First Order Logic - Substitution and Normal Forms

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

13 February, 15 February 2013

Substitution

- Safe Substitution
- Schema Substitution

Substitution

- Safe Substitution
- Schema Substitution

Safe Substitution Schema Substitution

Substitution

Safe Substitution Schema Substitution

Main issue

The purpose of substitution in FOL is the same as in propositional logic, i.e., to facilitate theorem proving.

Safe Substitution Schema Substitution

Main issue

The purpose of substitution in FOL is the same as in propositional logic, i.e., to facilitate theorem proving. However, unlike propositional logic, substitution in FOL is complex and requires a lot of care.

Main issue

The purpose of substitution in FOL is the same as in propositional logic, i.e., to facilitate theorem proving. However, unlike propositional logic, substitution in FOL is complex and requires a lot of care.

Definition

Renaming the variable x to a fresh variable x' in the fomula Qx F[x] produces the equivalent formula Qx' F[x'], where x' is any variable that does not occur in F.

Main issue

The purpose of substitution in FOL is the same as in propositional logic, i.e., to facilitate theorem proving. However, unlike propositional logic, substitution in FOL is complex and requires a lot of care.

Definition

Renaming the variable x to a fresh variable x' in the fomula Qx F[x] produces the equivalent formula Qx' F[x'], where x' is any variable that does not occur in F.

Example

Rename the bound variable x to x' in: $F : P(x) \land (\forall x) Q(x, y)$.

Safe Substitution Schema Substitution

Fundamentals

Safe Substitution Schema Substitution

Fundamentals

Definition

Subramani First Order Logic

Safe Substitution Schema Substitution

Definition

A substitution is a map from FOL formulae to FOL formulae of the form:

Safe Substitution Schema Substitution

Definition

A substitution is a map from FOL formulae to FOL formulae of the form:

 $\sigma : \{F_1 \mapsto G_1, F_2 \mapsto G_2, \dots F_n \mapsto G_n\}.$

Safe Substitution Schema Substitution

Definition

A substitution is a map from FOL formulae to FOL formulae of the form:

$$\sigma : \{F_1 \mapsto G_1, F_2 \mapsto G_2, \dots F_n \mapsto G_n\}.$$

The replacements are simultaneous.

Definition

A substitution is a map from FOL formulae to FOL formulae of the form:

$$\sigma : \{F_1 \mapsto G_1, F_2 \mapsto G_2, \dots F_n \mapsto G_n\}.$$

The replacements are simultaneous. If both F_i and F_j are in in the domain of σ and F_i is a strict subformula of F_i , then replace F_i by G_i .

Definition

A substitution is a map from FOL formulae to FOL formulae of the form:

$$\sigma : \{F_1 \mapsto G_1, F_2 \mapsto G_2, \dots F_n \mapsto G_n\}.$$

The replacements are simultaneous. If both F_i and F_j are in in the domain of σ and F_i is a strict subformula of F_i , then replace F_i by G_i .

Example

Definition

A substitution is a map from FOL formulae to FOL formulae of the form:

$$\sigma : \{F_1 \mapsto G_1, F_2 \mapsto G_2, \dots F_n \mapsto G_n\}.$$

The replacements are simultaneous. If both F_i and F_j are in in the domain of σ and F_i is a strict subformula of F_i , then replace F_i by G_i .

Example

Perform the substitution σ : { $x \mapsto G(x), y \mapsto F(x), Q((F(y), x) \mapsto (\exists x) H(x, y)$ }, over the formula F : $(\forall x) P(x, y) \rightarrow Q(F(y), x)$.

Schema Substitution

Subramani First Order Logic

Safe Substitution Schema Substitution

Safe Substitution

Safe Substitution Schema Substitution

Issue

There exists a restricted form of substitution called Safe Substitution that preserves formula equivalence.

Safe Substitution Schema Substitution

Issue

There exists a restricted form of substitution called Safe Substitution that preserves formula equivalence.

Technique

Safe Substitution Schema Substitution

Issue

There exists a restricted form of substitution called Safe Substitution that preserves formula equivalence.

Technique

Consider a substitution σ of the form: $\{F_1 \mapsto G_1, F_2 \mapsto G_2, \dots F_n \mapsto G_n\}$.

There exists a restricted form of substitution called Safe Substitution that preserves formula equivalence.

Technique

Consider a substitution σ of the form: { $F_1 \mapsto G_1, F_2 \mapsto G_2, \ldots F_n \mapsto G_n$ }. Let $V_{\sigma} = \cup_i ((\text{free}(F_i) \cup \text{free}(G_i))).$

There exists a restricted form of substitution called Safe Substitution that preserves formula equivalence.

Technique

Consider a substitution σ of the form: { $F_1 \mapsto G_1, F_2 \mapsto G_2, \ldots F_n \mapsto G_n$ }. Let $V_{\sigma} = \cup_i ((\text{free}(F_i) \cup \text{free}(G_i))).$

There exists a restricted form of substitution called Safe Substitution that preserves formula equivalence.

Technique

Consider a substitution σ of the form: { $F_1 \mapsto G_1, F_2 \mapsto G_2, \ldots F_n \mapsto G_n$ }. Let $V_{\sigma} = \cup_i ((\text{free}(F_i) \cup \text{free}(G_i))).$

(i) For each quantified variable *x* in *F*, such that *x* ∈ *V_σ*, rename *x* to a fresh variable *x'* to produce *F'*.

There exists a restricted form of substitution called Safe Substitution that preserves formula equivalence.

Technique

Consider a substitution σ of the form: { $F_1 \mapsto G_1, F_2 \mapsto G_2, \ldots F_n \mapsto G_n$ }. Let $V_{\sigma} = \cup_i ((\text{free}(F_i) \cup \text{free}(G_i))).$

- (i) For each quantified variable *x* in *F*, such that *x* ∈ *V_σ*, rename *x* to a fresh variable *x'* to produce *F'*.
- (ii) Compute $F'\sigma$.

There exists a restricted form of substitution called Safe Substitution that preserves formula equivalence.

Technique

Consider a substitution σ of the form: { $F_1 \mapsto G_1, F_2 \mapsto G_2, \ldots F_n \mapsto G_n$ }. Let $V_{\sigma} = \cup_i ((\text{free}(F_i) \cup \text{free}(G_i))).$

- (i) For each quantified variable x in F, such that x ∈ V_σ, rename x to a fresh variable x' to produce F'.
- (ii) Compute $F'\sigma$.

Example

Given $F : (\forall x) P(x, y) \rightarrow Q(F(y), x)$ and $\sigma : \{x \mapsto G(x), y \mapsto F(x), Q(F(y), x) \mapsto (\exists x) H(x, y)\}$, perform the safe substitution $F\sigma$.

Safe Substitution Schema Substitution

Property of Safe Substitutions

Safe Substitution Schema Substitution

Property of Safe Substitutions

Proposition

Consider a substitution σ : { $F_1 \mapsto G_1, F_2 \mapsto G_2, \ldots F_n \mapsto G_n$ }, such that for each *i*, $F_i \Leftrightarrow G_i$.

Safe Substitution Schema Substitution

Property of Safe Substitutions

Proposition

Consider a substitution σ : { $F_1 \mapsto G_1, F_2 \mapsto G_2, \ldots, F_n \mapsto G_n$ }, such that for each *i*, $F_i \Leftrightarrow G_i$. Then, $F \Leftrightarrow F\sigma$, when $F\sigma$ is computed in a safe substitution.

Safe Substitution Schema Substitution

Schema Substitution

Safe Substitution Schema Substitution

Schema Substitution

Safe Substitution Schema Substitution

Schema Substitution

Main Idea

Safe Substitution Schema Substitution

Main Idea

Rather than painstakingly prove the validity of individual FOL formulae, prove the validity of a general "schema" and obtain the validity of a particular formula, using substitution!

Safe Substitution Schema Substitution

Main Idea

Rather than painstakingly prove the validity of individual FOL formulae, prove the validity of a general "schema" and obtain the validity of a particular formula, using substitution! Formula schema and formula substitutions provide the desired generality.

Safe Substitution Schema Substitution

Main Idea

Rather than painstakingly prove the validity of individual FOL formulae, prove the validity of a general "schema" and obtain the validity of a particular formula, using substitution! Formula schema and formula substitutions provide the desired generality. Typically, a schema has side conditions, which must be respected during a substitution.

Safe Substitution Schema Substitution

Main Idea

Rather than painstakingly prove the validity of individual FOL formulae, prove the validity of a general "schema" and obtain the validity of a particular formula, using substitution! Formula schema and formula substitutions provide the desired generality. Typically, a schema has side conditions, which must be respected during a substitution. For instance, suppose you want to prove the validity of $G : (\forall x)(\exists y)Q(x, y) \rightarrow (\neg(\exists x)\neg(\exists y)Q(x, y)).$
Safe Substitution Schema Substitution

Main Idea

Rather than painstakingly prove the validity of individual FOL formulae, prove the validity of a general "schema" and obtain the validity of a particular formula, using substitution! Formula schema and formula substitutions provide the desired generality. Typically, a schema has side conditions, which must be respected during a substitution. For instance, suppose you want to prove the validity of $G : (\forall x)(\exists y)Q(x, y) \rightarrow (\neg(\exists x)\neg(\exists y)Q(x, y))$. You first prove the validity of the schema:

Safe Substitution Schema Substitution

Main Idea

Rather than painstakingly prove the validity of individual FOL formulae, prove the validity of a general "schema" and obtain the validity of a particular formula, using substitution! Formula schema and formula substitutions provide the desired generality. Typically, a schema has side conditions, which must be respected during a substitution. For instance, suppose you want to prove the validity of $G : (\forall x)(\exists y)Q(x, y) \rightarrow (\neg(\exists x)\neg(\exists y)Q(x, y))$. You first prove the validity of the schema: $H : (\forall x) F \rightarrow (\neg(\exists x) \neg F)$.

Safe Substitution Schema Substitution

Main Idea

Rather than painstakingly prove the validity of individual FOL formulae, prove the validity of a general "schema" and obtain the validity of a particular formula, using substitution! Formula schema and formula substitutions provide the desired generality. Typically, a schema has side conditions, which must be respected during a substitution. For instance, suppose you want to prove the validity of $G : (\forall x)(\exists y)Q(x, y) \rightarrow (\neg(\exists x)\neg(\exists y)Q(x, y))$. You first prove the validity of the schema: $H : (\forall x) F \rightarrow (\neg(\exists x) \neg F)$. Then use the substitution $\sigma : \{F \mapsto (\exists y)Q(x, y)\}$.

Main Idea

Rather than painstakingly prove the validity of individual FOL formulae, prove the validity of a general "schema" and obtain the validity of a particular formula, using substitution! Formula schema and formula substitutions provide the desired generality. Typically, a schema has side conditions, which must be respected during a substitution. For instance, suppose you want to prove the validity of $G : (\forall x)(\exists y)Q(x, y) \rightarrow (\neg(\exists x)\neg(\exists y)Q(x, y))$. You first prove the validity of the schema: $H : (\forall x) F \rightarrow (\neg(\exists x) \neg F)$. Then use the substitution $\sigma : \{F \mapsto (\exists y)Q(x, y)\}$.

A formula schema *H* is said to be **valid**, if $H\sigma$ is valid, for every schema substitution σ that respects the side conditions of *H*.

Main Idea

Rather than painstakingly prove the validity of individual FOL formulae, prove the validity of a general "schema" and obtain the validity of a particular formula, using substitution! Formula schema and formula substitutions provide the desired generality. Typically, a schema has side conditions, which must be respected during a substitution. For instance, suppose you want to prove the validity of $G : (\forall x)(\exists y)Q(x, y) \rightarrow (\neg(\exists x)\neg(\exists y)Q(x, y))$. You first prove the validity of the schema: $H : (\forall x) F \rightarrow (\neg(\exists x) \neg F)$. Then use the substitution $\sigma : \{F \mapsto (\exists y)Q(x, y)\}$.

A formula schema *H* is said to be **valid**, if $H\sigma$ is valid, for every schema substitution σ that respects the side conditions of *H*. The key point is that the validity of the schema itself can be proved by the semantic argument method.

Safe Substitution Schema Substitutio

Example of proving schema validity

Substitution

Safe Substitution Schema Substitutio

Example of proving schema validity

Example

Prove the validity of

Safe Substitution
Schema Substitutio

Example of proving schema validity

Example

Prove the validity of

 $H : (\forall x) (F_1 \land F_2) \to (\forall x) F_1 \land F_2, \text{ provided } x \notin \text{free}(F_2)$

Application of schema substitution

Safe Substitution Schema Substitution

Application of schema substitution

Proposition

If H is a valid formula schema and σ is a substitution that respects H's side conditions, then H σ is also valid.

Substitution

Normal Forms

Types

Subramani First Order Logic

Normal Forms

Types

Subramani First Order Logic

Types			
(i) NNF.			
(ii) PNF.			
			J

Types	
(i) NNF.	
(ii) PNF.	
(iii) CNF.	

Substitution

Types	
(i) NNF.	
(ii) PNF.	
(iii) CNF.	
(iv) DNF.	

Technique

Technique

(i) $\neg(\forall x) F[x] \Leftrightarrow (\exists x) \neg F[x].$

(i) $\neg(\forall x) F[x] \Leftrightarrow (\exists x) \neg F[x].$

(ii)
$$\neg(\exists x) F[x] \Leftrightarrow (\forall x) \neg F[x].$$

(i)
$$\neg(\forall x) F[x] \Leftrightarrow (\exists x) \neg F[x].$$

(ii)
$$\neg(\exists x) F[x] \Leftrightarrow (\forall x) \neg F[x].$$

Example

Let
$$G$$
 : $(\forall x)((\exists y) \ P(x, y) \land P(x, z)) \rightarrow (\exists w) \ P(x, w).$

(i) $\neg(\forall x) F[x] \Leftrightarrow (\exists x) \neg F[x].$

(ii)
$$\neg(\exists x) F[x] \Leftrightarrow (\forall x) \neg F[x].$$

Example

Let G : $(\forall x)((\exists y) \ P(x, y) \land P(x, z)) \rightarrow (\exists w) \ P(x, w)$. Put G in NNF.

A formula is in Prenex Normal Form (PNF), if all of its quantifiers appear at the beginning of the formula

A formula is in Prenex Normal Form (PNF), if all of its quantifiers appear at the beginning of the formula (e.g. $Q_1 x_1 Q_2 x_2 \dots Q_n x_n F[x_1, x_2, \dots, x_n]$).

A formula is in Prenex Normal Form (PNF), if all of its quantifiers appear at the beginning of the formula (e.g. $Q_1 x_1 Q_2 x_2 \dots Q_n x_n F[x_1, x_2, \dots, x_n]$).

A formula is in Prenex Normal Form (PNF), if all of its quantifiers appear at the beginning of the formula (e.g. $Q_1 x_1 Q_2 x_2 \dots Q_n x_n F[x_1, x_2, \dots, x_n]$).

Conversion technique

(i) Convert F into NNF formula F_1 .

A formula is in Prenex Normal Form (PNF), if all of its quantifiers appear at the beginning of the formula (e.g. $Q_1 x_1 Q_2 x_2 \dots Q_n x_n F[x_1, x_2, \dots, x_n]$).

- (i) Convert F into NNF formula F_1 .
- (ii) Use renaming with fresh variables to ensure that each quantified variable has a different name.

A formula is in Prenex Normal Form (PNF), if all of its quantifiers appear at the beginning of the formula (e.g. $Q_1 x_1 Q_2 x_2 \dots Q_n x_n F[x_1, x_2, \dots, x_n]$).

- (i) Convert F into NNF formula F_1 .
- (ii) Use renaming with fresh variables to ensure that each quantified variable has a different name. Call the resultant formula F_2 .

A formula is in Prenex Normal Form (PNF), if all of its quantifiers appear at the beginning of the formula (e.g. $Q_1 x_1 Q_2 x_2 \dots Q_n x_n F[x_1, x_2, \dots, x_n]$).

- (i) Convert F into NNF formula F_1 .
- (ii) Use renaming with fresh variables to ensure that each quantified variable has a different name. Call the resultant formula F_2 .
- (iii) Remove all quantifiers from F_2 to produce a quantifier-free formula F_3 .

A formula is in Prenex Normal Form (PNF), if all of its quantifiers appear at the beginning of the formula (e.g. $Q_1 x_1 Q_2 x_2 \dots Q_n x_n F[x_1, x_2, \dots, x_n]$).

- (i) Convert F into NNF formula F_1 .
- (ii) Use renaming with fresh variables to ensure that each quantified variable has a different name. Call the resultant formula F_2 .
- (iii) Remove all quantifiers from F_2 to produce a quantifier-free formula F_3 .
- (iv) Add the quantifiers before F_3 to get a formula F_4 , respecting scope rules.

A formula is in Prenex Normal Form (PNF), if all of its quantifiers appear at the beginning of the formula (e.g. $Q_1 x_1 Q_2 x_2 \dots Q_n x_n F[x_1, x_2, \dots, x_n]$).

- (i) Convert F into NNF formula F_1 .
- (ii) Use renaming with fresh variables to ensure that each quantified variable has a different name. Call the resultant formula F_2 .
- (iii) Remove all quantifiers from F_2 to produce a quantifier-free formula F_3 .
- (iv) Add the quantifiers before F₃ to get a formula F₄, respecting scope rules. Let F₄ be Q₁x₁Q₂x₂...Q_nx_nF₃. If Q_j is in the scope of Q_i in F₁, then we must have i < j.</p>

A formula is in Prenex Normal Form (PNF), if all of its quantifiers appear at the beginning of the formula (e.g. $Q_1 x_1 Q_2 x_2 \dots Q_n x_n F[x_1, x_2, \dots, x_n]$).

Conversion technique

- (i) Convert F into NNF formula F_1 .
- (ii) Use renaming with fresh variables to ensure that each quantified variable has a different name. Call the resultant formula F_2 .
- (iii) Remove all quantifiers from F_2 to produce a quantifier-free formula F_3 .
- (iv) Add the quantifiers before F₃ to get a formula F₄, respecting scope rules. Let F₄ be Q₁x₁Q₂x₂...Q_nx_nF₃. If Q_j is in the scope of Q_i in F₁, then we must have i < j.</p>

Example

Convert the following formula to PNF:

 $F : (\forall x) [\neg((\exists y) (P(x,y) \land P(x,z))) \lor (\exists y) P(x,y)].$

Substitution

CNF and DNF
Substitution Normal Forms

CNF and DNF

Definition

Subramani First Order Logic

CNF and DNF

Definition

A formula is said to be in CNF (respectively DNF), if it is in PNF, and its quantifier-free subformula is in CNF (respectively DNF).