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Main Ideas

In programming language verification, the formula whose validity (or satisfiability)
needs to be checked typically does not belong to a single theory. For instance, we may
be interested in an assertion about an array of integers or an array of reals. Thus,
single-theory decision procedures are essentially useless, unless they can be
combined.
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The theory T defined by two theories T1 and T2 is said to be a combination theory, if
ΣT = Σ1 ∪ Σ2 and AT = A1 ∪A2.
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The theory T defined by two theories T1 and T2 is said to be a combination theory, if
ΣT = Σ1 ∪ Σ2 and AT = A1 ∪A2. This definition can be applied inductively to
account for more than two theories.
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Main points

The theory T defined by two theories T1 and T2 is said to be a combination theory, if
ΣT = Σ1 ∪ Σ2 and AT = A1 ∪A2. This definition can be applied inductively to
account for more than two theories. For instance, we could construct the theory of
arrays of lists of reals.
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Nelson and Oppen proved the following: Given two theories T1 and T2, with
Σ1 ∩ Σ2 = {=}, such that

1 Satisfiability in the quantifier-free fragment of T1 is decidable,
2 Satisfiability in the quantifier-free fragment of T2 is decidable,
3 certain technical requirements are met,

satisfiability in the quantifier-free fragment of the combination theory T = T1 ∪ T2 is
decidable.
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Main Points

Nelson and Oppen proved the following: Given two theories T1 and T2, with
Σ1 ∩ Σ2 = {=}, such that

1 Satisfiability in the quantifier-free fragment of T1 is decidable,
2 Satisfiability in the quantifier-free fragment of T2 is decidable,
3 certain technical requirements are met,

satisfiability in the quantifier-free fragment of the combination theory T = T1 ∪ T2 is
decidable. Furthermore, if the decision procedures for T1 and T2 are in P, then so is
the combined decision procedure for T1 ∪ T2.
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1 Consider the formula F : (a = b) → a[i ] ≥ b[i ].
Is it valid? Is it TA-valid? Is it T =

A ∪ TZ-valid?

2 Consider the formula G : 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2).
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1 Consider the formula F : (a = b) → a[i ] ≥ b[i ].
Is it valid? Is it TA-valid? Is it T =

A ∪ TZ-valid?

2 Consider the formula G : 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2).
Is G valid? Is G satisfiable? Is G satisfiable in TE ∪ TZ? Is G satisfiable in
TE ∪ TQ?

3 Consider the formula H : f (f (x) − f (y)) 6= f (z) ∧ x ≤ y ∧ (y + z) ≤ x ∧ 0 ≤ z.
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1 Consider the formula F : (a = b) → a[i ] ≥ b[i ].
Is it valid? Is it TA-valid? Is it T =

A ∪ TZ-valid?

2 Consider the formula G : 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2).
Is G valid? Is G satisfiable? Is G satisfiable in TE ∪ TZ? Is G satisfiable in
TE ∪ TQ?

3 Consider the formula H : f (f (x) − f (y)) 6= f (z) ∧ x ≤ y ∧ (y + z) ≤ x ∧ 0 ≤ z.
Is H (TE ∪ TQ)-satisfiable?

Subramani First Order Theories


	Outline
	Main Talk
	Introduction
	Combination Theories


