First Order Theories - Arrays

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

March 8 2013

Subramani First Order Theories

Introduction Theory of Arrays

Introduction

Introduction Theory of Arrays

Introduction

Arrays

Subramani First Order Theories

Arrays

The theory of arrays, T_A ,

Arrays

The theory of arrays, T_A , describes the basic characteristic of an array:

Arrays

The theory of arrays, T_A , describes the basic characteristic of an array: if value v is written into position *i* of array *a*, then subsequently reading from position *i* of *a* should return *v*.

Arrays

The theory of arrays, T_A , describes the basic characteristic of an array: if value v is written into position *i* of array *a*, then subsequently reading from position *i* of *a* should return v.

The theory of arrays can be used to reason about programming languages which use array structures.

Introduction Theory of Arrays

Theory of Arrays

Introduction Theory of Arrays

Theory of Arrays

Main points

Subramani First Order Theories

Main points

The theory of arrays, T_A , has signature:

Main points

The theory of arrays, T_A , has signature:

 $\Sigma_A \ : \ \{\cdot[\cdot], \cdot \langle \cdot \lhd \rangle, =\}$

where,

Main points

The theory of arrays, T_A , has signature:

 $\Sigma_A \ : \ \{\cdot[\cdot], \cdot \langle \cdot \lhd \rangle, =\}$

where,

Main points

The theory of arrays, T_A , has signature:

$$\Sigma_A \ : \ \{\cdot[\cdot], \cdot \langle \cdot \lhd \rangle, = \}$$

where,

(i) a[i] (**read**) is a binary function: a[i] represents the value of array *a* at position *i*.

Main points

The theory of arrays, T_A , has signature:

$$\Sigma_A \ : \ \{\cdot[\cdot], \cdot \langle \cdot \lhd \rangle, = \}$$

where,

- (i) a[i] (**read**) is a binary function: a[i] represents the value of array *a* at position *i*.
- (ii) $a\langle i \triangleleft v \rangle$ (write) is a ternary function: $a\langle i \triangleleft v \rangle$ represents the modified array *a*, in which position *i* has value *v*.

Main points

The theory of arrays, T_A , has signature:

$$\Sigma_A \ : \ \{\cdot[\cdot], \cdot \langle \cdot \lhd \rangle, = \}$$

where,

- (i) a[i] (**read**) is a binary function: a[i] represents the value of array *a* at position *i*.
- (ii) $a\langle i \triangleleft v \rangle$ (write) is a ternary function: $a\langle i \triangleleft v \rangle$ represents the modified array *a*, in which position *i* has value *v*.
- (iii) = is a binary predicate.

Introduction Theory of Arrays

Axiom set of the Theory of Arrays

Axiom set

Subramani

Theory of Arrays

Axiom set of the Theory of Arrays

Axiom set

The axiom set of T_A is the following:

Theory of Arrays

Axiom set of the Theory of Arrays

Axiom set

The axiom set of T_A is the following:

Axiom set of the Theory of Arrays

Axiom set

The axiom set of T_A is the following:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E .

Axiom set of the Theory of Arrays

Axiom set

The axiom set of T_A is the following:

- (A1.) The axioms of reflexivity, symmetry and transitivity of T_E .
- $(\mathcal{A2.}) \ (\forall a)(\forall i)(\forall j) \ i = j \rightarrow a[i] = a[j].$

Axiom set of the Theory of Arrays

Axiom set

The axiom set of T_A is the following:

- (A1.) The axioms of reflexivity, symmetry and transitivity of T_E .
- $(\mathcal{A2.}) \ (\forall a)(\forall i)(\forall j) \ i = j \rightarrow a[i] = a[j].$
- $(\mathcal{A}3.) \ (\forall a)(\forall i)(\forall j) \ i = j \to a \langle i \lhd v \rangle [j] = v.$

Axiom set of the Theory of Arrays

Axiom set

The axiom set of T_A is the following:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E .

- $(\mathcal{A2.}) \ (\forall a)(\forall i)(\forall j) \ i = j \rightarrow a[i] = a[j].$
- $(\mathcal{A}3.) \ (\forall a)(\forall i)(\forall j) \ i = j \to a \langle i \lhd v \rangle [j] = v.$
- $(\mathcal{A}4.) \ (\forall a)(\forall i)(\forall j) \ i \neq j \rightarrow a \langle i \lhd v \rangle[j] = a[j].$

Introduction Theory of Arrays

Example

Subramani First Order Theories

Example

Are the following formulas T_A -valid?

Example

Are the following formulas T_A -valid?

$$F : a[i] = e \rightarrow a \langle i \triangleleft e \rangle = a$$

Example

Example

Are the following formulas T_A -valid?

$$F : a[i] = e \rightarrow a \langle i \triangleleft e \rangle = a$$

$$G: a[i] = e \to (\forall j) \ a \langle i \lhd e \rangle [j] = a[j].$$

Introduction Theory of Arrays

Theory of arrays with equality axiomatized

heory of Arrays

Theory of arrays with equality axiomatized

Main points

Subramani First Order Theories

heory of Arrays

Theory of arrays with equality axiomatized

Main points

 T_A is undecidable.

heory of Arrays

Theory of arrays with equality axiomatized

Main points

 T_A is undecidable. However, the theory $T_A^=$, in which the behavior of = on arrays is axiomatized is decidable.

heory of Arrays

Theory of arrays with equality axiomatized

Main points

 T_A is undecidable. However, the theory $T_A^{=}$, in which the behavior of = on arrays is axiomatized is decidable.

 $T_A^{=}$ has the same signature as T_A

heory of Arrays

Theory of arrays with equality axiomatized

Main points

 T_A is undecidable. However, the theory $T_A^=$, in which the behavior of = on arrays is axiomatized is decidable.

 $T_A^=$ has the same signature as T_A and one extra axiom, viz.,

Theory of arrays with equality axiomatized

Main points

 T_A is undecidable. However, the theory $T_A^=$, in which the behavior of = on arrays is axiomatized is decidable.

 $T_A^{=}$ has the same signature as T_A and one extra axiom, viz.,

 $(\forall a)(\forall b) ((\forall i)a[i] = b[i]) \rightarrow a = b.$

Theory of arrays with equality axiomatized

Main points

 T_A is undecidable. However, the theory $T_A^=$, in which the behavior of = on arrays is axiomatized is decidable.

 $T_A^{=}$ has the same signature as T_A and one extra axiom, viz.,

 $(\forall a)(\forall b) ((\forall i)a[i] = b[i]) \rightarrow a = b.$

Example

Let

Theory of arrays with equality axiomatized

Main points

 T_A is undecidable. However, the theory $T_A^=$, in which the behavior of = on arrays is axiomatized is decidable.

 $T_A^{=}$ has the same signature as T_A and one extra axiom, viz.,

 $(\forall a)(\forall b) ((\forall i)a[i] = b[i]) \rightarrow a = b.$

Example

Let

$$F : a[i] = e \rightarrow a \langle i \triangleleft e \rangle = a$$

Theory of arrays with equality axiomatized

Main points

 T_A is undecidable. However, the theory $T_A^{=}$, in which the behavior of = on arrays is axiomatized is decidable.

 $T_A^=$ has the same signature as T_A and one extra axiom, viz.,

 $(\forall a)(\forall b) ((\forall i)a[i] = b[i]) \rightarrow a = b.$

Example

Let

$$F : a[i] = e \rightarrow a \langle i \triangleleft e \rangle = a$$

Is $F T_A^=$ -valid?