First Order Theories - Combination Theories

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

March 11 2013

Outline

Outline

1 Introduction

Combination Theories

Main Ideas

Main Ideas

In programming language verification, the formula whose validity (or satisfiability) needs to be checked typically does not belong to a single theory.

Main Ideas

In programming language verification, the formula whose validity (or satisfiability) needs to be checked typically does not belong to a single theory. For instance, we may be interested in an assertion about an array of integers or an array of reals.

Main Ideas

In programming language verification, the formula whose validity (or satisfiability) needs to be checked typically does not belong to a single theory. For instance, we may be interested in an assertion about an array of integers or an array of reals. Thus, single-theory decision procedures are essentially useless, unless they can be combined.

Main points

Main points

The theory T defined by two theories T_1 and T_2 is said to be a combination theory, if $\Sigma_T = \Sigma_1 \cup \Sigma_2$ and $\mathcal{A}_T = \mathcal{A}_1 \cup \mathcal{A}_2$.

Main points

The theory T defined by two theories T_1 and T_2 is said to be a combination theory, if $\Sigma_T = \Sigma_1 \cup \Sigma_2$ and $\mathcal{A}_T = \mathcal{A}_1 \cup \mathcal{A}_2$. This definition can be applied inductively to account for more than two theories.

Main points

The theory T defined by two theories T_1 and T_2 is said to be a combination theory, if $\Sigma_T = \Sigma_1 \cup \Sigma_2$ and $\mathcal{A}_T = \mathcal{A}_1 \cup \mathcal{A}_2$. This definition can be applied inductively to account for more than two theories. For instance, we could construct the theory of arrays of lists of reals.

Main Points

Nelson and Oppen proved the following:

Main Points

Nelson and Oppen proved the following: Given two theories T_1 and T_2 , with $\Sigma_1 \cap \Sigma_2 = \{=\}$, such that

Main Points

Nelson and Oppen proved the following: Given two theories T_1 and T_2 , with $\Sigma_1 \cap \Sigma_2 = \{=\}$, such that

 \odot Satisfiability in the quantifier-free fragment of T_1 is decidable,

Main Points

Nelson and Oppen proved the following: Given two theories T_1 and T_2 , with $\Sigma_1 \cap \Sigma_2 = \{=\}$, such that

- Satisfiability in the quantifier-free fragment of T_1 is decidable,
- 2 Satisfiability in the quantifier-free fragment of T_2 is decidable,

Main Points

Nelson and Oppen proved the following: Given two theories T_1 and T_2 , with $\Sigma_1 \cap \Sigma_2 = \{=\}$, such that

- lacktriangle Satisfiability in the quantifier-free fragment of T_1 is decidable,
- ② Satisfiability in the quantifier-free fragment of T_2 is decidable,
- certain technical requirements are met,

Main Points

Nelson and Oppen proved the following: Given two theories T_1 and T_2 , with $\Sigma_1 \cap \Sigma_2 = \{=\}$, such that

- lacktriangle Satisfiability in the quantifier-free fragment of T_1 is decidable,
- ② Satisfiability in the quantifier-free fragment of T_2 is decidable,
- o certain technical requirements are met,

satisfiability in the quantifier-free fragment of the combination theory $T=T_1\cup T_2$ is decidable.

Main Points

Nelson and Oppen proved the following: Given two theories T_1 and T_2 , with $\Sigma_1 \cap \Sigma_2 = \{=\}$, such that

- Satisfiability in the quantifier-free fragment of T_1 is decidable,
- ② Satisfiability in the quantifier-free fragment of T_2 is decidable,
- o certain technical requirements are met,

satisfiability in the quantifier-free fragment of the combination theory $T=T_1\cup T_2$ is decidable. Furthermore, if the decision procedures for T_1 and T_2 are in \mathbf{P} , then so is the combined decision procedure for $T_1\cup T_2$.

Example

Consider the formula

Example

• Consider the formula $F: (a = b) \rightarrow a[i] \ge b[i]$.

Example

• Consider the formula $F: (a = b) \rightarrow a[i] \ge b[i]$. Is it valid?

Example

① Consider the formula $F: (a = b) \rightarrow a[i] \ge b[i]$. Is it valid? Is it T_A -valid?

Example

② Consider the formula $F: (a = b) \rightarrow a[i] \geq b[i]$. Is it valid? Is it T_A -valid? Is it $T_A = U$. T_Z-valid?

- **②** Consider the formula $F: (a = b) \rightarrow a[i] \ge b[i]$. Is it valid? Is it T_A -valid? Is it $T_A^= \cup T_Z$ -valid?
- Consider the formula

- **②** Consider the formula $F: (a = b) \rightarrow a[i] \geq b[i]$. Is it valid? Is it T_A -valid? Is it $T_A = U$. T_Z-valid?
- ② Consider the formula $G: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$.

- **②** Consider the formula $F: (a = b) \rightarrow a[i] \geq b[i]$. Is it valid? Is it T_A -valid? Is it $T_A = U$. T_Z-valid?
- **Q** Consider the formula $G: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$. Is G valid?

- **①** Consider the formula $F: (a = b) \rightarrow a[i] \geq b[i]$. Is it valid? Is it T_A -valid? Is it $T_A = \bigcup T_Z$ -valid?
- **②** Consider the formula $G: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$. Is G valid? Is G satisfiable?

- **②** Consider the formula $F: (a = b) \rightarrow a[i] \geq b[i]$. Is it valid? Is it T_A -valid? Is it T_A = ∪ T_Z -valid?
- ② Consider the formula $G: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$. Is G valid? Is G satisfiable? Is G satisfiable in $T_F \cup T_{\mathbb{Z}}$?

- **②** Consider the formula $F: (a = b) \rightarrow a[i] \geq b[i]$. Is it valid? Is it T_A -valid? Is it T_A = ∪ T_Z -valid?
- ② Consider the formula $G: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$. Is G valid? Is G satisfiable? Is G satisfiable in $T_E \cup T_{\mathbb{Z}}$? Is G satisfiable in $T_E \cup T_{\mathbb{Q}}$?

- Consider the formula $F: (a = b) \rightarrow a[i] \geq b[i]$. Is it valid? Is it T_A -valid? Is it $T_A = \bigcup T_Z$ -valid?
- ② Consider the formula $G: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$. Is G valid? Is G satisfiable? Is G satisfiable in $T_E \cup T_{\mathbb{Z}}$? Is G satisfiable in $T_E \cup T_{\mathbb{Q}}$?
- Consider the formula

- **②** Consider the formula $F: (a = b) \rightarrow a[i] \geq b[i]$. Is it valid? Is it T_A -valid? Is it T_A = ∪ T_Z -valid?
- ② Consider the formula $G: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$. Is G valid? Is G satisfiable? Is G satisfiable in $T_E \cup T_{\mathbb{Z}}$? Is G satisfiable in $T_E \cup T_{\mathbb{Q}}$?
- Onsider the formula $H: f(f(x) f(y)) \neq f(z) \land x \leq y \land (y+z) \leq x \land 0 \leq z$.

- **②** Consider the formula $F: (a = b) \rightarrow a[i] \geq b[i]$. Is it valid? Is it T_A -valid? Is it T_A = ∪ T_Z -valid?
- ② Consider the formula $G: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$. Is G valid? Is G satisfiable? Is G satisfiable in $T_E \cup T_{\mathbb{Z}}$? Is G satisfiable in $T_E \cup T_{\mathbb{Q}}$?
- Ocnsider the formula $H: f(f(x) f(y)) \neq f(z) \land x \leq y \land (y + z) \leq x \land 0 \leq z$. Is $H(T_E \cup T_0)$ -satisfiable?