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Introduction

Arrays

The theory of arrays, TA, describes the basic characteristic of an array: if value v is
written into position i of array a, then subsequently reading from position i of a should
return v .
The theory of arrays can be used to reason about programming languages which use
array structures.
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Theory of Arrays

Main points

The theory of arrays, TA, has signature:

ΣA : {·[·], ·〈·C〉,=}

where,

(i) a[i] (read) is a binary function: a[i] represents the value of array a at position i .

(ii) a〈i C v〉 (write) is a ternary function: a〈i C v〉 represents the modified array a, in
which position i has value v .

(iii) = is a binary predicate.
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Axiom set

The axiom set of TA is the following:

(A1.) The axioms of reflexivity, symmetry and transitivity of TE .

(A2.) (∀a)(∀i)(∀j) i = j → a[i] = a[j].

(A3.) (∀a)(∀i)(∀j) i = j → a〈i C v〉[j] = v .

(A4.) (∀a)(∀i)(∀j) i 6= j → a〈i C v〉[j] = a[j].
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Example

Are the following formulas TA-valid?

F : a[i] = e→ a〈i C e〉 = a

G : a[i] = e→ (∀j) a〈i C e〉[j] = a[j].
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Theory of arrays with equality axiomatized

Main points

TA is undecidable. However, the theory T =
A , in which the behavior of = on arrays is

axiomatized is decidable.
T =

A has the same signature as TA and one extra axiom, viz.,

(∀a)(∀b) ((∀i)a[i] = b[i])→ a = b.

Example

Let
F : a[i] = e→ a〈i C e〉 = a

Is F T =
A -valid?
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