First Order Theories - Basic Concepts

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

22 February 2013

Motivation Main concepts

Motivation

Motivation Main concepts

Motivation

Why study theories?

Subramani First Order Theories

(i) To reason about software in particular application domains,

(i) To reason about software in particular application domains, e.g., numbers, lists, arrays.

- (i) To reason about software in particular application domains, e.g., numbers, lists, arrays.
- (ii) First-order theories formalize the above structures to enable reasoning.

- (i) To reason about software in particular application domains, e.g., numbers, lists, arrays.
- (ii) First-order theories formalize the above structures to enable reasoning.
- (iii) Fragments of theories may be efficiently decidable.

Motivation in concepts

Main concepts

A first order theory T is defined by the following components:

A first order theory T is defined by the following components:

(i) Its signature $\boldsymbol{\Sigma},$ which is a set of constant, function and predicate symbols.

A first order theory T is defined by the following components:

- (i) Its signature Σ , which is a set of constant, function and predicate symbols.
- (ii) Its set of axioms A, which is a set of closed FOL formulae in which only the constant, function and predicate symbols of Σ appear.

A first order theory T is defined by the following components:

- (i) Its signature Σ , which is a set of constant, function and predicate symbols.
- (ii) Its set of axioms A, which is a set of closed FOL formulae in which only the constant, function and predicate symbols of Σ appear.

Note

A Σ -formula is constructed from constant, function and predicate symbols of Σ , as well as variables, logical connectives and quantifiers.

A first order theory T is defined by the following components:

- (i) Its signature Σ , which is a set of constant, function and predicate symbols.
- (ii) Its set of axioms A, which is a set of closed FOL formulae in which only the constant, function and predicate symbols of Σ appear.

Note

A Σ -formula is constructed from constant, function and predicate symbols of Σ , as well as variables, logical connectives and quantifiers. The formulas themselves are syntactic identities bereft of meaning.

A first order theory T is defined by the following components:

- (i) Its signature Σ , which is a set of constant, function and predicate symbols.
- (ii) Its set of axioms A, which is a set of closed FOL formulae in which only the constant, function and predicate symbols of Σ appear.

Note

A Σ -formula is constructed from constant, function and predicate symbols of Σ , as well as variables, logical connectives and quantifiers. The formulas themselves are syntactic identities bereft of meaning. Meaning is provided by the axiom set A.

Motivation in concepts

Fundamentals

A Σ -formula *F* is valid in the theory *T*, or *T*-valid,

A Σ -formula *F* is valid in the theory *T*, or *T*-valid, if every interpretation *I* that satisfies the axioms of *T*, also satisfies *F*.

A Σ -formula F is valid in the theory T, or T-valid, if every interpretation I that satisfies the axioms of T, also satisfies F. In other words,

 $\forall I, I \models \mathcal{A} \text{ implies } I \models F.$

A Σ -formula F is valid in the theory T, or T-valid, if every interpretation I that satisfies the axioms of T, also satisfies F. In other words,

 $\forall I, I \models \mathcal{A} \text{ implies } I \models F.$

We also write this as $T \models F$.

A Σ -formula *F* is valid in the theory *T*, or *T*-valid, if every interpretation *I* that satisfies the axioms of *T*, also satisfies *F*. In other words,

 $\forall I, I \models \mathcal{A} \text{ implies } I \models \mathcal{F}.$

We also write this as $T \models F$. Note that $I \models A$ is short for $I \models A$, $\forall A \in A$.

A Σ -formula *F* is valid in the theory *T*, or *T*-valid, if every interpretation *I* that satisfies the axioms of *T*, also satisfies *F*. In other words,

 $\forall I, I \models \mathcal{A} \text{ implies } I \models \mathcal{F}.$

We also write this as $T \models F$. Note that $I \models A$ is short for $I \models A$, $\forall A \in A$. An interpretation which satisfies all the axioms of A is called a *T*-interpretation.

A Σ -formula *F* is valid in the theory *T*, or *T*-valid, if every interpretation *I* that satisfies the axioms of *T*, also satisfies *F*. In other words,

 $\forall I, I \models \mathcal{A} \text{ implies } I \models \mathcal{F}.$

We also write this as $T \models F$. Note that $I \models A$ is short for $I \models A$, $\forall A \in A$. An interpretation which satisfies all the axioms of A is called a *T*-interpretation.

Definition

A Σ -formula *F* is satisfiable in the theory *T*, or *T*-satisfiable,

A Σ -formula *F* is valid in the theory *T*, or *T*-valid, if every interpretation *I* that satisfies the axioms of *T*, also satisfies *F*. In other words,

 $\forall I, I \models \mathcal{A} \text{ implies } I \models \mathcal{F}.$

We also write this as $T \models F$. Note that $I \models A$ is short for $I \models A$, $\forall A \in A$. An interpretation which satisfies all the axioms of A is called a *T*-interpretation.

Definition

A Σ -formula *F* is satisfiable in the theory *T*, or *T*-satisfiable, if there is some *T*-interpretation *I* that satisfies *F*.

Main concepts

Completeness and Consistency

Main concepts

Completeness and Consistency

Definition

A theory *T* is complete, if for every closed Σ -formula *F*, either $T \models F$ or $T \models \neg F$.

Definition

A theory *T* is complete, if for every closed Σ -formula *F*, either $T \models F$ or $T \models \neg F$.

Note

There are theories which are not complete.

Definition

A theory *T* is complete, if for every closed Σ -formula *F*, either $T \models F$ or $T \models \neg F$.

Note

There are theories which are not complete. Name one.

Definition

A theory *T* is complete, if for every closed Σ -formula *F*, either $T \models F$ or $T \models \neg F$.

Note

There are theories which are not complete. Name one.

Definition

A theory T is consistent, if there is at least one T-interpretation.

Main concepts

Completeness and Consistency

Definition

A theory *T* is complete, if for every closed Σ -formula *F*, either $T \models F$ or $T \models \neg F$.

Note

There are theories which are not complete. Name one.

Definition

A theory T is consistent, if there is at least one T-interpretation.

Note

An alternative definition of consistency is that there does not exist a Σ -formula F, such that $T \models F$ and $T \models F$.

Definition

A theory *T* is complete, if for every closed Σ -formula *F*, either $T \models F$ or $T \models \neg F$.

Note

There are theories which are not complete. Name one.

Definition

A theory T is consistent, if there is at least one T-interpretation.

Note

An alternative definition of consistency is that there does not exist a Σ -formula F, such that $T \models F$ and $T \models F$.

Definition

Two formulae F_1 and F_2 are equivalent in theory T, or T-equivalent,

Definition

A theory *T* is complete, if for every closed Σ -formula *F*, either $T \models F$ or $T \models \neg F$.

Note

There are theories which are not complete. Name one.

Definition

A theory T is consistent, if there is at least one T-interpretation.

Note

An alternative definition of consistency is that there does not exist a Σ -formula F, such that $T \models F$ and $T \models F$.

Definition

Two formulae F_1 and F_2 are equivalent in theory T, or T-equivalent, if $T \models F_1 \leftrightarrow F_2$.

Definition

A theory *T* is complete, if for every closed Σ -formula *F*, either $T \models F$ or $T \models \neg F$.

Note

There are theories which are not complete. Name one.

Definition

A theory T is consistent, if there is at least one T-interpretation.

Note

An alternative definition of consistency is that there does not exist a Σ -formula F, such that $T \models F$ and $T \models F$.

Definition

Two formulae F_1 and F_2 are equivalent in theory T, or T-equivalent, if $T \models F_1 \leftrightarrow F_2$. In other words, for every T-interpretation I, we must have, $I \models F_1$ if and only if $I \models F_2$.

Motivation Main concepts

A fragment of a theory is a syntactically-restricted subset of formulae of the theory.

A fragment of a theory is a syntactically-restricted subset of formulae of the theory.

Example

The quantifier-free fragment of a theory T is the set of formulae without quantifiers that are valid in T.

A fragment of a theory is a syntactically-restricted subset of formulae of the theory.

Example

The quantifier-free fragment of a theory T is the set of formulae without quantifiers that are valid in T.

Definition

A theory *T* is decidable if $T \models F$ is decidable for every Σ -formula *F*.

Main concept:

Combinations of theories

Main concepts

Combinations of theories

Definition

The **union** of two theories T_1 and T_2 , denoted by $T_1 \cup T_2$ has signature $\Sigma_1 \cup \Sigma_2$ and axioms $A_1 \cup A_2$.

Main concepts

Combinations of theories

Definition

The **union** of two theories T_1 and T_2 , denoted by $T_1 \cup T_2$ has signature $\Sigma_1 \cup \Sigma_2$ and axioms $\mathcal{A}_1 \cup \mathcal{A}_2$.

Note

A $(T_1 \cup T_2)$ -interpretation is both a T_1 -interpretation and a T_2 -interpretation.

Main concepts

Combinations of theories

Definition

The **union** of two theories T_1 and T_2 , denoted by $T_1 \cup T_2$ has signature $\Sigma_1 \cup \Sigma_2$ and axioms $\mathcal{A}_1 \cup \mathcal{A}_2$.

Note

A ($T_1 \cup T_2$)-interpretation is both a T_1 -interpretation and a T_2 -interpretation. A formula that is T_1 -valid or T_2 -valid is ($T_1 \cup T_2$)-valid.

Main concepts

Combinations of theories

Definition

The **union** of two theories T_1 and T_2 , denoted by $T_1 \cup T_2$ has signature $\Sigma_1 \cup \Sigma_2$ and axioms $\mathcal{A}_1 \cup \mathcal{A}_2$.

Note

A $(T_1 \cup T_2)$ -interpretation is both a T_1 -interpretation and a T_2 -interpretation. A formula that is T_1 -valid or T_2 -valid is $(T_1 \cup T_2)$ -valid. A formula that is $(T_1 \cup T_2)$ -satisfiable is both T_1 -satisfiable and T_2 -satisfiable.

Main concepts

Combinations of theories

Definition

The **union** of two theories T_1 and T_2 , denoted by $T_1 \cup T_2$ has signature $\Sigma_1 \cup \Sigma_2$ and axioms $A_1 \cup A_2$.

Note

A ($T_1 \cup T_2$)-interpretation is both a T_1 -interpretation and a T_2 -interpretation. A formula that is T_1 -valid or T_2 -valid is ($T_1 \cup T_2$)-valid. A formula that is ($T_1 \cup T_2$)-satisfiable is both T_1 -satisfiable and T_2 -satisfiable.

Observation

FOL is the empty theory, i.e., the theory with no axioms.