First Order Theories - Rationals and Reals

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

March 4 2013

Outline

1 Introduction

Outline

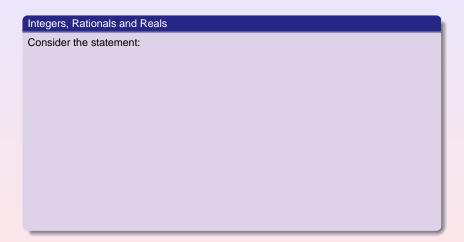
1 Introduction

Theory of Rationals

Outline

Introduction

- 2 Theory of Rationals
- Theory of Reals



Integers, Rationals and Reals

Consider the statement:

$$(\exists x) \ x + 5 = 7.$$

Integers, Rationals and Reals

Consider the statement:

$$(\exists x) \ x + 5 = 7.$$

This statement is true in integer arithmetic (and Peano Arithmetic),

Integers, Rationals and Reals

Consider the statement:

$$(\exists x) \ x + 5 = 7.$$

This statement is true in integer arithmetic (and Peano Arithmetic), (and hence, it is true in the theory of rationals and the theory of reals).

Integers, Rationals and Reals

Consider the statement:

$$(\exists x) \ x + 5 = 7.$$

This statement is true in integer arithmetic (and Peano Arithmetic), (and hence, it is true in the theory of rationals and the theory of reals).

The statement

$$(\exists x) \ 2 \cdot x = 7$$

Integers, Rationals and Reals

Consider the statement:

$$(\exists x) \ x + 5 = 7.$$

This statement is true in integer arithmetic (and Peano Arithmetic), (and hence, it is true in the theory of rationals and the theory of reals).

The statement

$$(\exists x) \ 2 \cdot x = 7$$

is $T_{\mathbb{Z}}$ -invalid.

Integers, Rationals and Reals

Consider the statement:

$$(\exists x) \ x + 5 = 7.$$

This statement is true in integer arithmetic (and Peano Arithmetic), (and hence, it is true in the theory of rationals and the theory of reals).

The statement

$$(\exists x) \ 2 \cdot x = 7$$

is $T_{\mathbb{Z}}$ -invalid. However, it is valid in the theory of rationals and the theory of reals.

Integers, Rationals and Reals

Consider the statement:

$$(\exists x) \ x + 5 = 7.$$

This statement is true in integer arithmetic (and Peano Arithmetic), (and hence, it is true in the theory of rationals and the theory of reals).

The statement

$$(\exists x) \ 2 \cdot x = 7$$

is $T_{\mathbb{Z}}$ -invalid. However, it is valid in the theory of rationals and the theory of reals.

The statement

$$(\exists x) \ x \cdot x = 2$$

Integers, Rationals and Reals

Consider the statement:

$$(\exists x) \ x + 5 = 7.$$

This statement is true in integer arithmetic (and Peano Arithmetic), (and hence, it is true in the theory of rationals and the theory of reals).

The statement

$$(\exists x) \ 2 \cdot x = 7$$

is $T_{\mathbb{Z}}$ -invalid. However, it is valid in the theory of rationals and the theory of reals.

The statement

$$(\exists x) \ x \cdot x = 2$$

is invalid in both integer arithmetic and the theory of rationals.

Integers, Rationals and Reals

Consider the statement:

$$(\exists x) \ x + 5 = 7.$$

This statement is true in integer arithmetic (and Peano Arithmetic), (and hence, it is true in the theory of rationals and the theory of reals).

The statement

$$(\exists x) \ 2 \cdot x = 7$$

is $T_{\mathbb{Z}}$ -invalid. However, it is valid in the theory of rationals and the theory of reals.

The statement

$$(\exists x) \ x \cdot x = 2$$

is invalid in both integer arithmetic and the theory of rationals. It is true though, in the theory of reals.

Main points	

Main points

The theory of rationals, $T_{\mathbb{Q}}$, has signature:

Main points

The theory of rationals, $T_{\mathbb{Q}}$, has signature:

$$\Sigma_{\mathbb{Q}} \ : \ \{0,1,+,-,=,\geq\}$$

Main points

The theory of rationals, $T_{\mathbb{O}}$, has signature:

$$\Sigma_{\mathbb{Q}} \ : \ \{0,1,+,-,=,\geq\}$$

Main points

The theory of rationals, $T_{\mathbb{O}}$, has signature:

$$\Sigma_{\mathbb{Q}} \ : \ \{0,1,+,-,=,\geq\}$$

where,

(i) 0 and 1 are constants.

Main points

The theory of rationals, $T_{\mathbb{Q}}$, has signature:

$$\Sigma_{\mathbb{Q}} \ : \ \{0,1,+,-,=,\geq\}$$

- (i) 0 and 1 are constants.
- (ii) + is a binary function.

Main points

The theory of rationals, $T_{\mathbb{Q}}$, has signature:

$$\Sigma_{\mathbb{Q}} \ : \ \{0,1,+,-,=,\geq\}$$

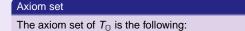
- (i) 0 and 1 are constants.
- (ii) + is a binary function.
- (iii) is a unary function.

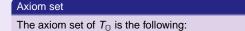
Main points

The theory of rationals, $T_{\mathbb{Q}}$, has signature:

$$\Sigma_{\mathbb{Q}} \ : \ \{0,1,+,-,=,\geq\}$$

- (i) 0 and 1 are constants.
- (ii) + is a binary function.
- (iii) is a unary function.
- (iv) = and \geq are binary predicates.





Axiom set

$$(\mathcal{A}1.) \ (\forall x)(\forall y) \ [(x \geq y) \land (y \geq x)] \rightarrow (y = x).$$

Axiom set

$$(\mathcal{A}1.) \ (\forall x)(\forall y) \ [(x \geq y) \land (y \geq x)] \rightarrow (y = x).$$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

Axiom set

$$(\mathcal{A}1.) \ (\forall x)(\forall y) \ [(x \geq y) \land (y \geq x)] \rightarrow (y = x).$$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

Axiom set

$$(\mathcal{A}1.) \ (\forall x)(\forall y) \ [(x \geq y) \land (y \geq x)] \rightarrow (y = x).$$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

(A5.)
$$(\forall x) (x + 0 = x)$$
.

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

$$(A6.) (\forall x) x + (-x) = 0.$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

$$(\mathcal{A}6.) \ (\forall x) \ x + (-x) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

$$(\mathcal{A}6.) \ (\forall x) \ x + (-x) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(\mathcal{A}8.) \ (\forall x)(\forall y)(\forall z) \ (x \geq y) \rightarrow (x+z) \geq (y+z).$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

(A6.)
$$(\forall x) x + (-x) = 0$$
.

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(\mathcal{A}8.) \ (\forall x)(\forall y)(\forall z) \ (x \geq y) \rightarrow (x+z) \geq (y+z).$$

(A9.)
$$(\forall x) \ n \cdot x = 0 \rightarrow x = 0$$
, for all positive integers n

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

$$(\mathcal{A}6.) \ (\forall x) \ x + (-x) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(\mathcal{A}8.) \ (\forall x)(\forall y)(\forall z) \ (x \geq y) \to (x+z) \geq (y+z).$$

(A9.)
$$(\forall x) \ n \cdot x = 0 \rightarrow x = 0$$
, for all positive integers n (torsion-free).

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x > y) \land (y > x)] \rightarrow (y = x).$

$$(\mathcal{A}2.)$$
 $(\forall x)(\forall y)(\forall z)$ $[(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

(A5.)
$$(\forall x) (x + 0 = x)$$
.

$$(\mathcal{A}6.) \ (\forall x) \ x + (-x) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(\mathcal{A}8.) \ (\forall x)(\forall y)(\forall z) \ (x \geq y) \to (x+z) \geq (y+z).$$

(A9.)
$$(\forall x) \ n \cdot x = 0 \rightarrow x = 0$$
, for all positive integers n (torsion-free).

$$(A10.)$$
 $(\forall x)(\exists y)$ $x = n \cdot y$, for all positive integers n

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x > y) \land (y > x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

(A5.)
$$(\forall x) (x + 0 = x)$$
.

$$(\mathcal{A}6.) \ (\forall x) \ x + (-x) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(\mathcal{A}8.) \ (\forall x)(\forall y)(\forall z) \ (x \geq y) \to (x+z) \geq (y+z).$$

(A9.)
$$(\forall x) \ n \cdot x = 0 \rightarrow x = 0$$
, for all positive integers n (torsion-free).

$$(A10.)$$
 $(\forall x)(\exists y)$ $x = n \cdot y$, for all positive integers n (divisibility).

Axiom set

The axiom set of $T_{\mathbb{O}}$ is the following:

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x > y) \land (y > x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

(A5.)
$$(\forall x) (x + 0 = x)$$
.

(A6.)
$$(\forall x) x + (-x) = 0$$
.

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(A8.)$$
 $(\forall x)(\forall y)(\forall z)$ $(x \ge y) \rightarrow (x + z) \ge (y + z)$.

(A9.)
$$(\forall x) \ n \cdot x = 0 \rightarrow x = 0$$
, for all positive integers n (torsion-free).

(A10.)
$$(\forall x)(\exists y) \ x = n \cdot y$$
, for all positive integers n (divisibility).

Why cannot *n* be an arbitrary rational in Axioms ($\mathcal{A}9$.) and (\mathcal{A} .10)?

Main points

The theory of reals, $T_{\mathbb{R}}$, has signature:

Main points

The theory of reals, $T_{\mathbb{R}}$, has signature:

$$\Sigma_{\mathbb{R}}~:~\{0,1,+,-,\cdot,=,\geq\}$$

Main points

The theory of reals, $T_{\mathbb{R}}$, has signature:

$$\Sigma_{\mathbb{R}}~:~\{0,1,+,-,\cdot,=,\geq\}$$

Main points

The theory of reals, $T_{\mathbb{R}}$, has signature:

$$\Sigma_{\mathbb{R}}~:~\{0,1,+,-,\cdot,=,\geq\}$$

where,

(i) 0 and 1 are constants.

Main points

The theory of reals, $T_{\mathbb{R}}$, has signature:

$$\Sigma_{\mathbb{R}}~:~\{0,1,+,-,\cdot,=,\geq\}$$

- (i) 0 and 1 are constants.
- (ii) + is a binary function.

Main points

The theory of reals, $T_{\mathbb{R}}$, has signature:

$$\Sigma_{\mathbb{R}}~:~\{0,1,+,-,\cdot,=,\geq\}$$

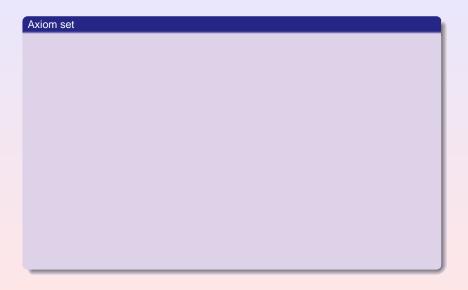
- (i) 0 and 1 are constants.
- (ii) + is a binary function.
- (iii) is a unary function.

Main points

The theory of reals, $T_{\mathbb{R}}$, has signature:

$$\Sigma_{\mathbb{R}}~:~\{0,1,+,-,\cdot,=,\geq\}$$

- (i) 0 and 1 are constants.
- (ii) + is a binary function.
- (iii) is a unary function.
- (iv) = and \geq are binary predicates.



Axiom set

$$(\mathcal{A}1.) \ (\forall x)(\forall y) \ [(x \geq y) \land (y \geq x)] \rightarrow (y = x).$$

Axiom set

$$(\mathcal{A}1.) \ (\forall x)(\forall y) \ [(x \geq y) \land (y \geq x)] \rightarrow (y = x).$$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

Axiom set

$$(\mathcal{A}1.) \ (\forall x)(\forall y) \ [(x \geq y) \land (y \geq x)] \rightarrow (y = x).$$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

(A6.)
$$(\forall x) (x + (-x)) = 0.$$

Axiom set

$$(\mathcal{A}1.) \ (\forall x)(\forall y) \ [(x \ge y) \land (y \ge x)] \rightarrow (y = x).$$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

(A6.)
$$(\forall x) (x + (-x)) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

$$(A6.) (\forall x) (x + (-x)) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(\mathcal{A}8.) \ (\forall x)(\forall y)(\forall z) \ (x \geq y) \rightarrow (x+z) \geq (y+z).$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

(A6.)
$$(\forall x) (x + (-x)) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(\mathcal{A}8.) \ (\forall x)(\forall y)(\forall z) \ (x \ge y) \to (x+z) \ge (y+z).$$

$$(\mathcal{A}9.) \ (\forall x)(\forall y)(\forall z) \ (x \cdot y) \cdot z = x \cdot (y \cdot z).$$

Axiom set

$$(\mathcal{A}1.) \ (\forall x)(\forall y) \ [(x \geq y) \land (y \geq x)] \rightarrow (y = x).$$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y)$$
 $(x \geq y) \lor (y \geq x)$.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

(A6.)
$$(\forall x) (x + (-x)) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(\mathcal{A}8.) \ (\forall x)(\forall y)(\forall z) \ (x \geq y) \rightarrow (x+z) \geq (y+z).$$

$$(\mathcal{A}9.) \ (\forall x)(\forall y)(\forall z) \ (x \cdot y) \cdot z = x \cdot (y \cdot z).$$

$$(\mathcal{A}10.) \ (\forall x) \ 1 \cdot x = 1.$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

$$(\mathcal{A}5.) \ (\forall x) \ (x+0=x).$$

(A6.)
$$(\forall x) (x + (-x)) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(\mathcal{A}8.) \ (\forall x)(\forall y)(\forall z) \ (x \geq y) \rightarrow (x+z) \geq (y+z).$$

$$(\mathcal{A}9.) \ (\forall x)(\forall y)(\forall z) \ (x \cdot y) \cdot z = x \cdot (y \cdot z).$$

$$(\mathcal{A}10.) \ (\forall x) \ 1 \cdot x = 1.$$

$$(\mathcal{A}11.) \ (\forall x) \ (x \neq 0) \rightarrow (\exists y) \ x \cdot y = 1.$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y)$$
 $(x \geq y) \lor (y \geq x)$.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

(A5.)
$$(\forall x) (x + 0 = x)$$
.

(A6.)
$$(\forall x) (x + (-x)) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(\mathcal{A}8.) \ (\forall x)(\forall y)(\forall z) \ (x \geq y) \rightarrow (x+z) \geq (y+z).$$

(A9.)
$$(\forall x)(\forall y)(\forall z) (x \cdot y) \cdot z = x \cdot (y \cdot z)$$
.

$$(\mathcal{A}10.) \ (\forall x) \ 1 \cdot x = 1.$$

$$(\mathcal{A}11.) \ (\forall x) \ (x \neq 0) \rightarrow (\exists y) \ x \cdot y = 1.$$

$$(\mathcal{A}12.) \ (\forall x)(\forall y) \ x \cdot y = y \cdot x.$$

Axiom set

$$(A1.)$$
 $(\forall x)(\forall y)$ $[(x \ge y) \land (y \ge x)] \rightarrow (y = x).$

$$(\mathcal{A}2.) \ (\forall x)(\forall y)(\forall z) \ [(x \geq y) \land (y \geq z)] \rightarrow (x \geq z).$$

(A3.)
$$(\forall x)(\forall y) (x \geq y) \lor (y \geq x)$$
.

$$(\mathcal{A}4.) \ (\forall x)(\forall y)(\forall z) \ (x+y)+z=x+(y+z).$$

(A5.)
$$(\forall x) (x + 0 = x)$$
.

$$(A6.) (\forall x) (x + (-x)) = 0.$$

$$(\mathcal{A}7.) \ (\forall x)(\forall y) \ (x+y) = (y+x).$$

$$(\mathcal{A}8.) \ (\forall x)(\forall y)(\forall z) \ (x \geq y) \rightarrow (x+z) \geq (y+z).$$

(A9.)
$$(\forall x)(\forall y)(\forall z) (x \cdot y) \cdot z = x \cdot (y \cdot z)$$
.

$$(\mathcal{A}10.) \ (\forall x) \ 1 \cdot x = 1.$$

$$(\mathcal{A}11.) \ (\forall x) \ (x \neq 0) \rightarrow (\exists y) \ x \cdot y = 1.$$

$$(\mathcal{A}12.) \ (\forall x)(\forall y) \ x \cdot y = y \cdot x.$$

$$(\mathcal{A}13.) \ (\forall x)(\forall y) \ x > 0 \land y > 0 \rightarrow x \cdot y > 0.$$

Axiom set		

$$(\mathcal{A}14.) \ (\forall x)(\forall y)(\forall z) \ x \cdot (y+z) = x \cdot y + x \cdot z).$$

$$(\mathcal{A}14.) \ (\forall x)(\forall y)(\forall z) \ x \cdot (y+z) = x \cdot y + x \cdot z).$$

$$(A15.) 0 \neq 1.$$

$$(\mathcal{A}14.) \ (\forall x)(\forall y)(\forall z) \ x \cdot (y+z) = x \cdot y + x \cdot z).$$

$$(A15.) 0 \neq 1.$$

$$(\mathcal{A}16.) \ (\forall x)(\exists y) \ x = y^2 \lor -x = y^2.$$

$$(\mathcal{A}14.) \ (\forall x)(\forall y)(\forall z) \ x \cdot (y+z) = x \cdot y + x \cdot z).$$

$$(A15.) 0 \neq 1.$$

$$(\mathcal{A}16.) \ (\forall x)(\exists y) \ x = y^2 \lor -x = y^2.$$

(A17.) For each odd integer
$$n$$
, $(\forall \overline{x})(\exists y)[y^n+x_1\cdot y^{n-1}+\ldots x_{n-1}\cdot y+x_n=0]$,

$$(\mathcal{A}14.) \ (\forall x)(\forall y)(\forall z) \ x \cdot (y+z) = x \cdot y + x \cdot z).$$

$$(A15.) 0 \neq 1.$$

$$(A16.) \ (\forall x)(\exists y) \ x = y^2 \lor -x = y^2.$$

(A17.) For each odd integer
$$n$$
, $(\forall \overline{x})(\exists y)[y^n+x_1\cdot y^{n-1}+\ldots x_{n-1}\cdot y+x_n=0]$, where $\overline{x}=[x_1,x_2,\ldots x_n]$.