First Order Logic - Satisfiability and Validity

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

6 February, 13 February 2013

Outline

Satisfiability and Validity

Outline

Satisfiability and Validity

2 The Inference Rule Method

Outline

- Satisfiability and Validity
- 2 The Inference Rule Method

3 The Semantic Argument Method

Definition

Given a FOL formula F, the satisfiability problem is concerned with the following question:

Definition

Given a FOL formula F, the satisfiability problem is concerned with the following question: Is there some interpretation I, such that $I \models F$?

Definition

Given a FOL formula F, the satisfiability problem is concerned with the following question: Is there some interpretation I, such that $I \models F$?

Given a FOL formula *F*, the validity problem is concerned with the following question:

Definition

Given a FOL formula F, the satisfiability problem is concerned with the following question: Is there some interpretation I, such that $I \models F$? Given a FOL formula F, the validity problem is concerned with the following question: Is it the case that for all interpretations I, $I \models F$?

Example

From "All humans are mortal",

Example

From "All humans are mortal", and "Socrates is human",

Example

From "All humans are mortal", and "Socrates is human", we wish to conclude that

Example

From "All humans are mortal", and "Socrates is human", we wish to conclude that "Socrates is mortal."

Example

From "All humans are mortal", and "Socrates is human", we wish to conclude that "Socrates is mortal." We therefore need rules to reason about predicate expressions.

Example

From "All humans are mortal", and "Socrates is human", we wish to conclude that "Socrates is mortal." We therefore need rules to reason about predicate expressions. Symbolically,

$$[(\forall x)(H(x) \to M(x)) \land H(s)] \to M(s)$$

Example

From "All humans are mortal", and "Socrates is human", we wish to conclude that "Socrates is mortal." We therefore need rules to reason about predicate expressions. Symbolically,

$$[(\forall x)(H(x)\to M(x))\land H(s)]\to M(s)$$

Note

All the rules of propositional logic work; however, two points need to be made:

Example

From "All humans are mortal", and "Socrates is human", we wish to conclude that "Socrates is mortal." We therefore need rules to reason about predicate expressions. Symbolically,

$$[(\forall x)(H(x)\to M(x))\land H(s)]\to M(s)$$

Note

All the rules of propositional logic work; however, two points need to be made:

(i) A single atom in a predicate expression includes the quantifier.

Example

From "All humans are mortal", and "Socrates is human", we wish to conclude that "Socrates is mortal." We therefore need rules to reason about predicate expressions. Symbolically,

$$[(\forall x)(H(x)\to M(x))\land H(s)]\to M(s)$$

Note

All the rules of propositional logic work; however, two points need to be made:

(i) A single atom in a predicate expression includes the quantifier. For instance,

$$[((\forall x)P(x) \to (\forall x)Q(x)) \land (\forall x)P(x)] \to (\forall x)Q(x)$$

is a valid argument in predicate logic.

Example

From "All humans are mortal", and "Socrates is human", we wish to conclude that "Socrates is mortal." We therefore need rules to reason about predicate expressions. Symbolically,

$$[(\forall x)(H(x)\to M(x))\land H(s)]\to M(s)$$

Note

All the rules of propositional logic work; however, two points need to be made:

(i) A single atom in a predicate expression includes the quantifier. For instance,

$$[((\forall x)P(x) \to (\forall x)Q(x)) \land (\forall x)P(x)] \to (\forall x)Q(x)$$

is a valid argument in predicate logic.

(ii) Propositional rules are not sufficient. For instance, you cannot use propositional rules to conclude validity in the Socrates example.

Details

(i) From $(\forall x)P(x)$, you can conclude P(t), where t is any constant or variable.

- (i) From $(\forall x)P(x)$, you can conclude P(t), where t is any constant or variable.
- (ii) Rule is abbreviated as u.i.

- (i) From $(\forall x)P(x)$, you can conclude P(t), where t is any constant or variable.
- (ii) Rule is abbreviated as u.i.
- (iii) If t is a variable, it must not fall within the scope of a quantifier for t.

- (i) From $(\forall x)P(x)$, you can conclude P(t), where t is any constant or variable.
- (ii) Rule is abbreviated as u.i.
- (iii) If t is a variable, it must not fall within the scope of a quantifier for t. For instance, from (∀x)(∃y)P(x, y), you cannot conclude (∃y)P(y, y). (Domain of integers).

Details

- (i) From $(\forall x)P(x)$, you can conclude P(t), where t is any constant or variable.
- (ii) Rule is abbreviated as u.i.
- (iii) If t is a variable, it must not fall within the scope of a quantifier for t. For instance, from (∀x)(∃y)P(x, y), you cannot conclude (∃y)P(y, y). (Domain of integers).

Example

Let us prove that the following argument is valid, using ui.

$$[(\forall x)[H(x) \to M(x)] \land H(s)] \to M(s)$$

r	റ	

Proof.

(i)
$$(\forall x)[H(x) \rightarrow M(x)]$$
 hypothesis.

Proof.

- (i) $(\forall x)[H(x) \rightarrow M(x)]$ hypothesis.
- (ii) $H(s) \rightarrow M(s)$ (i), ui.

Proof.

- (i) $(\forall x)[H(x) \rightarrow M(x)]$ hypothesis.
- (ii) $H(s) \rightarrow M(s)$ (i), ui.
- (iii) H(s) hypothesis.

Proof.

- (i) $(\forall x)[H(x) \rightarrow M(x)]$ hypothesis.
- (ii) $H(s) \rightarrow M(s)$ (i), ui.
- (iii) H(s) hypothesis.
- (iv) M(s) (ii), (iii), Modus Ponens.

Proof.

Consider the following proof sequence:

- (i) $(\forall x)[H(x) \rightarrow M(x)]$ hypothesis.
- (ii) $H(s) \rightarrow M(s)$ (i), ui.
- (iii) H(s) hypothesis.
- (iv) M(s) (ii), (iii), Modus Ponens.

Example

Prove that the following argument is valid.

$$[(\forall x)[P(x) \to R(x)] \land (R(y))'] \to (P(y))'$$

Details

(i) From $(\exists x)P(x)$, you can conclude P(a), where a is a constant symbol not used previously in the proof sequence.

- (i) From (∃x)P(x), you can conclude P(a), where a is a constant symbol not used previously in the proof sequence.
- (ii) Rule is abbreviated as e.i.

- (i) From $(\exists x)P(x)$, you can conclude P(a), where a is a constant symbol not used previously in the proof sequence.
- (ii) Rule is abbreviated as e.i.
- (iii) Must be the first rule that introduces a.

Details

- (i) From $(\exists x)P(x)$, you can conclude P(a), where a is a constant symbol not used previously in the proof sequence.
- (ii) Rule is abbreviated as e.i.
- (iii) Must be the first rule that introduces a.

Example

Show that $[(\forall x)[P(x) \to Q(x)] \land (\exists y)P(y)] \to (\exists y)Q(y)$ is valid.

Details

- (i) From $(\exists x)P(x)$, you can conclude P(a), where a is a constant symbol not used previously in the proof sequence.
- (ii) Rule is abbreviated as e.i.
- (iii) Must be the first rule that introduces a.

Example

Details

- (i) From $(\exists x)P(x)$, you can conclude P(a), where a is a constant symbol not used previously in the proof sequence.
- (ii) Rule is abbreviated as e.i.
- (iii) Must be the first rule that introduces a.

Example

Show that $[(\forall x)[P(x) \to Q(x)] \land (\exists y)P(y)] \to (\exists y)Q(y)$ is valid. Consider the following proof sequence.

(i) $(\exists y)P(y)$ hypothesis.

Details

- (i) From $(\exists x)P(x)$, you can conclude P(a), where a is a constant symbol not used previously in the proof sequence.
- (ii) Rule is abbreviated as e.i.
- (iii) Must be the first rule that introduces a.

Example

- (i) $(\exists y)P(y)$ hypothesis.
- (ii) P(a) (i), e.i.

Details

- (i) From $(\exists x)P(x)$, you can conclude P(a), where a is a constant symbol not used previously in the proof sequence.
- (ii) Rule is abbreviated as e.i.
- (iii) Must be the first rule that introduces a.

Example

- (i) $(\exists y)P(y)$ hypothesis.
- (ii) P(a) (i), e.i.
- (iii) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.

Details

- (i) From (∃x)P(x), you can conclude P(a), where a is a constant symbol not used previously in the proof sequence.
- (ii) Rule is abbreviated as e.i.
- (iii) Must be the first rule that introduces a.

Example

- (i) $(\exists y)P(y)$ hypothesis.
- (ii) P(a) (i), e.i.
- (iii) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (iv) $P(a) \rightarrow Q(a)$ (iii), ui.

Details

- (i) From $(\exists x)P(x)$, you can conclude P(a), where a is a constant symbol not used previously in the proof sequence.
- (ii) Rule is abbreviated as e.i.
- (iii) Must be the first rule that introduces a.

Example

- (i) $(\exists y)P(y)$ hypothesis.
- (ii) P(a) (i), e.i.
- (iii) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (iv) $P(a) \rightarrow Q(a)$ (iii), ui.
- (v) Q(a) (ii), (iv), Modus Ponens.

Details

- (i) From $(\exists x)P(x)$, you can conclude P(a), where a is a constant symbol not used previously in the proof sequence.
- (ii) Rule is abbreviated as e.i.
- (iii) Must be the first rule that introduces a.

Example

Show that $[(\forall x)[P(x) \to Q(x)] \land (\exists y)P(y)] \to (\exists y)Q(y)$ is valid. Consider the following proof sequence.

- (i) $(\exists y)P(y)$ hypothesis.
- (ii) P(a) (i), e.i.
- (iii) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (iv) $P(a) \rightarrow Q(a)$ (iii), ui.
- (v) Q(a) (ii), (iv), Modus Ponens.

Note

Steps (i)-(ii) and (iii)-(iv) cannot be interchanged.

Details

(i) From P(x), you can conclude $(\forall x)P(x)$.

- (i) From P(x), you can conclude $(\forall x)P(x)$.
- (ii) Rule is abbreviated as u.g.

- (i) From P(x), you can conclude $(\forall x)P(x)$.
- (ii) Rule is abbreviated as u.g.
- (iii) P(x) has not been deduced from a hypothesis in which x is a free variable.

- (i) From P(x), you can conclude $(\forall x)P(x)$.
- (ii) Rule is abbreviated as u.g.
- (iii) P(x) has not been deduced from a hypothesis in which x is a free variable. Also, P(x) has not been deduced using e.i.

Details

- (i) From P(x), you can conclude $(\forall x)P(x)$.
- (ii) Rule is abbreviated as u.g.
- (iii) P(x) has not been deduced from a hypothesis in which x is a free variable. Also, P(x) has not been deduced using e.i.

Example

Show that the following argument is valid.

$$[(\forall x)[P(x) \to Q(x)] \land (\forall x)P(x)] \to (\forall x)Q(x).$$

Proof

(i)
$$(\forall x)[P(x) \rightarrow Q(x)]$$
 hypothesis.

Proof

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.

Proof

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.

Proof

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.

Proof

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.
- (v) Q(x) (ii), (iv) Modus Ponens.

Proof

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.
- (v) Q(x) (ii), (iv) Modus Ponens.
- (vi) $(\forall x)Q(x)$ (v), u.g. (Neither restriction has been violated.)

Proof

Consider the following proof sequence:

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.
- (v) Q(x) (ii), (iv) Modus Ponens.
- (vi) $(\forall x)Q(x)$ (v), u.g. (Neither restriction has been violated.)

Proof

Consider the following proof sequence:

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.
- (v) Q(x) (ii), (iv) Modus Ponens.
- (vi) $(\forall x)Q(x)$ (v), u.g. (Neither restriction has been violated.)

Incorrect usage of UG

(i) P(x) hypothesis.

Proof

Consider the following proof sequence:

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.
- (v) Q(x) (ii), (iv) Modus Ponens.
- (vi) $(\forall x)Q(x)$ (v), u.g. (Neither restriction has been violated.)

- (i) P(x) hypothesis.
- (ii) $(\forall x)P(x)$ (i), u.g.

Proof

Consider the following proof sequence:

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.
- (v) Q(x) (ii), (iv) Modus Ponens.
- (vi) $(\forall x)Q(x)$ (v), u.g. (Neither restriction has been violated.)

- (i) P(x) hypothesis.
- (ii) $(\forall x)P(x)$ (i), u.g. (Free variable rule).

Proof

Consider the following proof sequence:

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.
- (v) Q(x) (ii), (iv) Modus Ponens.
- (vi) $(\forall x)Q(x)$ (v), u.g. (Neither restriction has been violated.)

- (i) P(x) hypothesis.
- (ii) $(\forall x)P(x)$ (i), u.g. (Free variable rule).

Proof

Consider the following proof sequence:

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.
- (v) Q(x) (ii), (iv) Modus Ponens.
- (vi) $(\forall x)Q(x)$ (v), u.g. (Neither restriction has been violated.)

Incorrect usage of UG

(i) $(\forall x)(\exists y)Q(x,y)$ hypothesis.

- (i) P(x) hypothesis.
- (ii) $(\forall x)P(x)$ (i), u.g. (Free variable rule).

Proof

Consider the following proof sequence:

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.
- (v) Q(x) (ii), (iv) Modus Ponens.
- (vi) $(\forall x)Q(x)$ (v), u.g. (Neither restriction has been violated.)

- (i) P(x) hypothesis.
- (ii) $(\forall x)P(x)$ (i), u.g. (Free variable rule).

- (i) $(\forall x)(\exists y)Q(x, y)$ hypothesis.
- (ii) $(\exists y) Q(x, y)$ (i), ui.

Proof

Consider the following proof sequence:

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.
- (v) Q(x) (ii), (iv) Modus Ponens.
- (vi) $(\forall x)Q(x)$ (v), u.g. (Neither restriction has been violated.)

- (i) P(x) hypothesis.
- (ii) $(\forall x)P(x)$ (i), u.g. (Free variable rule).

- (i) $(\forall x)(\exists y)Q(x, y)$ hypothesis.
- (ii) $(\exists y) Q(x, y)$ (i), ui.
- (iii) Q(x, a) (ii), e.i.

Proof

Consider the following proof sequence:

- (i) $(\forall x)[P(x) \rightarrow Q(x)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x)$ (i), ui.
- (iii) $(\forall x)P(x)$ hypothesis.
- (iv) P(x) (iii), ui.
- (v) Q(x) (ii), (iv) Modus Ponens.
- (vi) $(\forall x)Q(x)$ (v), u.g. (Neither restriction has been violated.)

- (i) P(x) hypothesis.
- (ii) $(\forall x)P(x)$ (i), u.g. (Free variable rule).

- (i) $(\forall x)(\exists y)Q(x, y)$ hypothesis.
- (ii) $(\exists y)Q(x,y)$ (i), ui.
- (iii) Q(x, a) (ii), e.i.
- (iv) $(\forall x)Q(x,a)$ (iii), u.g. (Cannot use u.g., if ei is used before in sequence).

Details

(i) From P(x) or P(a), you can conclude $(\exists x)P(x)$.

- (i) From P(x) or P(a), you can conclude $(\exists x)P(x)$.
- (ii) Rule is abbreviated as e.g.

- (i) From P(x) or P(a), you can conclude $(\exists x)P(x)$.
- (ii) Rule is abbreviated as e.g.
- (iii) To go from P(a) to $(\exists x)P(x)$, x must not appear in P(a).

- (i) From P(x) or P(a), you can conclude $(\exists x)P(x)$.
- (ii) Rule is abbreviated as e.g.
- (iii) To go from P(a) to $(\exists x)P(x)$, x must not appear in P(a). Otherwise, we could derive $(\exists y)Q(y,y)$ from Q(a,y)!

- (i) From P(x) or P(a), you can conclude $(\exists x)P(x)$.
- (ii) Rule is abbreviated as e.g.
- (iii) To go from P(a) to $(\exists x)P(x)$, x must not appear in P(a). Otherwise, we could derive $(\exists y)Q(y,y)$ from Q(a,y)! The argument $Q(a,y) \rightarrow (\exists y)Q(y,y)$ is simply not valid. (Why?)

Details

- (i) From P(x) or P(a), you can conclude $(\exists x)P(x)$.
- (ii) Rule is abbreviated as e.g.
- (iii) To go from P(a) to $(\exists x)P(x)$, x must not appear in P(a). Otherwise, we could derive $(\exists y)Q(y,y)$ from Q(a,y)! The argument $Q(a,y) \rightarrow (\exists y)Q(y,y)$ is simply not valid. (Why?)

Main points of predicate rules

Details

- (i) From P(x) or P(a), you can conclude $(\exists x)P(x)$.
- (ii) Rule is abbreviated as e.g.
- (iii) To go from P(a) to $(\exists x)P(x)$, x must not appear in P(a). Otherwise, we could derive $(\exists y)Q(y,y)$ from Q(a,y)! The argument $Q(a,y) \rightarrow (\exists y)Q(y,y)$ is simply not valid. (Why?)

Main points of predicate rules

(i) Strip off quantifiers.

Details

- (i) From P(x) or P(a), you can conclude $(\exists x)P(x)$.
- (ii) Rule is abbreviated as e.g.
- (iii) To go from P(a) to $(\exists x)P(x)$, x must not appear in P(a). Otherwise, we could derive $(\exists y)Q(y,y)$ from Q(a,y)! The argument $Q(a,y) \rightarrow (\exists y)Q(y,y)$ is simply not valid. (Why?)

Main points of predicate rules

- (i) Strip off quantifiers.
- (ii) Work with separate wffs.

Details

- (i) From P(x) or P(a), you can conclude $(\exists x)P(x)$.
- (ii) Rule is abbreviated as e.g.
- (iii) To go from P(a) to $(\exists x)P(x)$, x must not appear in P(a). Otherwise, we could derive $(\exists y)Q(y,y)$ from Q(a,y)! The argument $Q(a,y) \rightarrow (\exists y)Q(y,y)$ is simply not valid. (Why?)

Main points of predicate rules

- (i) Strip off quantifiers.
- (ii) Work with separate wffs.
- (iii) Insert quantifiers as necessary.

Some more examples

Example

Show that the following arguments are valid:

Proof

Proof

(i)
$$(\forall x)[P(x) \land Q(x)]$$
 hypothesis.

Proof

- (i) $(\forall x)[P(x) \land Q(x)]$ hypothesis.
- (ii) $P(x) \wedge Q(x)$ (i), ui.

Proof

- (i) $(\forall x)[P(x) \land Q(x)]$ hypothesis.
- (ii) $P(x) \wedge Q(x)$ (i), ui.
- (iii) P(x) (ii), Simplification.

Proof

- (i) $(\forall x)[P(x) \land Q(x)]$ hypothesis.
- (ii) $P(x) \wedge Q(x)$ (i), ui.
- (iii) P(x) (ii), Simplification.
- (iv) $(\forall x)P(x)$ (iii), u.g.

Proof

- (i) $(\forall x)[P(x) \land Q(x)]$ hypothesis.
- (ii) $P(x) \wedge Q(x)$ (i), ui.
- (iii) P(x) (ii), Simplification.
- (iv) $(\forall x)P(x)$ (iii), u.g.
- (v) Q(x) (ii), Simplification.

Proof

- (i) $(\forall x)[P(x) \land Q(x)]$ hypothesis.
- (ii) $P(x) \wedge Q(x)$ (i), ui.
- (iii) P(x) (ii), Simplification.
- (iv) $(\forall x)P(x)$ (iii), u.g.
- (v) Q(x) (ii), Simplification.
- (vi) $(\forall x)Q(x)$ (v), u.g.

Proof

- (i) $(\forall x)[P(x) \land Q(x)]$ hypothesis.
- (ii) $P(x) \wedge Q(x)$ (i), ui.
- (iii) P(x) (ii), Simplification.
- (iv) $(\forall x)P(x)$ (iii), u.g.
- (v) Q(x) (ii), Simplification.
- (vi) $(\forall x)Q(x)$ (v), u.g.
- (vii) $(\forall x)P(x) \land (\forall x)Q(x)$ (iv), (vi), Conjunction.

Proof

Consider the following proof sequence:

- (i) $(\forall x)[P(x) \land Q(x)]$ hypothesis.
- (ii) $P(x) \wedge Q(x)$ (i), ui.
- (iii) P(x) (ii), Simplification.
- (iv) $(\forall x)P(x)$ (iii), u.g.
- (v) Q(x) (ii), Simplification.
- (vi) $(\forall x)Q(x)$ (v), u.g.
- (vii) $(\forall x)P(x) \land (\forall x)Q(x)$ (iv), (vi), Conjunction.

Note

Note that neither restriction has been violated in the u.g. steps.

Proof

Using the Deduction Method, rewrite the argument as:

$$[(\forall y)[P(x) \to Q(x,y)] \land P(x)] \to (\forall y)Q(x,y)$$

Proof

Using the Deduction Method, rewrite the argument as:

$$[(\forall y)[P(x) \to Q(x,y)] \land P(x)] \to (\forall y)Q(x,y)$$

(i)
$$(\forall y)[P(x) \rightarrow Q(x,y)]$$
 hypothesis.

Proof

Using the Deduction Method, rewrite the argument as:

$$[(\forall y)[P(x) \to Q(x,y)] \land P(x)] \to (\forall y)Q(x,y)$$

- (i) $(\forall y)[P(x) \rightarrow Q(x,y)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x, y)$ (i), ui.

Proof

Using the Deduction Method, rewrite the argument as:

$$[(\forall y)[P(x) \to Q(x,y)] \land P(x)] \to (\forall y)Q(x,y)$$

- (i) $(\forall y)[P(x) \rightarrow Q(x,y)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x, y)$ (i), ui.
- (iii) P(x) hypothesis.

Proof

Using the Deduction Method, rewrite the argument as:

$$[(\forall y)[P(x) \to Q(x,y)] \land P(x)] \to (\forall y)Q(x,y)$$

- (i) $(\forall y)[P(x) \rightarrow Q(x,y)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x, y)$ (i), ui.
- (iii) P(x) hypothesis.
- (iv) Q(x, y) (ii), (iii), Modus Ponens.

Proof

Using the Deduction Method, rewrite the argument as:

$$[(\forall y)[P(x) \to Q(x,y)] \land P(x)] \to (\forall y)Q(x,y)$$

- (i) $(\forall y)[P(x) \rightarrow Q(x,y)]$ hypothesis.
- (ii) $P(x) \rightarrow Q(x, y)$ (i), ui.
- (iii) P(x) hypothesis.
- (iv) Q(x, y) (ii), (iii), Modus Ponens.
- (v) $(\forall y)Q(x,y)$ (iv), u.g.

Proof

Proof

(i)
$$P(x) \rightarrow (\forall y)Q(x, y)$$
 hypothesis.

Proof

- (i) $P(x) \rightarrow (\forall y)Q(x, y)$ hypothesis.
- (ii) P(x) temporary hypothesis.

Proof

- (i) $P(x) \rightarrow (\forall y)Q(x, y)$ hypothesis.
- (ii) P(x) temporary hypothesis.
- (iii) $(\forall y)Q(x,y)$ (i), (ii), Modus Ponens.

Proof

- (i) $P(x) \rightarrow (\forall y)Q(x, y)$ hypothesis.
- (ii) P(x) temporary hypothesis.
- (iii) $(\forall y) Q(x, y)$ (i), (ii), Modus Ponens.
- (iv) Q(x, y) (iii), ui.

Proof

- (i) $P(x) \rightarrow (\forall y)Q(x, y)$ hypothesis.
- (ii) P(x) temporary hypothesis.
- (iii) $(\forall y)Q(x, y)$ (i), (ii), Modus Ponens.
- (iv) Q(x, y) (iii), ui.
- (v) $P(x) \rightarrow Q(x,y)$ temporary hypothesis discharged.

Proof

- (i) $P(x) \rightarrow (\forall y)Q(x, y)$ hypothesis.
- (ii) P(x) temporary hypothesis.
- (iii) $(\forall y) Q(x, y)$ (i), (ii), Modus Ponens.
- (iv) Q(x, y) (iii), ui.
- (v) $P(x) \rightarrow Q(x, y)$ temporary hypothesis discharged.
- (vi) $(\forall y)[P(x) \rightarrow Q(x,y)]$ (v), u.g.

Negation

Negation

(i) $[(\exists x)A(x)]' \Leftrightarrow (\forall x)[A(x)]'$.

Negation

- (i) $[(\exists x)A(x)]' \Leftrightarrow (\forall x)[A(x)]'$.
- (ii) $[(\forall x)A(x)]' \Leftrightarrow (\exists x)[A(x)]'$.

Negation

- (i) $[(\exists x)A(x)]' \Leftrightarrow (\forall x)[A(x)]'$.
- (ii) $[(\forall x)A(x)]' \Leftrightarrow (\exists x)[A(x)]'$.

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port.

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

$$[(\forall x)[M(x) \to S(x)] \land (\exists x)[M(x) \land P(x)]] \to (\exists x)[M(x) \land S(x) \land P(x)].$$

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

$$[(\forall x)[M(x) \to S(x)] \land (\exists x)[M(x) \land P(x)]] \to (\exists x)[M(x) \land S(x) \land P(x)].$$

Proof.

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

$$[(\forall x)[M(x) \to S(x)] \land (\exists x)[M(x) \land P(x)]] \to (\exists x)[M(x) \land S(x) \land P(x)].$$

Proof.

(i)
$$(\forall x)[M(x) \rightarrow S(x)]$$
 hypothesis.

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

$$[(\forall x)[M(x) \to S(x)] \land (\exists x)[M(x) \land P(x)]] \to (\exists x)[M(x) \land S(x) \land P(x)].$$

Proof.

- (i) $(\forall x)[M(x) \rightarrow S(x)]$ hypothesis.
- (ii) $(\exists x)[M(x) \land P(x)]$ hypothesis.

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

$$[(\forall x)[M(x) \to S(x)] \land (\exists x)[M(x) \land P(x)]] \to (\exists x)[M(x) \land S(x) \land P(x)].$$

Proof.

- (i) $(\forall x)[M(x) \rightarrow S(x)]$ hypothesis.
- (ii) $(\exists x)[M(x) \land P(x)]$ hypothesis.
- (iii) $M(a) \wedge P(a)$ (ii), ei.

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

$$[(\forall x)[M(x) \to S(x)] \land (\exists x)[M(x) \land P(x)]] \to (\exists x)[M(x) \land S(x) \land P(x)].$$

Proof.

- (i) $(\forall x)[M(x) \rightarrow S(x)]$ hypothesis.
- (ii) $(\exists x)[M(x) \land P(x)]$ hypothesis.
- (iii) $M(a) \wedge P(a)$ (ii), ei.
- (iv) $M(a) \rightarrow S(a)$ (i), ui.

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

$$[(\forall x)[M(x) \to S(x)] \land (\exists x)[M(x) \land P(x)]] \to (\exists x)[M(x) \land S(x) \land P(x)].$$

Proof.

- (i) $(\forall x)[M(x) \rightarrow S(x)]$ hypothesis.
- (ii) $(\exists x)[M(x) \land P(x)]$ hypothesis.
- (iii) $M(a) \wedge P(a)$ (ii), ei.
- (iv) $M(a) \rightarrow S(a)$ (i), ui.
- (v) M(a) (iii), Simplification.

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

$$[(\forall x)[M(x) \to S(x)] \land (\exists x)[M(x) \land P(x)]] \to (\exists x)[M(x) \land S(x) \land P(x)].$$

Proof.

- (i) $(\forall x)[M(x) \rightarrow S(x)]$ hypothesis.
- (ii) $(\exists x)[M(x) \land P(x)]$ hypothesis.
- (iii) $M(a) \wedge P(a)$ (ii), ei.
- (iv) $M(a) \rightarrow S(a)$ (i), ui.
- (v) M(a) (iii), Simplification.
- (vi) S(a) (iv), (v), Modus Ponens.

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

$$[(\forall x)[M(x) \to S(x)] \land (\exists x)[M(x) \land P(x)]] \to (\exists x)[M(x) \land S(x) \land P(x)].$$

Proof.

- (i) $(\forall x)[M(x) \rightarrow S(x)]$ hypothesis.
- (ii) $(\exists x)[M(x) \land P(x)]$ hypothesis.
- (iii) $M(a) \wedge P(a)$ (ii), ei.
- (iv) $M(a) \rightarrow S(a)$ (i), ui.
- (v) M(a) (iii), Simplification.
- (vi) S(a) (iv), (v), Modus Ponens.
- (vii) $M(a) \wedge P(a) \wedge S(a)$ (iii), (vi), Conjunction.

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

$$[(\forall x)[M(x) \to S(x)] \land (\exists x)[M(x) \land P(x)]] \to (\exists x)[M(x) \land S(x) \land P(x)].$$

Proof.

- (i) $(\forall x)[M(x) \rightarrow S(x)]$ hypothesis.
- (ii) $(\exists x)[M(x) \land P(x)]$ hypothesis.
- (iii) $M(a) \wedge P(a)$ (ii), ei.
- (iv) $M(a) \rightarrow S(a)$ (i), ui.
- (v) M(a) (iii), Simplification.
- (vi) S(a) (iv), (v), Modus Ponens.
- (vii) $M(a) \wedge P(a) \wedge S(a)$ (iii), (vi), Conjunction.
- (viii) $M(a) \wedge S(a) \wedge P(a)$ (vii), commutativity.

Example

Every microcomputer has a serial interface port. Some microcomputers have a parallel port. Therefore, some microcomputers have both a serial and a parallel port. Symbolically,

$$[(\forall x)[M(x) \to S(x)] \land (\exists x)[M(x) \land P(x)]] \to (\exists x)[M(x) \land S(x) \land P(x)].$$

Proof.

- (i) $(\forall x)[M(x) \rightarrow S(x)]$ hypothesis.
- (ii) $(\exists x)[M(x) \land P(x)]$ hypothesis.
- (iii) $M(a) \wedge P(a)$ (ii), ei.
- (iv) $M(a) \rightarrow S(a)$ (i), ui.
- (v) M(a) (iii), Simplification.
- (vi) S(a) (iv), (v), Modus Ponens.
- (vii) $M(a) \wedge P(a) \wedge S(a)$ (iii), (vi), Conjunction.
- (viii) $M(a) \wedge S(a) \wedge P(a)$ (vii), commutativity.
- (ix) $(\exists x)[M(x) \land S(x) \land P(x)]$ (viii), e.g.

Main Idea			

Main Idea

The principal proof technique is contradiction.

Main Idea

The principal proof technique is contradiction. In order to prove the validity of a formula F, we assume the existence of an interpretation I, such that $I \not\models F$.

Main Idea

The principal proof technique is contradiction. In order to prove the validity of a formula F, we assume the existence of an interpretation I, such that $I \not\models F$. Under this assumption, we construct the interpretation tree, by applying **proof rules**.

Main Idea

The principal proof technique is contradiction. In order to prove the validity of a formula F, we assume the existence of an interpretation I, such that $I \not\models F$. Under this assumption, we construct the interpretation tree, by applying **proof rules**. As inferences are drawn, the branches of the tree may close, because a contradiction (\bot) is derived.

Main Idea

The principal proof technique is contradiction. In order to prove the validity of a formula F, we assume the existence of an interpretation I, such that $I \not\models F$. Under this assumption, we construct the interpretation tree, by applying **proof rules**. As inferences are drawn, the branches of the tree may close, because a contradiction (\bot) is derived. If every branch is closed, F must be valid.

Main Idea

The principal proof technique is contradiction. In order to prove the validity of a formula F, we assume the existence of an interpretation I, such that $I \not\models F$. Under this assumption, we construct the interpretation tree, by applying **proof rules**. As inferences are drawn, the branches of the tree may close, because a contradiction (\bot) is derived. If every branch is closed, F must be valid. If there exists even one open branch, F is not valid.

Rules		

Rules		

Rules

(i) From $I \models (\forall x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \models F$, for some $v \in D_I$.

- (i) From $I \models (\forall x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \models F$, for some $v \in D_I$.
- (ii) From $I \not\models (\exists x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \not\models F$, for any $v \in D_I$.

- (i) From $I \models (\forall x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \models F$, for some $v \in D_I$.
- (ii) From $I \not\models (\exists x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \not\models F$, for any $v \in D_I$.
- (iii) From $I \models (\exists x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \models F$, for a fresh $v \in D_I$.

- (i) From $I \models (\forall x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \models F$, for some $v \in D_I$.
- (ii) From $I \not\models (\exists x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \not\models F$, for any $v \in D_I$.
- (iii) From $I \models (\exists x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \models F$, for a fresh $v \in D_I$.
- (iv) From $I \not\models (\forall x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \not\models F$, for a fresh $v \in D_I$.

- (i) From $I \models (\forall x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \models F$, for some $v \in D_I$.
- (ii) From $I \not\models (\exists x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \not\models F$, for any $v \in D_I$.
- (iii) From $I \models (\exists x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \models F$, for a fresh $v \in D_I$.
- (iv) From $I \not\models (\forall x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \not\models F$, for a fresh $v \in D_I$.
- (v) Contradiction -

- (i) From $I \models (\forall x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \models F$, for some $v \in D_I$.
- (ii) From $I \not\models (\exists x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \not\models F$, for any $v \in D_I$.
- (iii) From $I \models (\exists x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \models F$, for a fresh $v \in D_I$.
- (iv) From $I \not\models (\forall x) F$, you can deduce, $I \triangleleft \{x \mapsto v\} \not\models F$, for a fresh $v \in D_I$.
- (v) Contradiction A contradiction is obtained when two variants of the original interpretation I disagree on the truth value of an n-ary predicate p, for a given tuple of domain values.

Example

(i)
$$(\forall x) P(x) \rightarrow (\forall y) P(y)$$
.

Example

(i)
$$(\forall x) P(x) \rightarrow (\forall y) P(y)$$
.

(ii)
$$(\forall x) P(x) \rightarrow \neg(\exists x) \neg P(x)$$
.

Example

- (i) $(\forall x) P(x) \rightarrow (\forall y) P(y)$.
- (ii) $(\forall x) P(x) \rightarrow \neg(\exists x) \neg P(x)$.
- (iii) $P(a) \rightarrow (\exists x) P(x)$.