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Consider the statement:
(∃x) x + 5 = 7.

This statement is true in integer arithmetic (and Peano Arithmetic), (and hence, it is
true in the theory of rationals and the theory of reals).

The statement
(∃x) 2 · x = 7

is TZ-invalid. However, it is valid in the theory of rationals and the theory of reals.

The statement
(∃x) x · x = 2

is invalid in both integer arithmetic and the theory of rationals. It is true though, in the
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Axiom set

The axiom set of TR is the following:

(A1.) (∀x)(∀y) [(x ≥ y) ∧ (y ≥ x)] → (y = x).

(A2.) (∀x)(∀y)(∀z) [(x ≥ y) ∧ (y ≥ z)] → (x ≥ z).

(A3.) (∀x)(∀y) (x ≥ y) ∨ (y ≥ x).

(A4.) (∀x)(∀y)(∀z) (x + y) + z = x + (y + z).

(A5.) (∀x) (x + 0 = x).

(A6.) (∀x) (x + (−x)) = 0.

(A7.) (∀x)(∀y) (x + y) = (y + x).

(A8.) (∀x)(∀y)(∀z) (x ≥ y) → (x + z) ≥ (y + z).

(A9.) (∀x)(∀y)(∀z) (x · y) · z = x · (y · z).

(A10.) (∀x) 1 · x = 1.
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Axiom set of the Theory of Reals

Axiom set

The axiom set of TR is the following:

(A1.) (∀x)(∀y) [(x ≥ y) ∧ (y ≥ x)] → (y = x).

(A2.) (∀x)(∀y)(∀z) [(x ≥ y) ∧ (y ≥ z)] → (x ≥ z).

(A3.) (∀x)(∀y) (x ≥ y) ∨ (y ≥ x).

(A4.) (∀x)(∀y)(∀z) (x + y) + z = x + (y + z).

(A5.) (∀x) (x + 0 = x).

(A6.) (∀x) (x + (−x)) = 0.

(A7.) (∀x)(∀y) (x + y) = (y + x).

(A8.) (∀x)(∀y)(∀z) (x ≥ y) → (x + z) ≥ (y + z).

(A9.) (∀x)(∀y)(∀z) (x · y) · z = x · (y · z).

(A10.) (∀x) 1 · x = 1.

(A11.) (∀x) (x 6= 0) → (∃y) x · y = 1.
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Axiom set

The axiom set of TR is the following:

(A1.) (∀x)(∀y) [(x ≥ y) ∧ (y ≥ x)] → (y = x).

(A2.) (∀x)(∀y)(∀z) [(x ≥ y) ∧ (y ≥ z)] → (x ≥ z).

(A3.) (∀x)(∀y) (x ≥ y) ∨ (y ≥ x).

(A4.) (∀x)(∀y)(∀z) (x + y) + z = x + (y + z).

(A5.) (∀x) (x + 0 = x).

(A6.) (∀x) (x + (−x)) = 0.

(A7.) (∀x)(∀y) (x + y) = (y + x).

(A8.) (∀x)(∀y)(∀z) (x ≥ y) → (x + z) ≥ (y + z).

(A9.) (∀x)(∀y)(∀z) (x · y) · z = x · (y · z).

(A10.) (∀x) 1 · x = 1.

(A11.) (∀x) (x 6= 0) → (∃y) x · y = 1.

(A12.) (∀x)(∀y) x · y = y · x .
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Axiom set

The axiom set of TR is the following:

(A1.) (∀x)(∀y) [(x ≥ y) ∧ (y ≥ x)] → (y = x).

(A2.) (∀x)(∀y)(∀z) [(x ≥ y) ∧ (y ≥ z)] → (x ≥ z).

(A3.) (∀x)(∀y) (x ≥ y) ∨ (y ≥ x).

(A4.) (∀x)(∀y)(∀z) (x + y) + z = x + (y + z).

(A5.) (∀x) (x + 0 = x).

(A6.) (∀x) (x + (−x)) = 0.

(A7.) (∀x)(∀y) (x + y) = (y + x).

(A8.) (∀x)(∀y)(∀z) (x ≥ y) → (x + z) ≥ (y + z).

(A9.) (∀x)(∀y)(∀z) (x · y) · z = x · (y · z).

(A10.) (∀x) 1 · x = 1.

(A11.) (∀x) (x 6= 0) → (∃y) x · y = 1.

(A12.) (∀x)(∀y) x · y = y · x .

(A13.) (∀x)(∀y) x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0.
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Axiom set
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Axiom set

(A14.) (∀x)(∀y)(∀z) x · (y + z) = x · y + x · z).
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Axiom set

(A14.) (∀x)(∀y)(∀z) x · (y + z) = x · y + x · z).

(A15.) 0 6= 1.
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Axiom set

(A14.) (∀x)(∀y)(∀z) x · (y + z) = x · y + x · z).

(A15.) 0 6= 1.

(A16.) (∀x)(∃y) x = y2 ∨−x = y2.
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Axiom set

(A14.) (∀x)(∀y)(∀z) x · (y + z) = x · y + x · z).

(A15.) 0 6= 1.

(A16.) (∀x)(∃y) x = y2 ∨−x = y2.

(A17.) For each odd integer n,
(∀x)(∃y) [yn + x1 · yn−1 + . . . xn−1 · y + xn = 0],
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Axiom set (contd.)

Axiom set

(A14.) (∀x)(∀y)(∀z) x · (y + z) = x · y + x · z).

(A15.) 0 6= 1.

(A16.) (∀x)(∃y) x = y2 ∨−x = y2.

(A17.) For each odd integer n,
(∀x)(∃y) [yn + x1 · yn−1 + . . . xn−1 · y + xn = 0], where x = [x1, x2, . . . xn].
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