:

$$\mathbf{a} = \sum_{j=1}^{m} \lambda_j \mathbf{b}_j, \text{ where } \lambda_j \in E^1, \text{ for all } j = 1, \dots, m \quad (4.15)$$
$$\mathbf{a} = \sum_{j=1}^{m} \mu_j \mathbf{b}_j, \text{ where } \mu_j \in E^1, \text{ for all } j = 1, \dots, m \quad (4.16)$$

Subtracting (4.16) from(4.15) yields $\mathbf{0} = \sum_{j=1}^{m} (\lambda_j - \mu_j)_{\mathbf{j}}$, which represents $\mathbf{0}$ as a linear

combination of columns in **B** where some coefficient is not 0, which is impossible since the columns in **B** are linearly independent. So we know that **a** can be written uniquely as a linear combination of \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_m .

Another theorem

Theorem (4.2)

Let $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_m)$ be a basis for E^m , and let $\mathbf{a} \in E^m$, $\mathbf{a} \neq \mathbf{0}$ be represented by $\mathbf{a} = \sum_{j=1}^m \lambda_j \mathbf{b}_j$. Without loss of generality, suppose $\lambda_m \neq 0$. Then \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_{m-1} , \mathbf{a} form a basis for E^m .

Proof.

We simply need to show that $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{m-1}, \mathbf{a}$ are linearly independent. By contradiction, suppose they are not. There exist $\gamma_1, \gamma_2, \dots, \gamma_{m-1}, \delta \in E^1$, which are not all zero such that

$$\sum_{j=1}^{m-1} \gamma_j \mathbf{b}_j + \delta \mathbf{a} = \mathbf{0}$$
(4.19).

If $\delta = 0$, then some γ_j , for $1 \le j \le m - 1$, is non-zero, and $\sum_{j=1}^{m-1} \gamma_j \mathbf{b}_j = \mathbf{0}$. It is impossible since $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{m-1}$ are linearly independent. So we know that $\delta = 0$. We have

$$\mathbf{a} = \sum_{j=1}^{m} \lambda_j \mathbf{b}_j \tag{4.20}$$

Proof continues ...

ebra of the simplex method

Determining the departing variable, cont.

Proof of Theorem 4.2 cont.

Substituting (4.20) into (4.19) yields

$$\sum_{j=1}^{m-1} \gamma_j \mathbf{b}_j + \delta \sum_{j=1}^m \lambda_j \mathbf{b}_j = \sum_{j=1}^{m-1} (\gamma_j + \delta \lambda_j) \mathbf{b}_j + \delta \lambda_m \mathbf{b}_m = \mathbf{0} \quad (4.21)$$
Because $\delta \neq 0$ and $\lambda_m \neq 0$, which is assumed by this theorem, it follows that $\delta \lambda_m \neq 0$, and (4.21) contradicts the fact that $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_m$ are linearly independent.
Thus $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{m-1}$, **a** are linearly independent and form a basis for E^m .

Define for each \mathbf{a}_i associated with a non-basic variable x_i :

$$\alpha_j = \mathbf{B}^{-1} \mathbf{a}_j \qquad (4.22)$$

Multiply the both sides of (4.22) by B yields

$$\mathbf{a}_{j} = \mathbf{B}\boldsymbol{\alpha}_{j} = (\mathbf{b}_{1}, \mathbf{b}_{2}, \dots, \mathbf{b}_{m}) \begin{pmatrix} \boldsymbol{\alpha}_{1,j} \\ \boldsymbol{\alpha}_{2,j} \\ \vdots \\ \vdots \\ \boldsymbol{\alpha}_{m,i} \end{pmatrix} = \sum_{i=1}^{m} \boldsymbol{\alpha}_{i,j} \mathbf{b}_{j}$$
(4.23)

So \mathbf{a}_i is described as a (unique) linear combination of columns in **B**.

a_i can be exchanged with any column **b**_i of **B** for which $\alpha_{i,j} \neq 0$ for form a new basis.

ebra of the simplex method

Determining the departing variable: minimum ratio test

From (4.13), we see the rate of change of \mathbf{x}_B w.r.t. x_j , which is the entering variable

$$\frac{\partial \mathbf{x}_B}{\partial x_j} = -\mathbf{B}^{-1}\mathbf{a}_j = -\boldsymbol{\alpha}_j$$
 (4.24)

 \mathbf{x}_B will change according to a_i , while \mathbf{x}_B is non-negative:

$$\begin{aligned} \mathbf{x}_B &= \mathbf{B}^{-1}\mathbf{b} + x_j(\mathbf{B}^{-1}\mathbf{a}_j) = \mathbf{B}^{-1}\mathbf{b} - x_j\alpha_j & (4.25) \\ \mathbf{x}_B &= \mathbf{B}^{-1}\mathbf{b} - x_j\alpha_j \geq \mathbf{0} & (4.26) \end{aligned}$$

Now let

$$\mathbf{B}^{-1}\mathbf{b} = \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \vdots \\ \beta_m \end{pmatrix}$$
(4.27)

jebra of the simplex method

Determining the departing variable: minimum ratio test, cont.

From (4.26) (4.27)

$$\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \vdots \\ \beta_m \end{pmatrix} - x_j \begin{pmatrix} \boldsymbol{\alpha}_{1,j} \\ \boldsymbol{\alpha}_{2,j} \\ \vdots \\ \vdots \\ \boldsymbol{\alpha}_{m,j} \end{pmatrix} \ge 0 \qquad (4.28)$$

An upper bound on x_i can be found as

$$x_j \le \min \left\{ rac{eta_i}{oldsymbol{lpha}_{i,j}} : oldsymbol{lpha}_{i,j} > 0
ight\}$$
 (4.29)

- The basic variable x_k that causing the minimum upper bound of x_j (when $x_k = 0$) is the *departing variable*.
- *x_k* surely satisfy the requirement that after *x_k* and *x_j* are exchanged, *B* should still be a basis, because *α_{k,j}* > 0.

Overview gebra of the simplex method

Optimality conditions and directions

Let the current basic feasible solution be:

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{pmatrix} \ge \mathbf{0}$$
(4.30)

When x_i increases, as shown by (4.13), \mathbf{x}_B changes according to:

$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} + x_j(-\mathbf{B}^{-1}\mathbf{a}_j) = \mathbf{B}^{-1}\mathbf{b} + x_j(-\alpha_j)$$
(4.31)

When x_j increases, \mathbf{x}_N changes according to:

$$x_N = \mathbf{0} + x_j \mathbf{e}_j = \mathbf{0} + x_j \begin{pmatrix} 0 \\ 0 \\ \cdot \\ \cdot \\ 1 \\ \cdot \\ \cdot \\ 0 \end{pmatrix}$$
 (4.32)

where 1 in \mathbf{e}_i in the *j*th position.

Overview Igebra of the simplex method

Optimality conditions and directions, cont.

As
$$x_j$$
 is increased, the solution $\mathbf{x} = \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix}$ is moving in the direction

$$\mathbf{d} = \begin{pmatrix} -\boldsymbol{\alpha}_j \\ \mathbf{e}_j \end{pmatrix}$$
(4.33)

Now consider cd, where c is the gradient of the objective function

$$\mathbf{cd} = (\mathbf{c}_B \mathbf{c}_N) \begin{pmatrix} -\boldsymbol{\alpha}_j \\ \mathbf{e}_j \end{pmatrix}$$

= $\mathbf{c}_B \boldsymbol{\alpha}_j + \mathbf{c}_N \mathbf{e}_j = -\mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j + c_j = -z_j + c_j = -(z_j - c_j)$ (4.34)

- $-(z_j c_j) > 0$ since that is the way x_j is chosen.
- $\mathbf{cd} = -(z_j c_j) > 0$ implies that the angle between **c** and **d** is acute.
- It also proves that the new basic solution has a larger objective value than the previous basic solution. (moving to an extreme point closer to optimal).

Checking for an unbounded objective

When examining the minimum ratio test on α_j , if we find that $\alpha_{i,j} \leq 0$, for all *i*, then x_j can be increased indefinitely.

The objective function can be increased indefinitely with x_j by the points (solutions) defined as follows:

$$\begin{pmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{pmatrix} + x_j \begin{pmatrix} -\boldsymbol{\alpha}_j \\ \mathbf{e}_j \end{pmatrix}$$
(4.35)

Note that these points form a ray whose end point is (

is
$$\begin{pmatrix} \mathbf{B}^{-1}\mathbf{b}\\ \mathbf{0} \end{pmatrix}$$
.

ebra of the simplex methoo

Example, algebra of the Simplex method.

maximize $z = 2x_1 + 3x_2$

subject to

This problem can be summarized as follows:

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} 4 \\ 18 \\ 10 \end{pmatrix}$$
$$\mathbf{c} = (2 \ 3 \ 0 \ 0 \ 0)$$

ebra of the simplex method

Example, cont. starting Simplex method

Always chose the starting basis matrix $\mathbf{B} = \mathbf{I}$

$$\mathbf{B} = (\mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}$$
$$\mathbf{x}_{B} = \begin{pmatrix} x_{B,1} \\ x_{B,2} \\ x_{B,3} \end{pmatrix} = \begin{pmatrix} x_{3} \\ x_{4} \\ x_{5} \end{pmatrix}$$

Solving z and \mathbf{x}_B in terms of x_N :

$$\begin{array}{rcrcrc} z & = & 2x_1 + 3x_2 \\ x_3 & = & 4 - x_1 + x_2 \\ x_4 & = & 18 - 2x_1 - x_2 \\ x_3 & = & 10 - x_2 \end{array}$$

Starting solution is obtained by setting the nonbasic variables equal to zero

$$z = 0$$

$$\mathbf{x}_{B} = \begin{pmatrix} x_{B,1} \\ x_{B,2} \\ x_{B,3} \end{pmatrix} = \begin{pmatrix} x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 4 \\ 18 \\ 10 \end{pmatrix}$$

$$\mathbf{x}_{N} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Choosing the entering variable

 $\partial z/\partial x_2 = 3$ (maximal). $\partial z/\partial x_1 = 2$. We choose x_2 as the entering variable. By the way, the current basic solution is not optimal.

Choosing the departing variables

Entering x₂

As x_2 is increased, we must ensure that x_3 and x_4 and x_5 remain nonnegative. By (4.25)(4.26),

$$\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} + x_{2}(-\mathbf{B}^{-1}\mathbf{a}_{2}) = \begin{pmatrix} 4\\18\\10 \end{pmatrix} - x_{2} \begin{pmatrix} -2\\1\\1 \end{pmatrix} \ge 0$$

 x_2 needs to satisfy the most restrictive upper bound $x_2 \le 10$ due to x_5 . x_5 is the *departing variable*.

Pivot

The new canonically representation of *z* and \mathbf{x}_B is are formed using $x_2 = 10 - x_5$ to eliminate x_2 ; i.e., to represent the basic variables x_2 , x_3 and x_4 by the non-basic variables x_1 and x_5 .

$$z = 2x_1 + 3(10 - x_5) = 30 + 2x_1 - 3x_5$$

$$x_2 = 4 - x_1 + 2(10 - x_5) = 24 - x_1 - 2x_1$$

$$x_4 = 18 - 2x_1 - (10 - x_5) = 8 - 2x_1 + x_5$$

$$x_2 = 10 - x_5$$

Overview Algebra of the simplex method

The new current basic solution and basis matrix:

$$z = 30$$

$$\mathbf{x}_B = \begin{pmatrix} x_{B,1} \\ x_{B_2} \\ x_{B_3} \end{pmatrix} = \begin{pmatrix} x_3 \\ x_4 \\ x_2 \end{pmatrix} = \begin{pmatrix} 24 \\ 8 \\ 10 \end{pmatrix}$$

$$\mathbf{x}_N = \begin{pmatrix} x_1 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\mathbf{B} = (\mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_2) = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$