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Limitations of Propositional Logic

Propositional Logic has limited expressiveness. For instance, how would you capture
the assertion, “Property P is true of every positive number”? P1 ∧ P2 . . . P∞ is neither
compact nor useful.
First-order Logic (FOL) extends Propositional Logic (PL) with predicates, functions and
quantifiers.
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Syntax of FOL

Basics

(i) Predicates are used to describe properties of objects. e.g., P(x) could stand for
the property that x is divisible by 3.

(ii) The universal quantifier (∀x)P(x) indicates that property P holds for all x in some
domain.

(iii) The existential quantifier (∃x)P(x) indicates that property P holds for some x in
some domain.

(iv) A function is a mapping from the domain of interest to a range.

(v) Variables are used as placeholders (0-ary predicates).

(vi) Constants are used to represent values that do not change.

(vii) Terms, atom, literal, formula.
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(i) All parrots are ugly. (∀x)[P(x) → U(x)].

(ii) Some parrots are ugly. (∃x)[P(x) ∧ U(x)].

(iii) All dogs chase all rabbits. (∀x)[D(x) → (∀y)[R(y) → C(x, y)]].

(iv) Some dogs chase all rabbits.
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Note

Not an easy task! More than one result possible, depending on semantics of English
language (which is not unambiguous). “Hang him not, let him free” and “Hang him, not
let him free”!

Example

(i) All parrots are ugly. (∀x)[P(x) → U(x)].

(ii) Some parrots are ugly. (∃x)[P(x) ∧ U(x)].

(iii) All dogs chase all rabbits. (∀x)[D(x) → (∀y)[R(y) → C(x, y)]].

(iv) Some dogs chase all rabbits. (∃x)[D(x) ∧ (∀y)[R(y) → C(x, y)]].

Subramani First Order Logic



Motivation
Syntax

Semantics
Translation

Exercise

Exercise

Let S(x) denote “x is a student”, I(x) denote “x is intelligent” and M(x) denote “x likes
music”.

Subramani First Order Logic



Motivation
Syntax

Semantics
Translation

Exercise

Exercise

Let S(x) denote “x is a student”, I(x) denote “x is intelligent” and M(x) denote “x likes
music”. Give predicate wffs for:

(i) All students are intelligent.

(ii) Some intelligent students like music.

(iii) Only intelligent students like music.

Subramani First Order Logic



Motivation
Syntax

Semantics
Translation

Exercise

Exercise

Let S(x) denote “x is a student”, I(x) denote “x is intelligent” and M(x) denote “x likes
music”. Give predicate wffs for:

(i) All students are intelligent.

(ii) Some intelligent students like music.

(iii) Only intelligent students like music.

Solution

(i) (∀x)[S(x) → I(x)].

Subramani First Order Logic



Motivation
Syntax

Semantics
Translation

Exercise

Exercise

Let S(x) denote “x is a student”, I(x) denote “x is intelligent” and M(x) denote “x likes
music”. Give predicate wffs for:

(i) All students are intelligent.

(ii) Some intelligent students like music.

(iii) Only intelligent students like music.

Solution

(i) (∀x)[S(x) → I(x)].

(ii) (∃x)[S(x) ∧ I(x) ∧ M(x)].

Subramani First Order Logic



Motivation
Syntax

Semantics
Translation

Exercise

Exercise

Let S(x) denote “x is a student”, I(x) denote “x is intelligent” and M(x) denote “x likes
music”. Give predicate wffs for:

(i) All students are intelligent.

(ii) Some intelligent students like music.

(iii) Only intelligent students like music.

Solution

(i) (∀x)[S(x) → I(x)].

(ii) (∃x)[S(x) ∧ I(x) ∧ M(x)].

(iii) (∀x)[M(x) → [S(x) ∧ I(x)]].
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FOL in mathematics

Example

(i) The length of one side of a triangle is less than the sum of the lengths of the other
two sides.

(ii) Fermat’s last theorem.
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(i) As with propositional logic, a FOL formula evaluates to true or false.

(ii) Terms of a FOL formula evaluate to values from a specified domain.

(iii) A first order interpretation I, is a 2-tuple (DI , αI), where DI is a non-empty set
called the domain of interpretation and αI is an assignment function. The
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(i) F : x + y ≥ z → y ≥ z − x?
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(i) As with propositional logic, a FOL formula evaluates to true or false.

(ii) Terms of a FOL formula evaluate to values from a specified domain.

(iii) A first order interpretation I, is a 2-tuple (DI , αI), where DI is a non-empty set
called the domain of interpretation and αI is an assignment function. The
assignment function maps constants and variables in the expression to objects in
the domain, predicates in the domain to properties of objects in the domain, and
functions in the expression to functions over the domain, respecting arity.

Example

What is the truth-value of

(i) F : x + y ≥ z → y ≥ z − x?

(ii) G : (∀x) P(x, a)?

These questions are meaningless without the interpretation! Consider the following
interpretation for G: The domain is the set of natural numbers N = {0, 1, ...,}, P(x, y)
stands for x ≥ y and a is 0. Clearly, in this interpretation, the expression is true.
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Main Points

(i) As with propositional logic, a FOL formula evaluates to true or false.

(ii) Terms of a FOL formula evaluate to values from a specified domain.

(iii) A first order interpretation I, is a 2-tuple (DI , αI), where DI is a non-empty set
called the domain of interpretation and αI is an assignment function. The
assignment function maps constants and variables in the expression to objects in
the domain, predicates in the domain to properties of objects in the domain, and
functions in the expression to functions over the domain, respecting arity.

Example

What is the truth-value of

(i) F : x + y ≥ z → y ≥ z − x?

(ii) G : (∀x) P(x, a)?

These questions are meaningless without the interpretation! Consider the following
interpretation for G: The domain is the set of natural numbers N = {0, 1, ...,}, P(x, y)
stands for x ≥ y and a is 0. Clearly, in this interpretation, the expression is true. Can
you think of an interpretation in which G is false?
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Example

Consider the formula F : x + y > z → y > z − x . Is F true under the interpretation
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