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Motivating points

Arithmetic involving addition and multiplication over the natural numbers
N = {0, 1, 2, . . . , } has been studied for centuries.

We focus on the following theories:

(i) Peano arithmetic that permits addition and multiplication over natural numbers.

(ii) Presburger arithmetic that permits addition but not multiplication over the natural
numbers.

(iii) Theory of integers that permits over addition over the set
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . , }.
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Induction (Axiom (A3.)) an axiom schema.

Intended Interpretation

Typically a theory has an intended interpretation (unless you have nothing better to do
with your time than spinning theories).

TPA has an intended interpretation, viz., the domain N and our regular (everyday
arithmetic) interpretation of 0, 1, +, · and =. We use the notation TPA(N) to indicate the
fact that we are reasoning about formulae in the intended interpretation. Observe that
a formula F can be satisfiable in TPA(N), but not TPA-valid. Such a formula is called
TPA(N)-valid.

Example

Is the following ΣPA formula satisfiable?

(∃x)(∃y)(∃z) [x 6= 0 ∧ y 6= 0 ∧ x · x + y · y = z · z]

Is it TPA-valid? Is it TPA(N)-valid?
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Final observations

Note

TPA is undecidable. Predicates such as > and ≥ can be represented in TPA, i.e.,
additional axioms are not needed.

Gödel’s first incompleteness theorem establishes that TPA does not capture true
arithmetic in that there exist closed formulae in TPA that are valid propositions in
number theory but are not provable in TPA.
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Example

Is the following formula representable in TN?
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Main issues

The theory of integers, TZ, has signature

ΣZ : {− . . . ,−2,−1, 0, 1, 2, . . . , +,−,=, >}

where,

(i) The integers are constants intended to be assigned to the obvious values in the
intended domain of integers Z.

(ii) + and − are intended to represent the corresponding functions in Z.

(iii) = and > are binary predicates intended to represent the corresponding
predicates over Z.

The theory of integers in the intended interpretation will be denoted by TZ(Z).

Note

(i) Every formula in TZ can be reduced to TN, and hence a separate axiomatization is
unnecessary.

(ii) TZ is merely a more convenient form to reason about integers.

(iii) TZ itself is decidable.
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F : (∀x)(∀y)(∀z) [(x > z) ∧ (y ≥ 0)] → [(x + y) > z]
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Show that the following formulae are TZ(Z)-valid.
1

F : (∀x)(∀y)(∀z) [(x > z) ∧ (y ≥ 0)] → [(x + y) > z]

2

G : (∀x)(∀y) [(x > 0) ∧ (x = 2 · y ∨ x = 2 · y + 1)] → [(x − y) > 0]

Are they TZ-valid?
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