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Overview

Topics

(i) Unique optimal solution, alternative optimal solutions, and unbounded objective.

(ii) If a finite optimal solution exists, then an extreme-point optimal solution exists.

(iii) Each extreme-point solution is a basic feasible solution of the linear constraint set:
A · x = b, x ≥ 0.

Basic idea of the simplex algorithm

Iteratively moving from one extreme point to an adjacent extreme point, until an
extreme point with an optimal solution. How to choose the first, next, and last (optimal)
extreme point? First point (Two phase method).

Subramani Linear Programming



Overview
Algebra of the simplex method

Overview

Topics

(i) Unique optimal solution, alternative optimal solutions, and unbounded objective.

(ii) If a finite optimal solution exists, then an extreme-point optimal solution exists.

(iii) Each extreme-point solution is a basic feasible solution of the linear constraint set:
A · x = b, x ≥ 0.

Basic idea of the simplex algorithm

Iteratively moving from one extreme point to an adjacent extreme point, until an
extreme point with an optimal solution. How to choose the first, next, and last (optimal)
extreme point? First point (Two phase method).

Subramani Linear Programming



Overview
Algebra of the simplex method

Overview

Topics

(i) Unique optimal solution, alternative optimal solutions, and unbounded objective.

(ii) If a finite optimal solution exists, then an extreme-point optimal solution exists.

(iii) Each extreme-point solution is a basic feasible solution of the linear constraint set:
A · x = b, x ≥ 0.

Basic idea of the simplex algorithm

Iteratively moving from one extreme point to an adjacent extreme point, until an
extreme point with an optimal solution. How to choose the first, next, and last (optimal)
extreme point? First point (Two phase method).

Subramani Linear Programming



Overview
Algebra of the simplex method

Overview

Topics

(i) Unique optimal solution, alternative optimal solutions, and unbounded objective.

(ii) If a finite optimal solution exists, then an extreme-point optimal solution exists.

(iii) Each extreme-point solution is a basic feasible solution of the linear constraint set:
A · x = b, x ≥ 0.

Basic idea of the simplex algorithm

Iteratively moving from one extreme point to an adjacent extreme point, until an
extreme point with an optimal solution. How to choose the first, next, and last (optimal)
extreme point? First point (Two phase method).

Subramani Linear Programming



Overview
Algebra of the simplex method

Overview

Topics

(i) Unique optimal solution, alternative optimal solutions, and unbounded objective.

(ii) If a finite optimal solution exists, then an extreme-point optimal solution exists.

(iii) Each extreme-point solution is a basic feasible solution of the linear constraint set:
A · x = b, x ≥ 0.

Basic idea of the simplex algorithm

Iteratively moving from one extreme point to an adjacent extreme point, until an
extreme point with an optimal solution. How to choose the first, next, and last (optimal)
extreme point?

First point (Two phase method).

Subramani Linear Programming



Overview
Algebra of the simplex method

Overview

Topics

(i) Unique optimal solution, alternative optimal solutions, and unbounded objective.

(ii) If a finite optimal solution exists, then an extreme-point optimal solution exists.

(iii) Each extreme-point solution is a basic feasible solution of the linear constraint set:
A · x = b, x ≥ 0.

Basic idea of the simplex algorithm

Iteratively moving from one extreme point to an adjacent extreme point, until an
extreme point with an optimal solution. How to choose the first, next, and last (optimal)
extreme point? First point (Two phase method).

Subramani Linear Programming



Overview
Algebra of the simplex method

Representing z and x

The standard linear programming problem:

(LP) maximize z = cx subject to A · x = b and x ≥ 0.

A can be partitioned into A = (B : N) (4.1)

Based on A · x = b, we have:

B · xB + N · xN = b (4.2)
xB + B−1 · N · xN = B−1 · b (4.3)
xB = B−1 · b− B−1 · N · xN (4.4)

The basic solution is:

x =

(
xB
xn

)
=

(
B−1b

0

)
. IF xB = B−1b ≥ 0, then x is a basic feasible solution.

The objective function z = cx can be written as:

z = cBxB + cNxN (4.5)
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Representing z and x cont.

Based on (4.4), xB can be described using xN :

z = cB(B−1b− B−1NxN) + cNxN (4.6)

z = cBB−1b− (cBB−1N− cN)xN (4.7)

A canonical form of z and xB:

z = cB(B−1b− B−1NxN) + cNxN (4.8)

xB = B−1b− B−1NxN (4.9)

The current basic feasible solution and the objective function z are:

z = cBB−1b (4.10)

x =

(
xB
xN

)
=

(
B−1b

0

)
≥ 0 (4.11)
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Representing z and x cont.

Letting J denote the index set of the nonbasic variables. The canonical form (4.8-4.9)
can be written as:

z = cBB−1b−
∑
j∈J

(cBB−1aj − cj )xj (4.12)

xB = B−1b−
∑
j∈J

(B−1aj)xj (4.13)

The key idea of the simplex method is to move from an extreme point to an improving
adjacent extreme point by interchanging a column in B and a column in N.
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Checking for optimality

Based on (4.12) the rate of change of z with respect to the nonbasic variable xj is:

∂z
∂xj

= −(cBB−1aj − cj ) (4.14)

Thus, if ∂z
∂xj

> 0, then increasing xj will increase z. (cBB−1aj − cj ) is sometimes

referred to as reduced cost and is denoted by (zj − cj ).

A basic feasible solution (4.11) is optimal to (LP) if
∂z
∂xj

= −(zj − cj ) = −(cBB−1aj − cj ) ≤ 0, for all j ∈ J

or, equivalently, if zj − cj = (cBB−1aj − cj ) ≥ 0, for all j = 1 . . . n

zj − cj = 0 for all basic variables. We can see that B−1aj = (0, 0, · · · 1, 0 · · · 0)T ; i.e.,
the only non-zero entry in B−1aj is the j th entry, which is 1. Therefore,
cBB−1aj − cj = cj − cj = 0.
Meanwhile, based on (4.12), we can directly see that ∂z

∂xj
= 0 for all basic variables.

If zj − cj > 0 for all j ∈ J, then the current basic solution is the unique optimal solution.
Otherwise, if zj − cj = 0 for some nonbasic variable xj , then there are alternative
optimal solutions.
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Determining the entering and departing variables

A current non-basic variable xj , if ∂z
∂xj

is positive, and ∂z
∂xj

is maximal, then xj is chosen

as the entering variable.
This process of choosing the entering variable is called the steepest-ascent rule.
However, if we choose another xj such that ∂z

∂xj
is positive but not maximal, the simplex

method will also work.

xj will become a basic variable, and some current basic variable xk will become
non-basic. xk is called the departing variable.

The departing variable xk must satisfy two requirements:

The columns of B, after ak is removed and aj is added, can form a basis, i.e. they
are linearly independent.

In order to make xk non-negative when xj is increased, xj needs to satisfy the
most restrict upper bound (minimum ratio test).
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Determining the departing variable: to form a new basis

Theorem (4.1)

Let B = (b1, b2, ..., bm) be a basis for Em, and let a ∈ Em, a 6= 0. Then a can be
written uniquely as a linear combination of b1, b2, ..., bm.

Proof.

Because B = (b1, b2, ..., bm) is a basis for Em, then a can be written as a linear
combination of (b1, b2, ..., bm). We need to show that this linear combination is
unique. Suppose a can be represented as two different linear combinations of B:

a =
m∑

j=1

λj bj ,where λj ∈ E1, for all j = 1, . . . ,m

(4.15)

a =
m∑

j=1

µj bj ,where µj ∈ E1, for all j = 1, . . . ,m (4.16)

Subtracting (4.16) from(4.15) yields 0 =
m∑

j=1

(λj − µj )j, which represents 0 as a linear

combination of columns in B where some coefficient is not 0, which is impossible since
the columns in B are linearly independent. So we know that a can be written uniquely
as a linear combination of b1, b2, ..., bm.
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Another theorem

Theorem (4.2)

Let B = (b1, b2, ..., bm) be a basis for Em, and let a ∈ Em, a 6= 0 be represented by
a =

∑m
j=1 λj bj . Without loss of generality, suppose λm 6= 0. Then b1, b2, ..., bm−1, a

form a basis for Em.

Proof.

We simply need to show that b1,b2, . . . ,bm−1, a are linearly independent. By
contradiction, suppose they are not. There exist γ1, γ2, . . . γm−1, δ ∈ E1, which are
not all zero such that

m−1∑
j=1

γj bj + δa = 0 (4.19).

If δ = 0, then some γj , for 1 ≤ j ≤ m − 1, is non-zero, and
∑m−1

j=1 γj bj = 0. It is
impossible since b1,b2, . . . ,bm−1 are linearly independent. So we know that δ = 0.
We have

a =
m∑

j=1

λj bj (4.20)

Proof continues . . .
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Determining the departing variable, cont.

Proof of Theorem 4.2 cont.

Substituting (4.20) into (4.19) yields
m−1∑
j=1

γj bj + δ
m∑

j=1

λj bj =

m−1∑
j=1

(γj + δλj )bj + δλmbm = 0 (4.21)

Because δ 6= 0 and λm 6= 0, which is assumed by this theorem, it follows that δλm 6= 0,
and (4.21) contradicts the fact that b1, b2, . . . , bm are linearly independent.
Thus b1, b2, . . . , bm−1, a are linearly independent and form a basis for Em.

Define for each aj associated with a non-basic variable xj :
αj = B−1aj (4.22)

Multiply the both sides of (4.22) by B yields

aj = Bαj = (b1,b2, . . . ,bm)


α1,j
α2,j
·
·
·

αm,j

 =
∑m

i=1 αi,j bj (4.23)

So aj is described as a (unique) linear combination of columns in B.
aj can be exchanged with any column bi of B for which αi,j 6= 0 for form a new basis.
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Determining the departing variable: minimum ratio test

From (4.13), we see the rate of change of xB w.r.t. xj , which is the entering variable

∂xB
∂xj

= −B−1aj = −αj (4.24)

xB will change according to aj , while xB is non-negative:

xB = B−1b + xj (B−1aj ) = B−1b− xjαj (4.25)
xB = B−1b− xjαj ≥ 0 (4.26)

Now let

B−1b = β =


β1
β2
·
·
·
βm

 (4.27)
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Determining the departing variable: minimum ratio test, cont.

From (4.26) (4.27) 
β1
β2
·
·
·
βm

− xj


α1,j
α2,j
·
·
·

αm,j

 ≥ 0 (4.28)

An upper bound on xj can be found as

xj ≤ minimum

{
βi

αi,j
: αi,j > 0

}
(4.29)

The basic variable xk that causing the minimum upper bound of xj (when xk = 0)
is the departing variable.

xk surely satisfy the requirement that after xk and xj are exchanged, B should still
be a basis, because αk,j > 0.
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Optimality conditions and directions

Let the current basic feasible solution be:

x =

(
xB
xN

)
=

(
B−1b

0

)
≥ 0 (4.30)

When xj increases, as shown by (4.13), xB changes according to:

xB = B−1b + xj (−B−1aj ) = B−1b + xj (−αj ) (4.31)

When xj increases, xN changes according to:

xN = 0 + xj ej = 0 + xj



0
0
·
·
·
1
·
·
·
0


(4.32)

where 1 in ej in the j th position.
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Optimality conditions and directions, cont.

As xj is increased, the solution x =

(
xB
xN

)
is moving in the direction

d =

(
−αj
ej

)
(4.33)

Now consider cd, where c is the gradient of the objective function

cd = (cBcN)

(
−αj
ej

)
= cBαj + cNej = −cBB−1aj + cj = −zj + cj = −(zj − cj ) (4.34)

−(zj − cj ) > 0 since that is the way xj is chosen.

cd = −(zj − cj ) > 0 implies that the angle between c and d is acute.

It also proves that the new basic solution has a larger objective value than the
previous basic solution. (moving to an extreme point closer to optimal).
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Checking for an unbounded objective

When examining the minimum ratio test on αj , if we find that αi,j ≤ 0, for all i , then xj
can be increased indefinitely.

The objective function can be increased indefinitely with xj by the points (solutions)
defined as follows: (

B−1b
0

)
+ xj

(
−αj
ej

)
(4.35)

Note that these points form a ray whose end point is
(

B−1b
0

)
.
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Example, algebra of the Simplex method.

maximize z = 2x1 + 3x2

subject to

x1 − 2x2 + x3 = 4
2x1 + x2 + x4 = 18

x2 + x5 = 10
x1, x2, x3, x4, x5 ≥ 0

This problem can be summarized as follows:

A =

1 − 2 1 0 0
2 1 0 1 0
0 1 0 0 1


B =

 4
18
10


c = (2 3 0 0 0)
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Example, cont. starting Simplex method

Always chose the starting basis matrix B = I

B = (a3, a4, a5) =

1 0 0
0 1 0
0 0 1

 = I

xB =

xB,1
xB,2
xB,3

 =

x3
x4
x5


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Solving z and xB in terms of xN :

z = 2x1 + 3x2
x3 = 4− x1 + x2
x4 = 18− 2x1 − x2
x3 = 10− x2

Starting solution is obtained by setting the nonbasic variables equal to zero

z = 0

xB =

xB,1
xB,2
xB,3

 =

x3
x4
x5

 =

 4
18
10


xN =

(
0
0

)

Choosing the entering variable

∂z/∂x2 = 3 (maximal).
∂z/∂x1 = 2.
We choose x2 as the entering variable. By the way, the current basic solution is not
optimal.
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Choosing the departing variables

Entering x2

As x2 is increased, we must ensure that x3 and x4 and x5 remain nonnegative. By
(4.25)(4.26),

xB = B−1b + x2(−B−1a2) =

 4
18
10

− x2

−2
1
1

 ≥ 0

x2 needs to satisfy the most restrictive upper bound x2 ≤ 10 due to x5.
x5 is the departing variable.

Pivot

The new canonically representation of z and xB is are formed using x2 = 10− x5 to
eliminate x2; i.e., to represent the basic variables x2, x3 and x4 by the non-basic
variables x1 and x5.

z = 2x1 + 3(10− x5) = 30 + 2x1 − 3x5
x3 = 4− x1 + 2(10− x5) = 24− x1 − 2x5
x4 = 18− 2x1 − (10− x5) = 8− 2x1 + x5
x2 = 10− x5
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The new current basic solution and basis matrix:

z = 30

xB =

xB,1
xB2
xB3

 =

x3
x4
x2

 =

24
8

10


xN =

(
x1
x5

)
=

(
0
0

)
B = (a3, a4, a2) =

 1 0 -2
0 1 1
0 0 1


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