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extreme point with an optimal solution. How to choose the first, next, and last (optimal)
extreme point?
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Basic idea of the simplex algorithm

Iteratively moving from one extreme point to an adjacent extreme point, until an
extreme point with an optimal solution. How to choose the first, next, and last (optimal)
extreme point? First point (Two phase method).




Representing z and x

The standard linear programming problem:

(LP) maximize z = ex subjectto A- x = b and x > 0.

A can be partitioned into A= (B:N) (4.1)

Based on A - x = b, we have:
B-xg+N-xy=Db (4.2)
xg+B'-N-xy=B~'-b (4.3
5=B1.b—B~"-N-xy (44)

The basic solution is:

—il
X = (’;B) = (B 0 b). IF xg = B~'b > 0, then x is a basic feasible solution.
n

The objective function z = ex can be written as:

Z = CXp + CnXpn (45)




Representing z and x cont.

Based on (4.4), xg can be described using xy:

z=cp(B~'b— B 'Nxy) + cyxy (4.6)
z=cgB 'b—(cgB " 'N—cpn)xy (4.7)

v

A canonical form of z and xg:

zZ = 05(871b = B71NXN) + CnXn (48)
xg=B"'b—B~'Nxy (4.9)

The current basic feasible solution and the objective function z are:

z=cgB~'b (4.10)

x= (:5) = (B;b) >0 (4.11)




Representing z and x cont.

Letting J denote the index set of the nonbasic variables. The canonical form (4.8-4.9)
can be written as:

z=cgB 'b-> (csgB'aj—¢)x (4.12)
jed

xg=B7'b—> (B 'a)x (4.13)
jed

The key idea of the simplex method is to move from an extreme point to an improving
adjacent extreme point by interchanging a column in B and a column in N. J




Checking for optimality

Based on (4.12) the rate of change of z with respect to the nonbasic variable x; is:

g;j = —(cgB'a; - ¢)) (4.14)

Thus, if % > 0, then increasing x; will increase z. (cgB~'a; — ¢;) is sometimes
referred to as reduced cost and is denoted by (z; — ¢).

A basic feasible solution (4.11) is optimal to (LP) if

372/ = —(zj—¢)=—(cgB~'a; —¢;) <0, forallje J

or, equivalently, if z; — ¢; = (cBB*1a,- —¢)>0,forallj=1...n

z; — ¢; = 0 for all basic variables. We can see that B~'a; = (0,0,---1,0---0)7; i.e,,
the only non-zero entry in B—1aj is the j entry, which is 1. Therefore,

cBB*1aj —C=C—C = 0.

Meanwhile, based on (4.12), we can directly see that % = 0 for all basic variables.

If z; — ¢; > O forall j € J, then the current basic solution is the unique optimal solution.

Otherwise, if z; — ¢; = 0 for some nonbasic variable x;, then there are alternative
optimal solutions.




Determining the entering and departing variables

A current non-basic variable x;, if ‘92 is positive, and g is maximal, then x; is chosen

as the entering variable.
This process of choosing the entering varlable is called the steepest-ascent rule.
However, if we choose another x; such that |s positive but not maximal, the simplex

method will also work.

x; will become a basic variable, and some current basic variable xx will become
non-basic. x is called the departing variable.

The departing variable x, must satisfy two requirements:

@ The columns of B, after ax is removed and a; is added, can form a basis, i.e. they
are linearly independent.

@ In order to make xx non-negative when x; is increased, x; needs to satisfy the
most restrict upper bound (minimum ratio test).




Determining the departing variable: to form a new basis

Theorem (4.1)

LetB = (by, by, ..., bm) be a basis for E™, and leta € E™, a # 0. Then a can be
written uniquely as a linear combination ofby, by, ..., bm.

Proof.

Because B = (by, by, ..., bp) is a basis for E™, then a can be written as a linear
combination of (b1, by, ..., bm). We need to show that this linear combination is
unique. Suppose a can be represented as two different linear combinations of B:

m
a=> X\bjwhere \; € E', forallj=1,...,m
j=1
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Theorem (4.1)
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Proof.
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combination of (b1, by, ..., bm). We need to show that this linear combination is
unique. Suppose a can be represented as two different linear combinations of B:

m
a=> X\bjwhere \; € E', forallj=1,...,m (4.15)

J=1
m

a=> ujbj,where y; € E', forallj=1,...,m (4.16)
j=1

m
Subtracting (4.16) from(4.15) yields 0 = Z(A/ — w;)j» which represents 0 as a linear
j=1
combination of columns in B where some coefficient is not 0, which is impossible since
the columns in B are linearly independent. So we know that a can be written uniquely
as a linear combination of by, by, ..., bm. O




Theorem (4.2)

LetB = (bq, by, ..., bm) be a basis for E™, and leta € E™, a # 0 be represented by
a— Zj”; 1 Ajb;. Without loss of generality, suppose Am # 0. Thenby, by, ..., by_1, @
form a basis for E™.

We simply need to show that by, by, ..., b, _1,a are linearly independent. By
contradiction, suppose they are not. There exist 1, 72, ... Ym—1, 0 € E', which are
not all zero such that
m—1
> b +sa=0 (4.19).
j=1
If 6 = 0, then some ~;, for 1 < j < m — 1, is non-zero, and Z/’"g1 7bj = 0. Itis
impossible since by, b, ..., b,_ are linearly independent. So we know that § = 0.
We have
m
a=> \b (4.20)
j=1
Proof continues . .. O




Overview

Determining the departing variable, cont.

Proof of Theorem 4.2 cont.
Substituting (4.20) into (4.19) yields

m—1 m m—1

D b+ 6> A= (vj+ 6\)bj + 6Ambm = 0 (4.21)

j=1 j=1 j=1
Because 6 # 0 and A\, # 0, which is assumed by this theorem, it follows that 6\, # 0,
and (4.21) contradicts the fact that by, bo, ..., by are linearly independent.
Thus by, by, ..., by,_1, a are linearly independent and form a basis for E™. O

Define for each a; associated with a non-basic variable x;:
aj = B—1aj (4.22)
Multiply the both sides of (4.22) by B yields
O J
ag’j

a = BO(I' = (b1 ybo, o bm) = 27;1 Ot,'ﬁl'b/' (4.23)

Qm,j
So a; is described as a (unique) linear combination of columns in B.
a; can be exchanged with any column b; of B for which «; ; # 0 for form a new basis.




Determining the departing variable: minimum ratio test

From (4.13), we see the rate of change of xg w.r.t. x;, which is the entering variable

ox —
TX? =-B 1a/- = —qj (424)

xp will change according to &;, while X is non-negative:

xg =B 'b+ xi(B~'a;)) =B~ 'b — xjo; (4.25)
xg =B~'b — xja; > 0 (4.26)




Determining the departing variable: minimum ratio test, cont.

From (4.26) (4.27)

B aqj
B2 ag
l-x| | >0 (4.28)
Bm (e 7]
An upper bound on x; can be found as
X; < minimum P tajj>0 (4.29)
a,yl
@ The basic variable xi that causing the minimum upper bound of x; (when x,x = 0)
is the departing variable.
@ x surely satisfy the requirement that after xx and x; are exchanged, B should siill
be a basis, because ca ; > 0.




Optimality conditions and directions

Let the current basic feasible solution be:

—()-(3)0 e

When x; increases, as shown by (4.13), xg changes according to:

xg = B~'b+ x(—B~'a)) = B~'b + x;(—ov)) (4.31)

When X; increases, x, changes according to:

(4.32)

xN:0+x/ej:0+xj

where 1 in e; in the j? position.



Optimality conditions and directions, cont.

As x; is increased, the solution x = (:5) is moving in the direction

= (*e‘j?‘f) (4.33)

Now consider cd, where ¢ is the gradient of the objective function

cd = (cgcy) (;o.éj)
/)
= Cpaj +Cn€j = chB”aj +C=—-2z+¢= 7(2,‘ — Cj) (4.34)

@ —(z — ¢) > 0 since that is the way Xx; is chosen.
@ cd = —(z — ¢;) > 0 implies that the angle between ¢ and d is acute.

@ It also proves that the new basic solution has a larger objective value than the
previous basic solution. (moving to an extreme point closer to optimal).




Checking for an unbounded objective

When examining the minimum ratio test on «;, if we find that «; ; < 0, for all /, then x;
can be increased indefinitely. J

The objective function can be increased indefinitely with x; by the points (solutions)

defined as follows:
B~bY | (~ (4.35)
0 1 e/- .

—1
Note that these points form a ray whose end point is (B 0 b).




Example, algebra of the Simplex method.

maximize z = 2xy + 3xo

subject to
X1 — 2Xo + X3 = 4
2X1 + Xo + X4 e 18
Xo + X5 = 10
X1, X2, X3, X4, X5 > 0

This problem can be summarized as follows:
1 -2

100
A = 2 1010
0 1001

W
Il
o
oo™
\_/




Example, cont. starting Simplex method

Always chose the starting basis matrix B = |

100
B =(as,as,as)= |01 0] =1
001

XB,1 X3
Xg= | XB2 | = | X4
XB,3 X5




Solving z and xg in terms of xy:

= 2x1 + 3x2
X3 = 4-x1+tXx
X4 = 18 — 2x1 — Xo
X3 = 10—X2

x
@©
Il

XB,1 X3 4
X2 | = | X4 | = 18
X513 X5 10

Choosing the entering variable

Xy

Il
~
o o
N

y

0z/0xo = 3 (maximal).

0z/0xy = 2.
We choose x, as the entering variable. By the way, the current basic solution is not
optimal.




Choosing the departing variables

As xp is increased, we must ensure that x3 and x4 and x5 remain nonnegative. By

(4.25)(4.26),

4 -2
xg =B7'b + x2(-B'az) = (18) — X2 (1 ) >0
10 1

Xo needs to satisfy the most restrictive upper bound xo < 10 due to xs.
X5 is the departing variable. J

The new canonically representation of z and xg is are formed using x = 10 — x5 to
eliminate x; i.e., to represent the basic variables xo, X3 and x4 by the non-basic
variables xy and xs.

z= 2x1 +3(10 — x5) = 30 + 2x1 — 3x5

3= 4—x1+2(10—x5) =24 — xy — 2X5

X4 = 18—2X1—(10—X5):8—2X1+X5

Xo= 10— x5




The new current basic solution and basis matrix:

z = 30
XB,1 X3 24
XB = XB, = | Xa] = 8
XB, Xo 10
_ X1\ _ 0
w = ()=
B = (ag,ag,a)=( 0 1 1
0 1




	Outline
	Main Talk
	Overview
	Algebra of the simplex method


