First Order Theories - Recursive Data Structures

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

March 8 2013

Introduction

- 1 Introduction
- Theory of Lists

- 1 Introduction
- Theory of Lists
- General Theory of RDS

- Introduction
- 2 Theory of Lists
- General Theory of RDS
- Theory of Acyclic Lists

- Introduction
- 2 Theory of Lists
- General Theory of RDS
- Theory of Acyclic Lists
- 5 Theory of Lists with Specified Atoms

- Introduction
- 2 Theory of Lists
- General Theory of RDS
- Theory of Acyclic Lists
- Theory of Lists with Specified Atoms
- 6 Theory of Lists with Equality

Introduction

Introduction

Recursive data structures

Introduction

Recursive data structures

The theory of recursive data structures (T_{RDS}) describes a set of data structures such as linked lists, stacks and binary trees that are ubiquitous in programming.

Introduction

Recursive data structures

The theory of recursive data structures (T_{RDS}) describes a set of data structures such as linked lists, stacks and binary trees that are ubiquitous in programming. T_{RDS} formalizes reasoning over such structures.

Theory of Lists

Theory of Lists

Main points		

Theory of Lists

Main points

The theory of lists, T_{cons} , has signature:

Main points

The theory of lists, T_{cons} , has signature:

$$\Sigma_{\text{cons}}$$
: {cons, car, cdr, atom, =}

Main points

The theory of lists, T_{cons} , has signature:

$$\Sigma_{\text{cons}}$$
: {cons, car, cdr, atom, =}

Main points

The theory of lists, T_{cons} , has signature:

$$\Sigma_{\rm cons}$$
: {cons, car, cdr, atom, =}

where,

(i) cons is a binary function called the constructor: cons(a, b) is the list obtained by concatenating a to b.

Main points

The theory of lists, T_{cons} , has signature:

$$\Sigma_{\rm cons}$$
: {cons, car, cdr, atom, =}

- (i) cons is a binary function called the constructor: cons(a, b) is the list obtained by concatenating a to b.
- (ii) car is a unary function, called the left projector: car(cons(a, b)) = a.

Main points

The theory of lists, T_{cons} , has signature:

$$\Sigma_{\text{cons}}$$
: {cons, car, cdr, atom, =}

- (i) cons is a binary function called the constructor: cons(a, b) is the list obtained by concatenating a to b.
- (ii) car is a unary function, called the left projector: car(cons(a, b)) = a.
- (iii) cdr is a unary function, called the right projector: cdr(cons(a, b)) = b.

Main points

The theory of lists, T_{cons} , has signature:

$$\Sigma_{\text{cons}}$$
: {cons, car, cdr, atom, =}

- (i) cons is a binary function called the constructor: cons(a, b) is the list obtained by concatenating a to b.
- (ii) car is a unary function, called the left projector: car(cons(a, b)) = a.
- (iii) cdr is a unary function, called the right projector: cdr(cons(a, b)) = b.
- (iv) atom is a unary predicate: atom(x) is **true** if and only if x is a single element list.

Main points

The theory of lists, T_{cons} , has signature:

$$\Sigma_{cons}$$
: {cons, car, cdr, atom, =}

- (i) cons is a binary function called the constructor: cons(a, b) is the list obtained by concatenating a to b.
- (ii) car is a unary function, called the left projector: car(cons(a, b)) = a.
- (iii) cdr is a unary function, called the right projector: cdr(cons(a, b)) = b.
- (iv) atom is a unary predicate: atom(x) is **true** if and only if x is a single element list.
- (v) = is a binary predicate.

Axiom set of the Theory of Lists

Axiom set of the Theory of Lists

Axiom set

Axiom set of the Theory of Lists

Axiom set

Axiom set of the Theory of Lists

Axiom set

The axiom set of T_{cons} is the following:

($\mathcal{A}1$.) The axioms of reflexivity, symmetry and transitivity of T_E .

Axiom set of the Theory of Lists

Axiom set

- (A1.) The axioms of reflexivity, symmetry and transitivity of T_E .
- (A2.) Instantiations of the function congruence schema for cons, car, and, cdr.

Axiom set of the Theory of Lists

Axiom set

- ($\mathcal{A}1$.) The axioms of reflexivity, symmetry and transitivity of T_E .
- (A2.) Instantiations of the function congruence schema for cons, car, and, cdr.
- (A3.) Instantiation of the predicate congruence schema for atom.

Axiom set

- ($\mathcal{A}1$.) The axioms of reflexivity, symmetry and transitivity of T_E .
- (A2.) Instantiations of the function congruence schema for cons, car, and, cdr.
- (A3.) Instantiation of the predicate congruence schema for atom.
- $(\mathcal{A}4.)$ $(\forall x)(\forall y)$ car(cons(x, y)) = x.

Axiom set

- ($\mathcal{A}1$.) The axioms of reflexivity, symmetry and transitivity of T_E .
- (A2.) Instantiations of the function congruence schema for cons, car, and, cdr.
- $(\mathcal{A}3.)$ Instantiation of the predicate congruence schema for atom.
- $(\mathcal{A}4.)$ $(\forall x)(\forall y)$ car(cons(x, y)) = x.
- $(\mathcal{A}5.) \ (\forall x)(\forall y) \ \mathrm{cdr}(\mathrm{cons}(x,y)) = y.$

Axiom set

- ($\mathcal{A}1$.) The axioms of reflexivity, symmetry and transitivity of T_E .
- (A2.) Instantiations of the function congruence schema for cons, car, and, cdr.
- (A3.) Instantiation of the predicate congruence schema for atom.
- $(\mathcal{A}4.)$ $(\forall x)(\forall y)$ car(cons(x, y)) = x.
- (A5.) $(\forall x)(\forall y) \operatorname{cdr}(\operatorname{cons}(x, y)) = y$.
- $(\mathcal{A}6.) \ (\forall x) \ \neg atom(x) \to cons(car(x), cdr(x)) = x.$

Axiom set

- ($\mathcal{A}1$.) The axioms of reflexivity, symmetry and transitivity of T_E .
- (A2.) Instantiations of the function congruence schema for cons, car, and, cdr.
- (A3.) Instantiation of the predicate congruence schema for atom.
- $(\mathcal{A}4.)$ $(\forall x)(\forall y)$ car(cons(x, y)) = x.
- (A5.) $(\forall x)(\forall y) \operatorname{cdr}(\operatorname{cons}(x, y)) = y$.
- $(\mathcal{A}6.)$ $(\forall x) \neg atom(x) \rightarrow cons(car(x), cdr(x)) = x.$
- $(\mathcal{A}7.)$ $(\forall x)(\forall y) \neg atom(cons(x, y)).$

General Theory of RDS

General Theory of RDS

General Theory of RDS

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$.

General Theory of RDS

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$. Each RDS contributes the following to the signature:

General Theory of RDS

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$. Each RDS contributes the following to the signature:

(i) an *n*-ary constructor *C*.

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$. Each RDS contributes the following to the signature:

- (i) an *n*-ary constructor C.
- (ii) n projection functions $\pi_1^C, \pi_2^C, \dots, \pi_n^C$.

Main points

The theory of lists, T_{cons} , is an instance of the general theory of recursive data structures, T_{RDS} . Each RDS contributes the following to the signature:

- (i) an *n*-ary constructor C.
- (ii) *n* projection functions $\pi_1^C, \pi_2^C, \dots, \pi_n^C$
- (iii) One atom predicate atom_C.

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$. Each RDS contributes the following to the signature:

- (i) an *n*-ary constructor C.
- (ii) n projection functions $\pi_1^C, \pi_2^C, \dots, \pi_n^C$
- (iii) One atom predicate atom $_C$.

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$. Each RDS contributes the following to the signature:

- (i) an *n*-ary constructor C.
- (ii) n projection functions $\pi_1^C, \pi_2^C, \dots, \pi_n^C$
- (iii) One atom predicate atom $_C$.

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$. Each RDS contributes the following to the signature:

- (i) an n-ary constructor C.
- (ii) n projection functions $\pi_1^C, \pi_2^C, \dots, \pi_n^C$
- (iii) One atom predicate atom $_C$.

Associated with each RDS is an instantiation of the following axiom schema:

($\mathcal{A}1$.) The axioms of reflexivity, symmetry and transitivity of T_E .

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$. Each RDS contributes the following to the signature:

- (i) an n-ary constructor C.
- (ii) n projection functions $\pi_1^C, \pi_2^C, \dots, \pi_n^C$
- (iii) One atom predicate $atom_C$.

- ($\mathcal{A}1$.) The axioms of reflexivity, symmetry and transitivity of T_E .
- (A2.) Instantiations of the function congruence axiom schema for the constructor C and the set of projectors $\pi_1^C, \pi_2^C, \dots, \pi_n^C$.

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$. Each RDS contributes the following to the signature:

- (i) an n-ary constructor C.
- (ii) *n* projection functions $\pi_1^C, \pi_2^C, \dots, \pi_n^C$
- (iii) One atom predicate atom $_C$.

- (A1.) The axioms of reflexivity, symmetry and transitivity of T_E .
- (A2.) Instantiations of the function congruence axiom schema for the constructor C and the set of projectors $\pi_1^C, \pi_2^C, \dots, \pi_n^C$.
- ($\mathcal{A}3$.) An instantiation of the predicate congruence axiom schema for $atom_{\mathbb{C}}$.

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$. Each RDS contributes the following to the signature:

- (i) an n-ary constructor C.
- (ii) *n* projection functions $\pi_1^C, \pi_2^C, \dots, \pi_n^C$
- (iii) One atom predicate $atom_C$.

- (A1.) The axioms of reflexivity, symmetry and transitivity of T_E .
- ($\mathcal{A}2$.) Instantiations of the function congruence axiom schema for the constructor C and the set of projectors $\pi_1^C, \pi_2^C, \dots, \pi_n^C$.
- (A3.) An instantiation of the predicate congruence axiom schema for atom_C.

$$(\mathcal{A}4.) \ (\forall x_1)(\forall x_2)...(\forall x_n) \ \pi_i^{C}(C(x_1, x_2, ..., x_n)) = x_i \text{ for each } i \in \{1, 2, ..., n\}.$$

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$. Each RDS contributes the following to the signature:

- (i) an n-ary constructor C.
- (ii) *n* projection functions $\pi_1^C, \pi_2^C, \dots, \pi_n^C$
- (iii) One atom predicate $atom_C$.

- ($\mathcal{A}1$.) The axioms of reflexivity, symmetry and transitivity of T_E .
- (.42.) Instantiations of the function congruence axiom schema for the constructor C and the set of projectors $\pi_1^C, \pi_2^C, \dots, \pi_n^C$.
- ($\mathcal{A}3$.) An instantiation of the predicate congruence axiom schema for $atom_{\mathbb{C}}$.
- (A4.) $(\forall x_1)(\forall x_2)...(\forall x_n) \pi_i^{\mathbb{C}}(C(x_1, x_2,...,x_n)) = x_i \text{ for each } i \in \{1, 2,...,n\}.$
- $(\mathcal{A}5.) \ (\forall x) \ \neg \text{atom}_{\mathbb{C}}(x) \rightarrow \mathcal{C}(\pi_1^{\mathbb{C}}(x), \pi_2^{\mathbb{C}}(x), \dots, \pi_n^{\mathbb{C}}(x)) = x.$

Main points

The theory of lists, $T_{\rm cons}$, is an instance of the general theory of recursive data structures, $T_{\rm RDS}$. Each RDS contributes the following to the signature:

- (i) an n-ary constructor C.
- (ii) n projection functions $\pi_1^C, \pi_2^C, \dots, \pi_n^C$
- (iii) One atom predicate $atom_C$.

- (A1.) The axioms of reflexivity, symmetry and transitivity of T_E .
- (.42.) Instantiations of the function congruence axiom schema for the constructor C and the set of projectors $\pi_1^C, \pi_2^C, \dots, \pi_n^C$.
- ($\mathcal{A}3$.) An instantiation of the predicate congruence axiom schema for $atom_{\mathbb{C}}$.

$$(\mathcal{A}4.) \ (\forall x_1)(\forall x_2) \dots (\forall x_n) \ \pi_i^{\mathbb{C}}(\mathbb{C}(x_1, x_2, \dots, x_n)) = x_i \text{ for each } i \in \{1, 2, \dots, n\}.$$

(A5.)
$$(\forall x) \neg atom_C(x) \to C(\pi_1^C(x), \pi_2^C(x), \dots, \pi_n^C(x)) = x.$$

$$(\mathcal{A}6.)$$
 $(\forall x_1)(\forall x_2)...(\forall x_n) \neg atom_C(C(x_1, x_2,...,x_n)).$

Acylic lists

Acylic lists

Main points		
		J

Acylic lists

Main points	

Acylic lists

Main points

(i) The theory of acyclic lists, $T_{\rm cons}^+$, is used to reason about structures such as stacks, which are naturally acyclic.

Acylic lists

- (i) The theory of acyclic lists, $T_{\rm cons}^+$, is used to reason about structures such as stacks, which are naturally acyclic.
- (ii) In addition to the axioms of T_{cons} , it has the following axiom schema:

- (i) The theory of acyclic lists, $T_{\rm cons}^+$, is used to reason about structures such as stacks, which are naturally acyclic.
- (ii) In addition to the axioms of T_{cons} , it has the following axiom schema:

(A1.)
$$(\forall x) \operatorname{car}(x) \neq x$$
.

- (i) The theory of acyclic lists, $T_{\rm cons}^+$, is used to reason about structures such as stacks, which are naturally acyclic.
- (ii) In addition to the axioms of T_{cons} , it has the following axiom schema:
 - (A1.) $(\forall x) \operatorname{car}(x) \neq x$.
 - (A2.) $(\forall x) \operatorname{cdr}(x) \neq x$.

- (i) The theory of acyclic lists, $T_{\rm cons}^{+}$, is used to reason about structures such as stacks, which are naturally acyclic.
- (ii) In addition to the axioms of T_{cons} , it has the following axiom schema:
 - (A1.) $(\forall x) \operatorname{car}(x) \neq x$.
 - (A2.) $(\forall x) \operatorname{cdr}(x) \neq x$.
 - $(\mathcal{A}3.)$ $(\forall x)$ car $(car(x)) \neq x$.

- (i) The theory of acyclic lists, $T_{\rm cons}^+$, is used to reason about structures such as stacks, which are naturally acyclic.
- (ii) In addition to the axioms of $T_{\rm cons}$, it has the following axiom schema:
 - (A1.) $(\forall x) \operatorname{car}(x) \neq x$.
 - $(A2.) (\forall x) \operatorname{cdr}(x) \neq x.$
 - (A3.) $(\forall x)$ car(car(x)) $\neq x$.
 - $(\mathcal{A}4.)$ $(\forall x)$ car(cdr(x)) $\neq x$.

- (i) The theory of acyclic lists, $T_{\rm cms}^+$, is used to reason about structures such as stacks, which are naturally acyclic.
- (ii) In addition to the axioms of T_{cons} , it has the following axiom schema:

```
(A1.) (\forall x) car(x) \neq x.

(A2.) (\forall x) cdr(x) \neq x.
```

(A3.)
$$(\forall x)$$
 car(car(x)) $\neq x$.

(A4.)
$$(\forall x) \operatorname{car}(\operatorname{cdr}(x)) \neq x$$
.

$$(\mathcal{A}5.) \ (\forall x) \ \mathrm{cdr}(\mathrm{car}(x)) \neq x.$$

- (i) The theory of acyclic lists, $T_{\rm cons}^+$, is used to reason about structures such as stacks, which are naturally acyclic.
- (ii) In addition to the axioms of T_{cons} , it has the following axiom schema:

```
(A1.) (\forall x) \operatorname{car}(x) \neq x.

(A2.) (\forall x) \operatorname{cdr}(x) \neq x.

(A3.) (\forall x) \operatorname{car}(\operatorname{car}(x)) \neq x.
```

$$(\mathcal{A}4.)$$
 $(\forall x)$ car(cdr(x)) $\neq x$.
 $(\mathcal{A}5.)$ $(\forall x)$ cdr(car(x)) $\neq x$.

$$(A6.)$$

Specifying atomic behavior

Specifying atomic behavior

Specifying atomic behavior

Main point

The axioms of $T_{\rm cons}^+$ do not specify the behavior of cons and cdr on atoms.

Specifying atomic behavior

Main point

The axioms of $T_{\rm cons}^+$ do not specify the behavior of cons and cdr on atoms. Adding the axiom,

$$(\forall x) \operatorname{atom}(x) \rightarrow [\operatorname{atom}(\operatorname{car}(x)) \wedge \operatorname{atom}(\operatorname{cdr}(x))]$$

gives a new theory, viz., $T_{\rm cons}^{\rm atom}$.

Theory of Lists with Equality

Theory of Lists with Equality

Main points		

Theory of Lists with Equality

Main points

(i) The theory $T_{\rm cons}^{=}$, is the theory of lists with equality.

Theory of Lists with Equality

- (i) The theory $T_{\text{cons}}^{=}$, is the theory of lists with equality.
- (ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.

- (i) The theory $T_{\text{cons}}^{=}$, is the theory of lists with equality.
- (ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
- (iii) Its signature is $\Sigma_E \cup \Sigma_{cons}$.

- (i) The theory $T_{\text{cons}}^{=}$, is the theory of lists with equality.
- (ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
- (iii) Its signature is $\Sigma_E \cup \Sigma_{cons}$.
- (iv) Its set of axioms is the union of the axiom set of T_E and T_{cons} .

Main points

- (i) The theory $T_{\text{cons}}^{=}$, is the theory of lists with equality.
- (ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
- (iii) Its signature is $\Sigma_F \cup \Sigma_{cons}$.
- (iv) Its set of axioms is the union of the axiom set of T_E and T_{cons} .

Example

Theory of Lists with Equality

Main points

- (i) The theory $T_{\text{cons}}^{=}$, is the theory of lists with equality.
- (ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
- (iii) Its signature is $\Sigma_F \cup \Sigma_{cons}$.
- (iv) Its set of axioms is the union of the axiom set of T_E and T_{cons} .

Example

Consider the following formula:

Main points

- (i) The theory $T_{\text{cons}}^{=}$, is the theory of lists with equality.
- (ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
- (iii) Its signature is $\Sigma_E \cup \Sigma_{cons}$.
- (iv) Its set of axioms is the union of the axiom set of T_E and T_{cons} .

Example

Consider the following formula:

$$F \ : \ [(\operatorname{car}(a) = \operatorname{car}(b)) \land (\operatorname{cdr}(a) = \operatorname{cdr}(b)) \land \neg \operatorname{atom}(a) \land \neg \operatorname{atom}(b)] \rightarrow [f(a) = f(b)]$$

Main points

- (i) The theory $T_{\text{cons}}^{=}$, is the theory of lists with equality.
- (ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
- (iii) Its signature is $\Sigma_E \cup \Sigma_{cons}$.
- (iv) Its set of axioms is the union of the axiom set of T_E and T_{cons} .

Example

Consider the following formula:

$$F: [(\operatorname{car}(a) = \operatorname{car}(b)) \land (\operatorname{cdr}(a) = \operatorname{cdr}(b)) \land \neg \operatorname{atom}(a) \land \neg \operatorname{atom}(b)] \rightarrow [f(a) = f(b)]$$

Is $F T_{cons}^{=}$ -valid?

Main points

- (i) The theory $T_{\text{cons}}^{=}$, is the theory of lists with equality.
- (ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
- (iii) Its signature is $\Sigma_E \cup \Sigma_{cons}$.
- (iv) Its set of axioms is the union of the axiom set of T_E and T_{cons} .

Example

Consider the following formula:

$$F \ : \ [(\operatorname{car}(a) = \operatorname{car}(b)) \land (\operatorname{cdr}(a) = \operatorname{cdr}(b)) \land \neg \operatorname{atom}(a) \land \neg \operatorname{atom}(b)] \rightarrow [f(a) = f(b)]$$

Is F $T_{cons}^{=}$ -valid? Is it T_{cons} -valid?